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Abstract. Let E be a complete uniform topological algebra with Arens-Michael
normed factors (Eα)α∈Λ . Then M (E) ∼= lim←−M (Eα) within an algebra isomor-
phism ϕ. If each factor Eα is complete, then every multiplier of E is continuous
and ϕ is a topological algebra isomorphism where M (E) is endowed with its
seminorm topology.
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1. Preliminaries

A topological algebra is an algebra (over the complex field) which is also a
Hausdorff topological vector space such that the multiplication is separately con-
tinuous. For a topological algebra E, we denote by ∆ (E) the set of all nonzero
continuous multiplicative linear functionals on E. An approximate identity in
a topological algebra E is a net (eω)ω∈Ω such that for each x ∈ E we have
xeω →ω x and eωx →ω x. Let E be an algebra, a function p : E → [0,∞[
is called a pseudo seminorm if there exists 0 � k ≤ 1 such that p (x+ y) ≤
p (x) + p (y) , p (λx) = |λ|kp (x) and p (xy) ≤ p (x) p (y) for all x, y ∈ E and
λ ∈ C. k is called the homogenity index of p. If k = 1, p is called a seminorm.
A pseudo seminorm p is a pseudo norm if p (x) = 0 implies x = 0. A locally m-
pseudoconvex algebra is a topological algebra E whose topology is determined
by a directed family {pα : α ∈ Λ} of pseudo seminorms. For each α ∈ Λ, let
ker (pα) = {x ∈ E : pα (x) = 0} , the quotient algebra Eα = E/ker (pα) is a
pseudo normed algebra in the pseudo norm pα (xα) = p (x) , xα = x+ ker (pα) .
Let fα : E → Eα, fα (x) = x + ker (pα) = xα, be the quotient map, fα is a
continuous homomorphism from E onto Eα. We endow the set Λ with the par-
tial order: α ≤ β if and only if pα (x) ≤ pβ (x) for all x ∈ E. Let α ≤ β
in Λ, since ker (pβ) ⊂ ker (pα) , we define the surjective continuous homo-
morphism fαβ : Eβ → Eα, xβ = x + ker (pβ) → xα = x + ker (pα) . Thus
{(Eα, fαβ) , α ≤ β} is a projective system of pseudo normed algebras which is
perfect in the sense of [2, Definition 4.1]. If E is complete, then E ∼= lim←−Eα
within a topological algebra isomorphism.
A locally m-convex algebra is a topological algebra E whose topology is defined
by a directed family {pα : α ∈ Λ} of seminorms. For each α ∈ Λ, let ∆α (E) =
{f ∈ ∆ (E) : |f (x)| ≤ pα (x) , x ∈ E} . Let E be an algebra with involution ∗,
a seminorm on E is called a C∗-seminorm if p (x∗x) = p (x)
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for all x ∈ E. A
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complete locally m-convex *-algebra
(
E, (pα)α∈Λ

)
, for which each pα is a C∗-

seminorm, is called a locally C∗-algebra. A uniform seminorm on an algebra E
is a seminorm p satisfying p(x2) = p(x)2 for all x ∈ E. A uniform topological
algebra is a topological algebra whose topology is determined by a directed
family of uniform seminorms. A uniform normed algebra is a normed algebra
(E, ‖.‖) such that ‖x2‖ = ‖x‖2 for all x ∈ E.
An algebra E is called proper if for any x ∈ E, xE = Ex = {0} implies
x = 0. If E has identity, then E is proper. Moreover, a topological algebra
with approximate identity is proper. Also, a uniform topological algebra is
proper. Let E be an algebra, a map T : E → E is called a multiplier if
T (x) y = xT (y) for all x, y ∈ E. We denote by M (E) the set of all multipliers
of E. It is known that if E is a proper algebra, then any multiplier T of E is
linear with the property T (xy) = T (x) y = xT (y) for all x, y ∈ E, and M (E) is
a commutative algebra with the identity map I of E as its identity. Let (E, ‖.‖)
be a uniform normed algebra, and let Mc (E) be the algebra of all continuous
multipliers of E with the operator norm ‖.‖op. It is known that ‖.‖op has the
square property and the map l : (E, ‖.‖) → (Mc (E) , ‖.‖op) , l (x) (y) = xy, is
an isometric isomorphism (into).

