
HAL Id: hal-01355234
https://hal.science/hal-01355234v1

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A scalable algorithm for the placement of service
function chains

Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache

To cite this version:
Marouen Mechtri, Chaima Ghribi, Djamal Zeghlache. A scalable algorithm for the placement of service
function chains. IEEE Transactions on Network and Service Management, 2016, 13 (3), pp.533 - 546.
�10.1109/TNSM.2016.2598068�. �hal-01355234�

https://hal.science/hal-01355234v1
https://hal.archives-ouvertes.fr

1

A Scalable Algorithm for the Placement
of Service Function Chains
Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache

Télécom SudParis, Samovar-UMR 5157 CNRS, Université Paris-Saclay

Abstract—Network Function Virtualization (NFV) decouples
software implementations of network functions from their hosts
(or hardware). NFV exposes a new set of entities, the virtualized
network functions (VNFs). The VNFs can be chained with
other VNFs and physical network functions (PNFs) to realize
network services. This flexibility introduced by NFV allows
service providers to respond in an agile manner to variable
service demands and changing business goals. In this context,
the efficient establishment of service chains and their placement
becomes essential to reduce capital and operational expenses and
gain in service agility. This paper addresses the placement aspect
of these service chains by finding the best locations and hosts
for the VNFs and to steer traffic across these functions while
respecting user requirements and maximizing provider revenue.
We propose a novel eigendecomposition based approach for the
placement of virtual and physical network functions chains in
networks and cloud environments. A heuristic based on a custom
greedy algorithm is also presented to compare performance and
assess the capability of the eigendecomposition approach. The
performance of both algorithms is compared to a multi-stage
based method from the state of the art that also addresses
the chaining of network services. Performance evaluation results
show that our matrix based method, eigendecomposition of
adjacency matrices, has reduced complexity and convergence
times that essentially depend only on the physical graph sizes.
Our proposal also outperforms the related work in provider’s
revenue and acceptance rate.

Index Terms—Virtual Network Function, Function placement
and chaining, Eigendecomposition, Distributed Cloud environ-
ments.

I. INTRODUCTION

NETWORK Functions Virtualization (NFV) is revolution-
izing the way networking services are designed and

deployed. Compared to traditional networking where dedi-
cated hardware is required for each function (manually in-
stalled into the network), the NFV concept virtualizes the
network functions (NAT, firewalling, intrusion detection, DNS,
caching...) so they can be hosted on commodity hardware
(servers/computers). These functions decoupled from the un-
derlying hardware are known as Virtualized Network Func-
tions (VNFs).

Running NFV based networks provides considerably more
flexibility, leads to efficient and scalable resource usage and
reduces costs. Operators (providers) are increasingly interested

M. Mechtri and C. Ghribi are with the Department of Wireless Networks
and Multimedia Services, Institut Mines-Telecom, Telecom SudParis, Evry,
France, e-mails: {marouen.mechtri, chaima.ghribi}@it-sudparis.eu.

D. Zeghlache is the head of Wireless Networks and Multimedia Services
Department, Telecom SudParis, IMT and member of Université Paris-Saclay
e-mail: djamal.zeghlache@it-sudparis.eu.

in Virtual Network Functions (VNFs) that can be placed in
Data Centers or NFV-capable network elements such as routers
and switches. Despite the emergence of NFV, deploying and
orchestrating VNFs still requires more research and devel-
opment. The challenge of VNF and VNF forwarding graph
(VNF-FG) placement in the cloud requires more attention.
The notion of VNF forwarding graphs is defined by ETSI as
service chaining that consists in steering traffic flows across
switches and VNFs in an ordered fashion. A service chain is a
topology of services, or more specifically a sequence of VNFs
interconnected to provide a complex network service with
specific functionalities. Figure 1 depicts the notion of VNF
chaining that consists in setting up a service chain (represented
as a VNF forwarding graph (VNF-FG)) on virtual and physical
provider service nodes.

The focus of this paper is the problem of virtual network
function (VNF) placement and chaining across distributed
cloud environments. Previous work on VNF chaining and
placement typically maps the problem into a traditional Virtual
Network Embedding (VNE) problem [1], [2], [3]. Even if
VNF placement and routing seem to be similar to the well
known VNE problem, they are are different [4]. Requests in
VNE are modeled by simple undirected graphs (multipoint-
to-multipoint connections) whereas in VNF chaining, demands
are more complex and contain both the VNFs to place and the
traffic flows to steer between source-destination pairs (point-
to-point/ingress-egress connections).

Previous work in [5], [6], [7], [3] and [8] solves the problem
of VNF placement and flow steering separately. Two-stage
placement and chaining approaches cannot provide efficient
solutions especially for large input graphs which are hard
to map. In [9], authors propose a Mixed Integer Linear
Programming (MILP) formulation to the problem of joint
optimization of VNF placement and workload distribution
and a greedy solution to solve the problem for every VNF
chain one by one. Authors in [6], [7], [3] propose exact
and heuristic algorithms. Despite their optimality, the exact
solutions suffer from combinatorial explosion and do not scale
with problem size. Heuristic approaches converge faster but
solve the problem iteratively and this affects the quality of the
solutions and increases the time to find a suboptimal solution.

In this paper, we formalize the VNF placement and chaining
problem across distributed clouds and propose an analytical
approach to provide a more efficient solution. This approach is
based on the eigendecomposition of the request and infrastruc-
ture graphs that we extend to make it applicable to the VNF
placement and chaining problem. To assess the performance

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Fig. 1: VNF placement and chaining

of our solution we compare with a heuristic greedy procedure
also proposed to solve the problem iteratively. Both approaches
are evaluated considering several metrics and use cases such
as infrastructure size, request size, network connectivity and
system load.

Section II of this paper presents the related work and
highlights the contribution of our customized eigendecompo-
sition approach to VNF placement and chaining. Section IV
formulates the problem and Section V describes the proposed
Eigendecomposition method. Our greedy heuristic algorithm
is discussed in detail in Section VI. Performance evaluation re-
sults and comparison with a selected state of the art algorithm
are reported in Section VII.