2. Results

Proposition 2.1. Let
(
E, (pα)α∈Λ

)
be a locally m-pseudoconvex algebra with

proper normed factors (Eα)α∈Λ . The following assertions are equivalent:
(i) T (ker (fα)) ⊂ ker (fα) for all T ∈M (E) and α ∈ Λ;
(ii) for each T ∈ M (E) , there exists a unique (Tα)α∈Λ ∈

∏
α∈ΛM (Eα) such

that fα ◦ T = Tα ◦ fα and Tα ◦ fαβ = fαβ ◦ Tβ for all α ≤ β in Λ. Furthermore,
T is continuous if and only if Tα is continuous for all α ∈ Λ.

Proof. (ii) ⇒ (i) : Let T ∈ M (E) and x ∈ ker (fα) , then fα (T (x)) =
Tα (fα (x)) = 0 and so T (x) ∈ ker (fα) .
(i)⇒ (ii) : Let T ∈M (E) and α ∈ Λ, since T (ker (fα)) ⊂ ker (fα) and by using
a known theorem of algebra, there exists a unique linear map Tα : Eα → Eα such
that fα◦T = Tα◦fα. Let α ∈ Λ and x, y ∈ E, Tα (fα (x) fα (y)) = Tα (fα (xy)) =
fα (T (xy)) = fα (xT (y)) = fα (x) fα (T (y)) = fα (x)Tα (fα (y)) and similary
on the other side, so Tα is a multiplier of Eα. Let α ≤ β in Λ, we have Tα ◦fα =
fα ◦T, then Tα ◦fαβ ◦fβ = fαβ ◦fβ ◦T = fαβ ◦Tβ ◦fβ , hence Tα ◦fαβ = fαβ ◦Tβ
since fβ is surjective. Suppose that T is continuous. Let Oα be an open in Eα,

we have f−1
α

(
T−1
α (Oα)

)
= (Tα ◦ fα)

−1
(Oα) = (fα ◦ T )

−1
(Oα) which is open in

E since fα ◦ T is continuous, then T−1
α (Oα) is open in Eα. Conversely, suppose

that Tα is continuous for all α ∈ Λ. Since E is topologically isomorphic to a
subalgebra of lim←−Eα, T is continuous if and only if fα ◦ T is continuous for all
α ∈ Λ. Since fα ◦ T = Tα ◦ fα and Tα is continuous for all α ∈ Λ, we deduce
that T is continuous.

Proposition 2.2. Let
(
E, (pα)α∈Λ

)
be a locally m-pseudoconvex algebra with
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proper normed factors (Eα)α∈Λ . The following assertions are equivalent:
(j) U (ker (fαβ)) ⊂ ker (fαβ) for all U ∈M (Eβ) and α ≤ β in Λ;
(jj) there exists a unique projective system {(M (Eα) , hαβ) , α ≤ β} such that
hαβ (U) ◦ fαβ = fαβ ◦U for all U ∈M (Eβ) and α ≤ β in Λ. Furthermore, if Eα
is complete for all α ∈ Λ, then hαβ is continuous for all α ≤ β in Λ.

Proof. (jj) ⇒ (j) : Let U ∈ M (Eβ) and xβ ∈ ker (fαβ) , then fαβ (U (xβ)) =
hαβ (U) (fαβ (xβ)) = 0 and so U (xβ) ∈ ker (fαβ) .
(j) ⇒ (jj) : Let α ≤ β in Λ and U ∈ M (Eβ) , since U (ker (fαβ)) ⊂ ker (fαβ)
and by using a known theorem of algebra, there exists a unique linear map V :
Eα → Eα such that V ◦fαβ = fαβ ◦U. Let xβ , yβ ∈ Eβ , V (fαβ (xβ) fαβ (yβ)) =
V (fαβ (xβyβ)) = fαβ (U (xβyβ)) = fαβ (xβU (yβ)) = fαβ (xβ) fαβ (U (yβ)) =
fαβ (xβ)V (fαβ (yβ)) and similary on the other side, so V is a multiplier of Eα.
This shows the existence of the map hαβ : M (Eβ)→M (Eα) such that hαβ (U)◦
fαβ = fαβ ◦ U for all U ∈ M (Eβ) and α ≤ β in Λ. Let α ≤ β in Λ, U1, U2 ∈
M (Eβ) and λ ∈ C, hαβ (U1 + λU2) ◦ fαβ = fαβ ◦ (U1 + λU2) = (fαβ ◦ U1) +
λ (fαβ ◦ U2) = hαβ (U1) ◦ fαβ + λhαβ (U2) ◦ fαβ = (hαβ (U1) + λhαβ (U2)) ◦ fαβ ,
hence hαβ (U1 + λU2) = hαβ (U1) + λhαβ (U2) since fαβ is surjective. Also,
hαβ (U1 ◦ U2)◦fαβ = fαβ◦U1◦U2 = hαβ (U1)◦fαβ◦U2 = hαβ (U1)◦hαβ (U2)◦fαβ ,
then hαβ (U1 ◦ U2) = hαβ (U1) ◦ hαβ (U2) since fαβ is surjective. Let α ≤ β ≤ γ
in Λ and W ∈ M (Eγ) , (hαβ ◦ hβγ) (W ) ◦ fαγ = hαβ (hβγ (W )) ◦ fαβ ◦ fβγ =
fαβ ◦ hβγ (W ) ◦ fβγ = fαβ ◦ fβγ ◦W = fαγ ◦W = hαγ (W ) ◦ fαγ , consequently
(hαβ ◦ hβγ) (W ) = hαγ (W ) since fαγ is surjective. Thus hαβ ◦ hβγ = hαγ . Let
α ∈ Λ, if Eα is complete, then every multiplier of Eα is continous. Now by
assuming that Eα is complete for all α ∈ Λ, we will show that hαβ is continuous
for all α ≤ β in Λ. For α ∈ Λ and r  0, let Bα (0, r) = {xα ∈ Eα : pα (xα) ≤ r} .
We denote by ‖.‖α the operator pseudo norm on M (Eα) . Let α ≤ β in Λ, fαβ
is open by the open mapping theorem, so there is λ  0 such that λBα (0, 1) ⊂
fαβ (Bβ (0, 1)) i.e. Bα (0, 1) ⊂ fαβ (Bβ (0, r)) where r = λ−kβ and kβ is the
homogenity index of pβ . Let U ∈M (Eβ) ,
‖hαβ (U)‖α = sup {pα (hαβ (U) (fα (x))) : fα (x) ∈ Bα (0, 1)}
≤ sup {pα (hαβ (U) (fαβ (fβ (x)))) : fβ (x) ∈ Bβ (0, r)}
= sup {pα (fαβ (U (fβ (x)))) : fβ (x) ∈ Bβ (0, r)}
≤ sup

{
pβ (U (fβ (x))) : fβ (x) ∈ Bβ (0, r)

}
≤ sup

{
‖U‖β pβ (fβ (x)) : fβ (x) ∈ Bβ (0, r)

}
= r‖U‖β .
Therefore hαβ is continuous.