II. RELATED WORK

There has been much recent work in the area of VNF
chaining and placement. A preliminary work was proposed
in [7], authors formulated the VNF placement problem as
a integer linear program (ILP) and proposed a simulated
Annealing (SA) based heuristic to get approximate solutions
in shorter time but have simplified the overall problem such
as using only one type of VNFs and addressing rather small
chains.

Authors in [10] introduced ClickOS, a platform to manage
software-based middle-boxes. In [5], authors presented Stratos,
a network-aware orchestration layer for virtual middleboxes
in Clouds and expressed middlebox provisioning as an ILP
problem.

In [11], authors propose a NFV based orchestration frame-
work for enterprise WLAN. The orchestrator implements a
recursive greedy algorithm based on breadth-first traversal
search which aims at placing VNFs according to application
level constraint.

In [6], authors formulate the problem of network function
placement and routing as a mixed integer linear programming
problem to determine the placement of services and the
routing of the flows while minimizing resource utilization.
Heuristic solutions were also proposed to solve the problem
incrementally.

In [12], authors propose an Integer Linear Programming
(ILP) model to solve the network function placement and
chaining problem. Additionally, they propose a heuristic pro-
cedure that employs a modified version of the proposed ILP
model in each iteration.

A model for formalizing the chaining of network functions
using a context-free language is proposed in [2]. Authors
describe the mapping as a Mixed Integer Quadratically Con-
strained Program (MIQCP) for finding the placement of the
network functions and chaining them together.

In [13], authors describe an architecture based on an orches-
trator that ensures the automatic placement of the virtual nodes
and the allocation of network services on them. Placement
decisions are made using simple algorithms, such as counting
the number of virtual routers on a host, or using algorithms
based on a set of constraints and policies that represent the
network properties.

A model for resource allocation in NFV networks was
proposed in [3]. The model can be used in both pure NFV
networks and in hybrid networks containing physical hard-
ware. The presented model was implemented as an ILP and
was evaluated using a service provider scenario containing two
types of service chain requests.

A network functions virtualization orchestration model was
provided in [14]. Authors define and formulate the VNF Place-
ment and Routing optimization problem via mathematical
programming and design a greedy math-heuristic algorithm
to solve it. A service chaining algorithm was also proposed
in [15]. Authors formulate a Genetic Programming based
approach to solve the VM allocation and network management
problem.

Existing research work is generally based on mixed integer
programming to solve the VNF placement and chaining prob-
lem. Even if these approaches allow finding exact solutions,
they suffer from combinatorial complexity, do not scale with
problem size and are extremely time-consuming. The existing
proposed greedy heuristic approaches provide solutions in a
more reasonable time but they solve the problem iteratively
which affects the quality of the solutions and wastes time.
Demands are almost formulated as single service chains ex-
pressing a sequence of VNFs that should be applied to a
flow (e.g, [16] [7]). In some works VNF chaining requests
are represented as connected graphs (e.g, [15] [12]) but place
service chains heuristically, one by one, in an iterative way
that leads to suboptimal solutions. We aim at placing chains
simultaneously on the hosting infrastructures.

Authors of paper [17] propose an ILP and a heuristic
approach for VNF placement and chaining using a complex
transformation of the problem by adding new virtual switches.
Their heuristic first models the VNF orchestration problem as a
Multi-Stage directed graph with associated costs. Second they
achieve VNF placement by running the Viterbi algorithm [18]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

on the Multi-Stage graph. The Multi-Stage algorithm favors
mapping nodes of each request on the same physical node.
This means that bandwidths on the links are neglected since
there are no link constraints when VNFs are mapped on the
same physical node. Link constraints and requirements are
naturally embedded in our models and solutions.

Authors of [19] treat the problem of network service chain-
ing through an ILP model and a heuristic-based algorithm
composed of two phases: a decomposition selection with
backtracking phase and a mapping phase, leading consequently
to suboptimal solutions.

In most of the above mentioned solutions, the VNF place-
ment and chaining problem is solved in two steps: VNFs are
initially mapped to substrate nodes then the traffic is steered
through chains via the shortest possible path. As opposed to
two-stage approaches, our solution solves the problem jointly.
VNFs are placed and traffic is distributed over them in one-
shot since tenant requests are collectively processed as VNF
Forwarding Graphs (Service Chains).

In summary, our work is different from the existing VNF
placement and chaining proposals since it relies on an a new
analytic Eigendecomposition approach that handles joint VNF
placement and traffic distribution. Our solution is also much
faster and more scalable compared to existing algorithms and
it naturally achieves tuned consolidation for better resource
usage. We have also supported the concept of multi-tenancy
and considered both virtual and physical resources. To the
best of our knowledge, this work is the first effort that uses
Eigendecomposition to solve the problem while improving
resource usage, fast converging to solutions and scaling with
problem size.

III. VNF CHAINING AND USE CASES

The chaining of network functions was investigated by
different working groups and research projects in order to
define the issues associated with the deployment of service
functions. The ETSI-NFV and the SFC IETF working groups
specify the NFV architecture [20] along with its components
and the associated terminologies [21].

In Figure 1, stemming from ETSI-NFV, we distinguish three
types of graphs that represent the requested network service.
A virtualized network function forwarding graph (VNF-FG)
that represents the consumer or tenant request, a network con-
nectivity topology (NCT) that corresponds to the underlying
network necessary to support the forwarding graph flows, and
the substrate graph or the NFV infrastructure (NFVI) that will
host the requested resources. In the ETSI-MANO document
[22], the requested graphs are defined as follows:

• Network connectivity topology (NCT): a graph that spec-
ifies the VNF nodes that compose the global network
service and the connection between these nodes through
virtual links (VL). Each VL is connected to a VNF
through a connection point (CP) that represents the VNF
interface.

• VNF Forwarding Graph (VNF-FG): is a graph established
on top of the NCT. The VNF-FG is composed of network
forwarding paths (NFP) that are ordered lists of CPs that
form a VNF chain.

Figure 2 shows an example of a network service composed
of:

• End points that represent the ingress and egress nodes
of the chain. These nodes can be physical nodes (e.g.
switches) or virtual nodes (e.g. VMs hosting a web server
application) from which the chain and the offered service
are reachable. Packets from the end points will traverse
a specific chain based on their traffic types.