Theorem 2.3. Let
(
E, (pα)α∈Λ

)
be a complete locally m-pseudoconvex algebra

with proper normed factors (Eα)α∈Λ . Assume that E satisfies conditions (i) and
(j). Then M (E) ∼= lim←−M (Eα) within an algebra isomorphism ϕ. Furthermore,
if each factor Eα is complete, then every multiplier of E is continuous and ϕ
is a topological algebra isomorphism where M (E) is endowed with its pseudo
seminorm topology.
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Proof. By Propositions 2.1 and 2.2, we define the map ϕ : M (E)→ lim←−M (Eα) ,
T → (Tα)α∈Λ .We will show that ϕ is an algebra isomorphism. Let T, S ∈M (E)
and λ ∈ C, Tα ◦ fα = fα ◦ T and Sα ◦ fα = fα ◦ S, then (Tα + λSα) ◦ fα =
fα◦(T + λS) , so (T + λS)α = Tα+λSα by Proposition 2.1. Also, Tα◦Sα◦fα =
Tα ◦ fα ◦ S = fα ◦ T ◦ S, hence (T ◦ S)α = Tα ◦ Sα by Proposition 2.1. Let
T ∈ M (E) , if Tα = 0 for all α ∈ Λ, then fα ◦ T = Tα ◦ fα = 0 for all
α ∈ Λ and consequently T = 0. Let (Uα)α∈Λ ∈ lim←−M (Eα) and define the map

T = Φ−1 ◦ lim←−Uα ◦ Φ : E → E where lim←−Uα is the multiplier of lim←−Eα defined

by
(

lim←−Uα
)

(xα)α = (Uα (xα))α and Φ : E → lim←−Eα is the topological algebra

isomorphism given by Φ (x) = (fα (x))α . Clearly T is a multiplier of E, also
fα ◦ T = fα ◦ Φ−1 ◦ lim←−Uα ◦ Φ = Uα ◦ fα for all α ∈ Λ, so ϕ (T ) = (Uα)α . If
Eα is complete for all α ∈ Λ, then every multiplier of Eα is continuous, hence
every multiplier of E is continuous by Proposition 2.1. The pseudo seminorm
topology on M (E) is the topology defined by the family of pseudo seminorms
qα (T ) = ‖Tα‖α, α ∈ Λ, so ϕ is a topological algebra isomorphism.

Proposition 2.4. Let
(
E, (pα)α∈Λ

)
be a locally m-pseudoconvex algebra with

approximate identity (eω)ω∈Ω . Then E satisfies conditions (i) and (j).

Proof. Let T ∈M (E) , x ∈ ker (fα) and ω ∈ Ω,
fα (T (x)) = fα (T (x− xeω + xeω))
= fα (T (x)− T (xeω)) + fα (T (xeω)) = fα (T (x)− T (x) eω) + fα (xT (eω))
= fα (T (x)− T (x) eω) + fα (x) fα (T (eω)) = fα (T (x)− T (x) eω) .
Since T (x) eω →ω T (x) and fα is continuous, we deduce that fα (T (x)) =
0. Now we will show that U (ker (fαβ)) ⊂ ker (fαβ) for all U ∈ M (Eβ) and
α ≤ β in Λ. Since (eω)ω∈Ω is an approximate identity in E and fβ : E → Eβ
is a surjective continuous homomorphism, it follows that (fβ (eω))ω∈Ω is an
approximate identity in Eβ. Let U ∈M (Eβ) , xβ ∈ ker (fαβ) and ω ∈ Ω,
fαβ (U (xβ)) = fαβ (U (xβ − xβfβ (eω) + xβfβ (eω)))
= fαβ (U (xβ)− U (xβfβ (eω))) + fαβ (U (xβfβ (eω)))
= fαβ (U (xβ)− U (xβ) fβ (eω)) + fαβ (xβU (fβ (eω)))
= fαβ (U (xβ)− U (xβ) fβ (eω)) + fαβ (xβ) fαβ (U (fβ (eω)))
= fαβ (U (xβ)− U (xβ) fβ (eω)) .
Since U (xβ) fβ (eω)→ω U (xβ) and fαβ is continuous, we deduce that
fαβ (U (xβ)) = 0.

Corollary 2.5. [4, Theorems 2.6 and 2.12] Let
(
E, (pα)α∈Λ

)
be a complete

locally m-pseudoconvex algebra with approximate identity. Suppose that each
factor Eα = E/ker (pα) in the generalized Arens-Michael decomposition of E is
complete. Then every multiplier of E is continuous and M (E) ∼= lim←−M (Eα)
within a topological algebra isomorphism where M (E) is endowed with its
pseudo seminorm topology.