• Classifiers that identify and classify traffic, based on
policy specified by the tenant/operator, into service flows
to be shepherd to the appropriate forwarding path. Clas-
sifiers impose the classification and implement the policy
by applying the encapsulation method on the packets
(e.g. via the Service chaining protocol: Network Service
Header protocol “NSH” [23]). This technique ensures
packet delivery to the requisite VNFs. SFC working
group of IETF recommend the use of the classifier in
the service chaining domains. Note that the classifier can
also be co-located with a VNF.

• NFPs representing the network connectivity between a
set of VNFs forming the requested chain (e.g. a chain
of VNFs such as for example firewalls, NATs, and load
balancers on the path to a web server). Figure 2 depicts
an example of two forwarding paths “NFP1 and NFP2”.
NFP1 traverses VNF1, VNF2 and VNF3 through their
associated CPs whereas NFP2 traverses only VNF1 and
VNF3.

• VNFs which are virtual containers implementing a spe-
cific network function. In our model we consider also
physical network functions (PNFs).

Fig. 2: NFV components and terminologies

The ETSI-NFV and IETF-SFC working groups propose
their own terminologies to express respectively the main
concepts of NFV and SFC. The terminologies as usual are
different but their is a certain correspondence between their
components and concepts as presented in Table I.

ETSI-NFV IETF
Virtualized network function VNF Service function SF
Connection point CP Service Function Forwarder SFF
Virtual link VL implicitly –
VNF forwarding graph VNF-FG Service Function Chain SFC
Network Forwarding path NFP Service Function Path SFP

TABLE I: ETSI-NFV and IETF Notations

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Before we delve into the analysis of the use cases, our
approach and model, the reader should be aware that the ETSI-
NFV and IETF-SFC recommendations for the implementation
of the network service chains requires the use of connection
points and a classifier that sets (establishes) and imposes the
direction of the chain. Our modelling is based on this principle
and goes through the optimization of the NCT placement
followed by its instantiation via virtual infrastructure managers
(VIMs) of the NFVI. For the optimization we will use the
derived NCT as input. The implementation of the optimized
chains is achieved by a NFV manager that instantiates and
stitches the connection points and the associated forwarding
paths. Our choice is governed by the fact that in cloud
environments upstream and downstream flows are tightly
coupled on a physical link. If such a constraint disappears
in the future, we would simply use the initial VNF-FG as
the requested (input) graph in the optimization. Note that
we assume that the tenant/client specification embeds any
special demand including VNF replication and link splitting in
their requested graphs (VNF-FG). Hence, our main goal is to
solve the optimization problem in a realistic, thus constrained,
environment.

A. Use Cases Overview
The IETF-SFC and ETSI-NFV [24] working groups present

in several documents network function chaining use-cases in,
for instance, mobile networks [25] and data center networks
[26]. In Cloud and data center environments, we distinguish
two primary types of traffic/communication between cloud
users and services. The first type is a North-south traffic that
corresponds to a communication between an external entity
and a service hosted in the Cloud or the data-center (e.g.
VPN service). An example that illustrates this scenario is a
cloud provider that deploys the appropriate network functions
(on dedicated network hardware or on virtual machines) and
the associated forwarding path in order to offer and expose
its service. The second type is an East-West traffic where
the communication occurs between resources deployed inside
the Cloud environment. For this scenario, the network service
chain is deployed on the path between the tenant’s applications
(e.g. between a web server and a database).

We summarize the use cases from ETSI-NFV and IETF-
SFC for which the VNF-FGs and network service chains can
be addressed by our approach and our proposed eigende-
composition method. This analysis of the use cases helps us
extract common (generic)patterns and relevant chain structures
to address using our algorithms while achieving the largest
possible coverage of the network services chaining and place-
ment problem.

• Use case 1: VNF-FG deployment for in data center
traffic: Tenants can request complex services with com-
pute resources connected via VNF chains when the traffic
originates from inside the data center. As shown in the
figure below, the VNF-FG is composed of Chains with
several virtual machines (VMs) and VNFs.

• Use case 2: VNF-FG deployment for intra and inter
data center traffic: In this use case (north-south use

Fig. 3: VNF-FG deployment for in data center traffic

case defined in [26]), the traffic is staying within the data
center but is originating from a remote data center or
a user through an edge router connecting to an external
network. This can refer to VNF chains spanning multiple
data centers, thus requiring inter-data-center coordination
[27]. In this use case, the focus is on hybrid chains
composed of both physical and virtual network functions.
In this scenario, NFP1 and NFP2 traverse the same
physical network function PNF1. This scenario describes
the case of a cloud (or data center) provider imposing the
traversal of a physical network function before reaching
the desired service (e.g. a physical firewall).

Fig. 4: VNF-FG deployment when traffic originates from
outside the data center

The problem that we aim to resolve should not only support
the cited scenarios and use cases but also be sufficiently
generic to apply to infrastructures and environments with
virtual and physical network functions.

IV. PROBLEM FORMULATION

The VNF placement and chaining problem in the Cloud cor-
responds to mapping the tenants VNF forwarding graphs into
provider’s infrastructures (or NFVI) and can be decomposed
into two subproblems: Placement and Chaining. “Placement”
consists in selecting the substrate/service nodes (server or
switch) that will host the requested VNFs while “Chaining”
consists in creating paths or steering traffic through VNFs.

A. Substrate graph or NFV Infrastructure
The infrastructure (or substrate) is modeled as a weighted

undirected graph SG = (Ns, Es) where Ns represents the
set of substrate nodes and Es the set of substrate links.
Each substrate node nsi ∈ Ns has a physical-host-type t
(t ∈ {server, switch, PNF}) and is associated with an
available processing capacity cpu(nsi). Each substrate link
es(i, j) ∈ Es connecting nodes nsi and nsj is associated with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

an bandwidth capacity bw(es(i, j)). Each node of the substrate
graph has a specific physical-host-type such as a server, a
switch or a PNF (physical network function) node. On the
server node, we can host a virtual machine acting as a VNF.
On the PNF node we can host a VNF having the same VNF-
type as the PNF so we can impose for a VNF to be hosted on a
PNF with a specific type. Consequently the VNF-type feature
can be used to make sure mapping occurs on similar node
types or to enforce mapping on a node with specific features.