Proof. It follows from Theorem 2.3 and Proposition 2.4.

4



Corollary 2.6. Let
(
E, (pα)α∈Λ

)
be a locally C∗-algebra. Then every multi-

plier of E is continuous and M (E) ∼= lim←−M (Eα) within a topological algebra
isomorphism where M (E) is endowed with its seminorm topology.

Proof. By [6, Theorem 2.6] and [8, Corollary 1.12], E has an approximate
identity and each factor Eα is complete.

Now we will describe multipliers algebras of complete uniform topological
algebras.

Proposition 2.7. Let
(
E, (pα)α∈Λ

)
be a uniform topological algebra. Then

ker (fα) = ∩{ker (χ) : χ ∈ ∆α (E)} for all α ∈ Λ and
ker (fαβ) = ∩{ker (µ ◦ fαβ) : µ ∈ ∆ (Eα)} for all α ≤ β in Λ.

Proof. By [1, Theorem 6], pα (x) = sup {|χ (x)| : χ ∈ ∆α (E)} for all x ∈ E
and α ∈ Λ, then ker (fα) = ker (pα) = ∩{ker (χ) : χ ∈ ∆α (E)} for all α ∈ Λ.
Let α ≤ β in Λ and xβ ∈ Eβ ,
xβ ∈ ker (fαβ)⇔ fαβ (xβ) = 0
⇔ µ (fαβ (xβ)) = 0 for all µ ∈ ∆ (Eα)
⇔ xβ ∈ ∩{ker (µ ◦ fαβ) : µ ∈ ∆ (Eα)} .

Proposition 2.8. Let
(
E, (pα)α∈Λ

)
be a uniform topological algebra. Then E

satisfies conditions (i) and (j).

Proof. By Proposition 2.7, ker (fα) = ∩{ker (χ) : χ ∈ ∆α (E)} for all α ∈ Λ.
If T is a multiplier of E, then T (ker (χ)) ⊂ ker (χ) for all χ ∈ ∆α (E) by [5,
Theorem 2.9], so
T (ker (fα)) = T (∩{ker (χ) : χ ∈ ∆α (E)})
⊂ ∩{T (ker (χ)) : χ ∈ ∆α (E)}
⊂ ∩{ker (χ) : χ ∈ ∆α (E)} = ker (fα) .
By Proposition 2.7, ker (fαβ) = ∩{ker (µ ◦ fαβ) : µ ∈ ∆ (Eα)} for all α ≤ β in
Λ. If U is a multiplier of Eβ , then U (ker (δ)) ⊂ ker (δ) for all δ ∈ ∆ (Eβ) by
[5, Theorem 2.9], so U (ker (µ ◦ fαβ)) ⊂ ker (µ ◦ fαβ) for all µ ∈ ∆ (Eα) , and
consequently
U (ker (fαβ)) = U (∩{ker (µ ◦ fαβ) : µ ∈ ∆ (Eα)})
⊂ ∩{U (ker (µ ◦ fαβ)) : µ ∈ ∆ (Eα)}
⊂ ∩{ker (µ ◦ fαβ) : µ ∈ ∆ (Eα)} = ker (fαβ) .

Theorem 2.9. Let
(
E, (pα)α∈Λ

)
be a complete uniform topological algebra.

Then M (E) ∼= lim←−M (Eα) within an algebra isomorphism ϕ. Furthermore, if
each factor Eα is complete, then every multiplier of E is continuous and ϕ is
a topological algebra isomorphism where M (E) is endowed with its seminorm
topology.

Proof. It follows from Theorem 2.3 and Proposition 2.8.
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Remark. Let
(
E, (pα)α∈Λ

)
be a complete uniform topological algebra which

is also a symmetric *-algebra, then
(
E, (pα)α∈Λ

)
is a locally C∗-algebra, and so

each factor Eα is complete.