B. Virtual Network Function forwarding graph

Requests are modeled as virtual network function for-
warding graphs. Let V NF -FGc = (N c, Ec) be the VNF
forwarding graph associated to a tenant c. The set of nodes N c

represents the set of requested services. A requested service
node nci ∈ N c can represent an end-point node (a VM or a
switch) and is associated to a requested processing capacity
cpu(nci) according to its type. Ec is the set of links of the
VNF forwarding graph.

Let NFP c = {NFP c1 , ..., NFP cKc} be the set of Network
Forwarding Paths (or chains) requested by the tenant c. Each
Forwarding Path NFP cj describes the ordered VNF sequence
the traffic must pass through and is associated to a requested
bandwidth capacity bw(NFP cj).

From the VNF forwarding graph V NF -FGc, we derive
a request graph called network connectivity topology graph
NCT c. NCT c = (N c, Ec) is a directed weighted graph
having exactly the same set of nodes and edges of V NF -FGc.
The weight of a node nci ∈ N c corresponds to its requested
processing capacity cpu(nci). The weight (or requested band-
width) of an edge ec(i, j) ∈ Ec corresponds to the sum of the
bandwidths of all the VNF flows passing through it.

As specified by the SFC IETF working groups [26], we
associate a VNF-type to each VNF to represent the network
service or function type (e.g., firewall, DPI, NAT, etc.). By
default, VNF nodes will be hosted on physical servers, but
a tenant can impose mapping a VNF on a PNF. We rely on
the VNF-type matching to ensure this required mapping. For
example, a tenant can request to map a VNF on a server
supporting SR-IOV or acceleration technology. This can be
done if we define a PNF with an SR-IOV type or a VMDq-
type for mapping on a node with VMDq technology.

C. Objectives

Our main objective is to ensure joint VNF placement and
chaining when targeting the most complex and complete use
cases proposed by ETSI [24] (dealing with VNF-FGs). Many
important aspects and concepts like multi-tenancy and resource
heterogeneity (Virtual/Physical) should be also considered:

• Supporting multi-tenant aware service models is strongly
required by IETF specification [26]. Multi-tenant service
delivery is achieved when providers’ substrate nodes
(SNs) are tenant aware (SNs can be allocated to multiple
tenants) or when SN instances are tenant dedicated.

• Service chaining is generally limited to exclusively phys-
ical or virtual SNs and not a mix of resources [26].

Symbol Description
SG = (Ns, Es) SG is a substrate network/graph with a set of nodes

Ns and a set of links Es.
ns
i Substrate node j. ns

j ∈ Ns.
cpu(ns

i) Available processing capacity of ns
j .

es(i, j) Substrate link ∈ Es connecting nodes ns
i and ns

j .
bw(es(i, j)) Available bandwidth capacity of es(i, j).
V NF − FGc =
(Nc, Ec)

VNF forwarding graph requested by tenant c.

NFP c Set of forwarding paths requested by the tenant c.
Kc Number of forwarding paths requested by the

tenant c.
NCT c =
(Nc, Ec)

Request graph of tenant c.

nc
i Requested service node ∈ Nc.

cpu(nc
i) Required processing capacity of nc

i .
ec(i, j) Logical link ∈ Ec connecting nodes nc

i and nc
j .

bw(ec(i, j)) Required bandwidth capacity of ec(i, j).
n Substrate graph size.
mc Size of the request graph RGc.

TABLE II: Notations

Considering heterogenous resources presents the advan-
tage of combining the benefits offered by physical SNs
(performance) with the flexibility and agility provided by
virtual SNs.

Hence, our eigendecomposition approach for VNF place-
ment and Chaining should also achieve a trade-off between
speed and efficiency and should scale with problem size.

V. EIGENDECOMPOSITION FOR VNF PLACEMENT AND
CHAINING

To solve the problem of VNF Placement and Chaining, we
propose an eigendecomposition of the adjacency matrices of
the request and the hosting infrastructure graph This approach
uses an analytical method to obtain efficient solutions for
the weighted graph matching problem. Our solution extends
and adapts Umeyama’s eigendecomposition approach [28] for
this optimal matching between weighted graphs. This state
of the art method is based on the eigendecomposition of the
adjacency matrices of the input graph and the reference graph
(graph to host the request) and on the Hungarian method [29]
to extract mapping results. Details on Umeyama’s solution
for the weighted graph matching problem (WGMP) and our
proposed Eigendecomposition approach for VNF Placement
and Chaining are provided in the next sections.

A. Umeyama’s eigendecomposition approach for WGMP

The problem of weighted graph matching which consists in
finding the optimum matching between two weighted graphs
(weights at each arc) was solved using an approximate solution
in [28]. WGMP is solved by finding a mapping function φ
between the nodes of the considered graphs while minimizing
a similarity distance metric between them. Umeyama employs
a spectral approach that provides efficient matching by using
the eigendecompositions of the adjacency matrices of the
graphs and the Hungarian method [29] to extract mapping
results. An almost optimal matching can be found when the
graphs are sufficiently close to each other. A brief description
of the approach is provided below:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

• To match two graphs G and H , we first construct their
adjacency matrices AG and AH .

• The optimum matching between AG and AH consists
in finding a permutation matrix P (containing matching
results) that minimizes the similarity distance between the
graphs G and H defined as J(P). Hence, the aim is to
find a solution with J(P) very close to optimal using
a matching algorithm that determines the permutation
matrix.

• The permutation Matrix P is obtained by applying the
Hungarian algorithm [29] (a well-known combinatorial
optimization method) that maximizes the total weight
on matrix M = ŪH Ū

T
G , where UG and UH are the

orthogonal/eigenvector matrices of AG and AH .

This approach presents some limitations if applied “as
is” to VNFs Placement and Chaining in the Cloud. So, we
have extended and adapted it to achieve joint node and link
mapping and improve scalability compared to the current state
of the art on SFC placement. Limitations and extensions are
briefly discussed by summarizing the approach in [28] and
presenting each time our introduced extension to make the
method applicable to VNF placement and chaining:

• Umemaya’s approach requires a pair of graphs of the
same size and performs only link mapping:
We have adapted the approach to support matching graphs
of different sizes (since in SFC the request and substrate
graphs do not have the same size) and to deal not only
with link mapping but also with node mapping. More
details are given in the next subsection.

• Mapping is one to one (a substrate resource hosts a
single requested resource but this does not match with
the Virtualization concept):
We have adapted the approach to allow different VNF
nodes/links to be hosted on the same physical node/link.
An important extension is also to allow mapping virtual
links into physical paths unlike Umemaya’s approach
where each single virtual link is mapped on exactly one
physical link.

• The closest match is the best match (obtained using a
squared similarity distance but this violates the maxi-
mum capacity limits in cloud resources, retains unfea-
sible solutions and misses feasible ones by stopping the
exploration):
An important extension is the design of a new match-
ing algorithm for extracting appropriate mapping results
achieving efficient VNF placement and steering traffic
while respecting resource usage constraints.

• Umemaya’s approach is adequate for graphs that are
sufficiently close to each other (ideally isomorphic):
As Umemaya’s approach deals with graph similarity,
matching results are better (or similarity distance is
minimum) when the graphs are close to each other. In
fact, the matching in [28] is different from the resource
mapping considered in our problem because we care
about resource availability and not about graph similarity.
We have adapted the request and substrate graphs to bring
them closer to each other by adjusting their size.

B. Eigendecomposition for VNF Placement and Chaining

We cast the VNF Placement and Chaining problem in net-
worked cloud infrastructures into the weighted graph matching
problem (WGMP). If we consider the substrate graph SG
and a the VNF forwarding graph V NF − FGc of tenant
c (formulated as a request graph NCT c), WGMP is the
problem of finding a one to one mapping function φ between
Ns and N c which minimizes a difference/distance criterion
between SG and NCT c. Our proposed solution for VNF
Placement and Chaining in the Clouds extends and adapts
Umeyama’s eigendecomposition approach [28] for optimal
matching between weighted graphs.

1) Substrate and request graphs: Let ASG and ANCT c

be the adjacency matrices corresponding to the substrate graph
SG and to the NCT graph (request graph) NCT c, respectively.

ASG =

{
asi,j = bw(es(i, j)) i 6= j
asi,i = cpu(nsi)

(1)

ANCT c =

{
aci,j = bw(ec(i, j)) i 6= j
aci,i = cpu(nci)

(2)

Since WGMP deals with graphs of the same size, we add
dummy isolated vertices to the request graph in order to make
the graphs of equal size. So we transform each matrix ANCT c

of size mc into a matrix of size n by adding rows and columns
containing only zeros.

2) Distance criterion: Let J(φ) be a criterion to measure
difference/distance between substrate and request graphs [28],
defined as:

J(φ) =
n∑
i=1

n∑
j=1

(asi,j − acφ(i),φ(j))
2 (3)

If we consider ASG and ANCT c the adjacency matrices
of SG and NCT c respectively, the J(φ) criterion can be
reformulated by using a permutation matrix P that represents
the node mapping function φ as follows [28]:

J(P) = ‖PASGPT −ANCT c‖2 (4)

The optimum matching between ASG and ANCT c is hence
reduced to the problem of finding the permutation matrix P
that minimizes J(P). In our work we compute the J(P) value
through a matching algorithm that determines the permutation
matrix.

3) Eigendecomposition: As permutation matrices are or-
thogonal, the problem of finding a permutation matrix min-
imizing J(P) can be solved by extending the space of J
to the space of orthogonal matrices Q that minimize J(Q).
Eigendecomposition of the matrices ASG and ANCT c are
hence used to find a solution.

Let USG and UNCT c be the orthogonal/eigenvector matrices
of ASG and ANCT c , respectively. As demonstrated in [28], the
permutation matrix P can be determined as permutation matrix
that maximizes the trace tr(PT ŪNCT cŪTSG) which represents
an instance of the assignment (bipartite maximum weighted
matching) problem (see equation 5).

tr(PT ŪNCT cŪTSG) ≤ n (5)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Therefore, P is obtained by applying a Matching algo-
rithm that maximizes the total weight on the matrix M =
ŪNCT cŪTSG).

There exist many optimization algorithms to solve the
maximum matching problem (e.g. the Hungarian algorithm
[29], a well-known combinatorial optimization method). But,
in this paper we propose a heuristic Cloud-oriented algorithm
that finds maximum weight matching while respecting the
constraints imposed by the request and the service chaining
(e.g. placement constraints, resource capacity constraints, de-
pendance between paths of the VNF-FG...).

4) VNF placement and chaining algorithm: In order to
explain our proposed algorithm, an example of VNF placement
and chaining is provided in Figure 5 where a VNF-FG is
transformed into an NCT graph subsequently hosted on the
substrate graph (NFVI). The weights on the nodes represent
CPU capacities and the link weights indicate bandwidth ca-
pacities. Both substrate nodes and links can host multiple
virtual nodes and links as long as they have enough available
capacity. Each physical node and link has a limit in terms of
resource that cannot be exceeded cumulatively when assigning
(or mapping) virtual resources to (onto) hosts.

Fig. 5: An example of VNF placement and chaining problem

Our algorithm starts by computing the best paths between
any two not directly connected substrate nodes (paths that
maximize the minimum bandwidth along their route). The
substrate graph adjacency matrix ASG is updated next with
weights equal to the calculated bandwidths. Information about
paths is stored to be used when mapping Forwarding Paths.

Then, since the eigendecomposition deals with graphs of the
same size, we add dummy isolated vertices to the request graph
in order to make the graphs of equal size. So we transform
each adjacency matrix ANCT 1 of size m1 into a matrix of size
n by adding n−m1 rows and columns with zeros.

As depicted in Figure 5, the matrices described below cor-
respond respectively to the substrate graph adjacency matrix
ASG and the request adjacency matrix ANCT 1 . In the example,
matrix ANCT 1 of original size m1 = 4 was padded with zero
values to make both graphs of same cardinality (i.e., n = 6).