As an application of previous results, we deduce the Arhippainen unitization
theorem [1, Theorem 4] on uniform topological algebras.

Proposition 2.10. Let
(
E, (pα)α∈Λ

)
be a uniform topological algebra, and let

Mc (E) be the algebra of all continuous multipliers of E. Then there is a family
of seminorms (qα)α∈Λ on Mc (E) such that

1.
(
Mc (E) , (qα)α∈Λ

)
is a uniform topological algebra;

2. the map L : E → Mc (E) , L (x) (y) = xy, is an algebra isomorphism (into)
and qα (L (x)) = pα (x) for all x ∈ E and α ∈ Λ.

Proof. 1. By Propositions 2.1, 2.2 and 2.8, we define the map ψ : Mc (E) →
lim←−Mc (Eα) , T → (Tα)α∈Λ . As in the proof of Theorem 2.3, ψ is an injective
homomorphism. We endow Mc (E) with the topology defined by the family of
seminorms qα (T ) = ‖Tα‖α, α ∈ Λ, where ‖.‖α is the operator norm on Mc (Eα) .

Let T ∈Mc (E) , qα
(
T 2
)

= ‖
(
T 2
)
α
‖α = ‖(Tα)

2‖α = ‖Tα‖2α = qα (T )
2

since ‖.‖α
has the square property. Let T ∈ Mc (E) with qα (T ) = 0 for all α ∈ Λ, then
Tα = 0 for all α ∈ Λ, so T = 0 since ψ is injective.
2. Since E is proper, L is an algebra isomorphism (into). Let x ∈ E and
α ∈ Λ, (L (x))α ◦ fα = fα ◦ L (x) , then (L (x))α (fα (y)) = (fα ◦ L (x)) (y) =
fα (xy) = fα (x) fα (y) for all y ∈ E. Since the map l : (Eα, pα)→ (Mc (Eα) , ‖.‖α) ,
l (xα) (yα) = xαyα, is an isometric isomorphism (into), it follows that
‖(L (x))α‖α = pα (fα (x)) = pα (x) , so qα (L (x)) = pα (x) .

Proposition 2.11. Let E be a uniform topological algebra without unit, and
let Ee be the algebra obtained from E by adjoining the unit. Then the map
g : Ee →Mc (E) , g ((x, λ)) = L (x) + λI is an algebra isomorphism (into).

Proof. It is easy to show that g is an algebra homomorphism. Let (x, λ) ∈ Ee
with g ((x, λ)) = 0, then L (x) = −λI. Suppose λ 6= 0, I = −λ−1L (x) =
L
(
−λ−1x

)
, so −λ−1x is a left unit in E. Since E is commutative, −λ−1x is a

unit in E, a contradiction. Thus L (x) = 0 and consequently x = 0 since E is
proper.

Corollary 2.12. [1, Theorem 4] Let
(
E, (pα)α∈Λ

)
be a uniform topological

algebra without unit. Then there is a family of seminorms (sα)α∈Λ on Ee such

that
(
Ee, (sα)α∈Λ

)
is a uniform topological algebra and sα ((x, 0)) = pα (x) for

all x ∈ E and α ∈ Λ.

Proof. For each α ∈ Λ, we define a seminorm on Ee by
sα ((x, λ)) = qα (L (x) + λI) for all x ∈ E and λ ∈ C.
By Propositions 2.10 and 2.11,

(
Ee, (sα)α∈Λ

)
is a uniform topological algebra
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and sα ((x, 0)) = qα (L (x)) = pα (x) for all x ∈ E.

Remark. We have sα ((x, λ)) = qα (L (x) + λI) ≤ qα (L (x)) + |λ|qα (I) =
pα (x)+ |λ| for all x ∈ E and λ ∈ C. This shows that the topology on Ee defined
by the family of seminorms (sα)α∈Λ is weaker than the usual topology on Ee
defined by the family of seminorms (p̃α)α∈Λ where p̃α ((x, λ)) = pα (x) + |λ|.
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