ANCT =

3 7 0 0
7 2 2 5
0 2 5 2
0 5 2 3

⇒

3 7 0 0 0 0
7 2 2 5 0 0
0 2 5 2 0 0
0 5 2 3 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ASG =

3 7 0 3 1 0
7 8 9 2 0 0
0 9 15 4 10 0

3 2 4 5 3 0
1 0 10 3 11 5
0 0 0 0 5 2

⇒

3 7 7 3 1 5
7 8 9 2 9 5
7 9 15 4 10 5

3 2 4 5 3 4
1 9 10 3 11 5
5 5 5 4 5 2

As shown in Algorithm 1, starting from the extended adja-

cency matrix ANCT c (padded with zeros) and the adjacency
matrix of the substrate graph ASG, we derive the eigenvectors
of these adjacency matrices, USG and UNCT c .

Fig. 6: Matrix M computation result for Figure5 example

P =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

Algorithm 1 Eigendecomposition based approach

1 Compute paths (in ASG) that maximize the minimum
bandwidth along the route between the not directly con-
nected substrate nodes

2 Extend ASG with fictitious links whose weights corre-
spond to the path bandwidths computed in Step 1

3 USG ← EigenV ectors(ASG)
4 Aggregate the requested workloads and processing capa-

bilities of VNF-FGs and their associated NFPs on the
NCT c graph

5 Extend ANCT c to have the same size as the ASG
6 UNCT c ← EigenV ectors(ANCT c)
7 M ← ŪNCT c × ŪTSG
8 P ← VNF and VNF-FG Matching Algorithm(M)

The next step consists in building the matrix M and
calling our proposed VNF and VNF-FG Matching Algorithm
(Algorithm 2) to extract the solution (permutation matrix

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

P). This is illustrated in Figure 6 that highlights the po-
tential candidate substrate nodes for hosting the VNFs and
virtual nodes a, b, c, d as depicted: Node1 ← a;Node2 or
Node6 ← b;Node3 ← c;Node4 or Node5 ← d. Note
that this matrix M corresponds to the example of Figure
5. Matrix P derived by maximizing the trace tr(PT ŪH ŪTG)
finalizes the process by retaining only the nodes that meet
the tenant’s or consumer’s graph request (more precisely the
requested VNF-FG) in terms of nodes and links requirements.
Indeed, the highest matrix M element values reflect the most
likely best match, hosting node, for each VNF of the VNF-
FG initial request. These most likely matches (highest values)
have to be double checked by Algorithm 2 that verifies that
all requirements at nodes, links and paths levels are met. For
instance, the most likely candidate node for hosting requested
V NF b is Node6 (with value 0.36). Nevertheless, Node6
is not retained as there are no paths respecting the link
requirement of 7. The maximum available bandwidth between
Node1 and Node6 is only 5. The same can be said for
candidate Node4 for hosting V NF d and this despite its
higher value in matrix M . Only candidate Node5 meets all the
requirements by mapping the link between V NF b and V NF
d via a path (Node2 → Node3 → Node5) with sufficient
bandwidth.

The elements of matrix M are processed by Algorithm
2 to produce the mapping through our eigendecomposition
approach (by setting the elements of P to 1 for each mapping
found).

Algorithm 2 step 1 to step 3 find all candidate hosts from an
eigendecomposition standpoint (elements with highest value in
each row of M since they represent the best node matching)
but these need to be verified in terms of ability to host
before they are selected. Hence, steps 4 to 8 are essential to
eliminate infeasible solutions and to not violate resource usage
constraints.

If a candidate does not respect all established conditions,
constraints and agreements, the algorithm returns to step 3 to
process the next highest value in a row of matrix M . Steps
19 to 28 correspond to a function that is called by step 5 that
verifies that “all links attached to the selected nodes and their
neighboring nodes” meet the constraints and requirements
before the permutation matrix P is returned as output of
the mapping algorithm (via step 18). This output P contains
the mapping results of VNFs and their associated forwarding
paths onto the SG graph. It is essential to understand that the
resource matching algorithm role is just to eliminate unfeasible
solutions retained from the highest values in matrix M chosen
in step 2. Actually, the eigendecomposition based approach in
Algorithm 1 previously found jointly the candidate nodes and
links in one shot. The solutions are in the candidate set but
are finally extracted by the second algorithm.

The complexity of our solution is equal to the combined
complexity of algorithms 1 and 2. The complexity of the
eigendecomposition of adjacency matrices of NCT c and SG
depends directly on their size n and this complexity is known
to be O(n3) [30]. The final step, step 8, of Algorithm 1,
calls the VNF and VNF-FG Matching algorithm that has a
complexity of O(mc · n · n − 1). Indeed, step 1 requires mc

Algorithm 2 VNF and VNF-FG Matching Algorithm
Input: NCT c = (N c, Ec);SG = (Ns, Es);M = ŪNCT c ×
ŪTSG. Output: Matrix P: result of VNFs and VNF-FGs match-
ing.

1 for each nci ∈ N c do
2 Row ← Get ith row from M
3 k ← Get index of highest value element from Row1

4 if cpu(nsk)− cpu(nci) ≥ 0 and (other node constraints
are respected)2 then

5 if CheckLinks(nci , nsk) = True then
6 φ(nci)← nsk
7 P (i, k)← 1
8 Update capacities on ASG.
9 else

10 Row[k]← null

11 Goto Step 3
12 end if
13 else
14 Row[k]← null

15 Goto Step 3
16 end if
17 end for
18 return P

19 function CHECKLINKS(nci ,n
s
k)

20 for each l ∈ neighbours(nci) do
21 if l is mapped (φ(l) 6= null) then
22 if [bw(es(nsk, φ(l))) − bw(ec(nci , l))]

< 0 and (other link constraints are respected)3 then
23 return False
24 end if
25 end if
26 end for
27 return True
28 end function

1) To force nodes separation imposed by tenant requests, the algorithm would
select the matrix M column index that corresponds to substrate nodes k that
do not have a reservation yet and set the P matrix element to 1. To impose
co-localization for virtual nodes in the same substrate node k (if required by
the tenant), the algorithm will set elements of column k of matrix P to 1 for
virtual nodes that must be co-localized.

2) memory, storage, locality, cost criteria and SLAs
3) latency, packet lost, cost criteria and SLAs

iterations, the “Goto” step 3 from steps 11 and 15 involves n
iterations and step 20 that verifies all the connection links to
neighbours costs (n−1) iterations in the case a full mesh graph
request. Consequently, this leads to a worst case complexity
of O(n3) overall for our solution.

Our approach is suboptimal because in step 7 of Algorithm
1 there is no specific order when running through the rows
of matrix M and this produces few suboptimal solutions. The
cost of ordering of the rows is increased complexity, that we
would like to avoid at this stage. Note also that we do not need
to do any backtracking in our approach since the derived eigen
vectors and values (Algorithm 2) already provides appropriate
hints in Matrix M to find the solution faster.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

VI. GREEDY ALGORITHM FOR VNF PLACEMENT AND
CHAINING

Fig. 7: Greedy algorithm

We propose a greedy algorithm (see Figure 7) for VNF
placement and chaining to benchmark the eigendecomposi-
tion algorithm performance. The greedy solution is based on
bipartite matching and can be summarized into 6 steps:

1) aggregate the requested workloads and processing capa-
bilities of VNF-FG on the NCT c graph;

2) create a complete bipartite graph (BG) based on the
difference between the the NCT c and SG nodes pro-
cessing capacities;

3) compute maximum matching with minimum BG cost;
4) check node mapping: if node capacity and type con-

straints are respected, we move to link capacities check-
ing. Otherwise, BG is updated by setting unfeasible
node mappings to infinite cost. Then, the maximum
matching with minimum BG cost is re-calculated (by
going back to step 3);

5) compute best paths (paths that maximize the minimum
bandwidth along their route) between SG nodes hosting
NCT c nodes;

6) check link mapping: if links capacities are respected, we
return the mapping solution. Otherwise, BG is updated
by setting unfeasible node mappings to infinite cost
(since links depend on their associated nodes) and to

zero on feasible node mappings. Then, the maximum
matching with minimum BG cost is re-calculated (by
going back to step 3);

VII. PERFORMANCE EVALUATION

This section describes our simulation settings and presents
the results of a performance evaluation and a comparison of
our eigendecompsitiong based heuristic (for VNF Placement
and Chaining) with the greedy algorithm and the Multi-Stage
algorithm proposed in [17].

A. Simulation Settings

To evaluate our approach, we run simulations using realistic
topologies and parameters. We used the same conditions and
parameter settings of simulation scenarios in the literature
to obtain meaningful comparisons [17]. The algorithms were
evaluated using a 2.70 GHz Quad Core server with 32 GBytes
of available RAM. The GT-ITM tool was used to randomly
generate substrate graphs as well as Network Forwarding Paths
that are aggregated to form the requests (NCT). We assume
that requests arrive according to a poisson process with an
average rate of 5 requests per 100 time units and the lifetime
of each request follows an exponential distribution with a
mean of 1000 time units. We present results averaged over
all simulation experiments (each value is an average over 100
instances) with a confidence interval of 95%. Substrate In-
frastructure. As depicted in Table III, the considered substrate
sizes vary between 100 and 5000 nodes with high connectivity
percentage (50, 80 and 100 %). The available CPU capacity
per service node and available bandwidth capacity per link
randomly drawn in the 50 to 100 range. Request: VNF-
FG. VNF forwarding graph are randomly generated then
aggregated to form NCT graphs. The number of VNFs per
request varies from 5 to 200 with 50 percent connectivity.
The requested CPU capacity of each VNF is randomly drawn
in the 0 to 20 interval and the requested bandwidth in the 0
and 50 range (see Table III).

Substrate (Random Graph)
Size [100-5000]
Connectivity PSG = 0.5, 0.8, 1
Nodes(CPU) [50-100]
Links(BW) [50-100]

Request (Random Graph)
Size [5-200]
Connectivity PNCT = 0.5
Nodes(CPU) [0-20]
Links(BW) [0-50]

TABLE III: Simulation Settings

B. Simulation Results

To evaluate the effectiveness of our proposed
Eigendecomposition based heuristic, we compare its
performance against the basic greedy heuristic for VNF
placement and chaining in terms of convergence time and
acceptance rate. Our key observations are summarized next.

(1) Eigendecomposition heuristic is fast and scales:
The first experiment consists in comparing our Eigende-

composition approach with the greedy heuristic algorithm for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

substrate graphs with 100 servers. The request/VNF-FG size
varies from 5 to 20 and the connectivity of both substrate
and request graphs is fixed to 50%. As depicted in Figure 8,
the greedy algorithm requires more than 1.5 minutes to solve
the problem for VNF-FG size equal to 50. To give a more
comprehensive comparison and better understand the behavior
of both heuristics, we increase the sizes of the substrate and
request graphs.

10 15 20 25 30 35 40 45 50

101

102

103

104

105

NCT c Size

C
on

ve
rg

en
ce

Ti
m

e
(m

s)

Eigendecomposition Approach
Greedy

Fig. 8: Convergence Time (SG size = 100, PSG=0.5,
PNCT c=0.5)

In Figure 9, the substrate graph size is fixed to 1000 and
the request size is varied from 10 to 50. This experiment
shows that our Eigendecomposition heuristic manifests “flat”
convergence time (less than 1.4 s for SG=1000), regardless
of request size. On the other hand, the greedy heuristic needs
more time to converge when increasing request size (more
than 2 min for NCT=50). This is explained by the fact that
the eigendecomposition heuristic is based on an analytical
approach and depends only on substrate graph size, unlike,
the greedy heuristic which is based on an iterative approach.

10 15 20 25 30 35 40 45 50

103

104

105

106

107

NCT c Size

C
on

ve
rg

en
ce

Ti
m

e
(m

s)

Eigendecomposition Approach
Greedy

Fig. 9: Convergence Time (SG size = 1000, PSG=0.5,
PNCT c=0.5)

To strengthen the evaluation and to better understand the
behaviour of the proposed algorithms (Eigen and Greedy),
we have also compared our approach with the Multi-Stage

algorithm in terms of convergence time as a function of SG
and NCT graph sizes (see Figure 10 and Figure 11).

10 20 30 40 50 60 70 80 90 100
103

104

105

106

107

NCT Size

C
on

ve
rg

en
ce

Ti
m

e
(m

s)

Eigendecomposition Approach
Greedy
Multi-Stage

Fig. 10: Convergence Time when varying NCT size (SG size
= 1000, PSG = 0.5, PNCT c=0.5)

In Figure 10, the SG size is fixed to 1000 nodes and we vary
the NCT request size in the range [10, 100]. The Eigende-
composition heuristic finds mapping solutions very fast (in less
than 1.4 seconds). As expected the convergence time remains
the same when increasing the NCT size since the performance
of the Eigendecomposition algorithm depends on the substrate
(or infrastructure) size. Convergence time of the Multi-stage
and the Greedy algorithms on the contrary increases with
the requested service chains sizes. The time needed to find
a solution reaches 110 seconds for the Multi-stage and 246
minutes for the Greedy algorithm for NCT = 100. This figure
confirms that our proposed Eigendecomposition algorithm
is scalable with NCT graph size. If substrate graph sizes
increase, the eigendecomposition algorithm will take longer
to find solutions or reject the demands with a performance
bounded by the algorithm complexity that is O(n3) with n
representing the size of the infrastructure. The greedy and the
multi-stage algorithm (of [17]) have exponential complexity
and thus suffer from combinatorial explosion.

500 1,000 1,500 2,000 2,500 3,000
101

102

103

104

105

106

SG Size

C
on

ve
rg

en
ce

Ti
m

e
(m

s)

Eigendecomposition Approach
Greedy
Multi-Stage

Fig. 11: Convergence Time when varying SG size (NCT size
= 20, PSG = 0.5, PNCT c=0.5)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

Figure 11 shows that our Eigendecomposition approach is
considerably faster compared with the Greedy and Multi-Stage
algorithms when the NCT size is fixed to 20 (VNFs) and
SG sizes vary between 100 and 3000 nodes. This Figure
confirms results obtained in Figure 10 and shows that our
Eigendecomposition algorithm is much faster (few seconds
compared to tens to hundreds of seconds). For a SG size
of 1000 nodes, the Eigendecomposition approach requires
1.36 seconds to compute the solution compared with 62
and 22 seconds required by the Greedy and the Multi-Stage
algorithms respectively. Note that for substrate graph sizes
greater than 2000 nodes, the Multi-Stage is unable to find a
solution in reasonable time and takes unacceptable time before
rejecting requests. The Eigendecomposition on the contrary
can handle larger scale physical infrastructures in reasonable
time.

(2) Eigendecomposition based heuristic is stable:
To further extend the evaluation of scalability, we run

experiments for larger problem sizes. As depicted in Figure
12, we evaluate the convergence time for medium and large
substrate graphs (over 5000 nodes) for the Eigendecomposi-
tion method. The flat behavior of the curves confirms that
the convergence time depends only on the substrate graph
sizes. Our Eigendecompsotion heuristic finds solutions in few
seconds for substrate graph sizes equal or less than 3000. Even
if convergence time is in the order of minutes for substrate
sizes greater than 4000 (about 1 min for SG=4000 and 2 min
for SG=5000), our heuristic computational complexity is quite
acceptable compared with existing related algorithms which
are limited to small substrate graphs [12] [3]. Note that the
greedy and multi-stage approaches execution time increases
with both the SG, NCT and VNF-FG graph sizes and are for
this reason not included in Figure 12. The multi-stage of [17]
handles only a forwarding path at a time (or simple chains) as
opposed to the Eigendecomposition and the Greedy that treat
entire VNF-FG graphs and thus handle multiple forwarding
paths jointly and simultaneously. This also explain why the
multi-stage performance is neither assessed nor reported in
Figure 12 and Figure 13.

20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

NCT c Size

C
on

ve
rg

en
ce

Ti
m

e
(s

ec
on

ds
)

SG size = 1000
SG size = 2000
SG size = 3000
SG size = 4000
SG size = 5000

Fig. 12: Eigendecomposition Convergence Time

As depicted in Figure 13, our Eigendecomposition approach

Eigen Greedy

0

100

200

300

Algorithms

C
on

ve
rg

en
ce

Ti
m

e(
m

s)

FP=3
FP=5
FP=10
FP=15
FP=20

Fig. 13: Convergence time when varying the number of NFP
per request

(SG size = 100, NCT c size = 10)

is also stable and insensitive to the number of forwarding
paths, unlike the greedy heuristic. In fact, iterative solutions
are tightly dependent on all the parameters.

To emphasize this aspect, we also compare the convergence
time of the eigendecomposition and the greedy heuristics with
different requested resources types and proportions (% of vir-
tual resources/VNFs vs % of physical resources/switches). We
vary P the probability of having (or the percentage of) physical
switches and PNFs in the VNF-FG request. The greedy
algorithm consumes an important amount of exploration time
to map required switches and PNFs to the substrate graph (see
Figure 14) especially when the number of imposed physical
switches is high since there are far fewer solutions available
since the subspace to be searched is much smaller because
of the induced hard node and link mapping constraints. Note
that the proposed eigendecomposition approach in this work is
fairly insensitive to these proportions of resource types in the
substrate thanks to its natural capability of eliminating in very
few iterations all unfeasible candidates and finding in one shot
the requested mapping by processing the permutation matrix.
Note that the multi-stage algorithm was not evaluated in
Figures 13 and 14. The multi-stage algorithm does not appear
in Figure 13 because it deals only with simple chains with only
one FP (forwarding path) and in Figure 14 because it does not
consider heterogeneous infrastructures with different physical
node types (e.g. physical network function or PNF nodes taken
on the contrary into account in the Eigendecompsotion and
Greedy algorithms).

(3) Eigendecomposition based heuristic accepts more
requests: Table IV highlights a characteristic of the eigen-
decomposition approach that converges faster and also rejects
requests faster if the system is overloaded. As depicted in
Figure 15, the eigendecomposition heuristic accepts more
requests than the greedy algorithm that tends to use less
efficiently the infrastructure resources by privileging certain
nodes and thus reducing the likelihood of mapping future
requests as the system load increases.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Eigen Greedy

0

50

100

150

200

250

Algorithms

C
on

ve
rg

en
ce

Ti
m

e(
m

s)

P = 0.4
P = 0.6
P = 0.8

Fig. 14: Convergence time with different node types
(SG size = 100, NCT c size = 10)

The strength of our proposed eigendecomposition approach
is its ability to find (as well as reject) in very few iterations
(in Algorithm 2).Once matrix M has been computed (this
step being the most time consuming, recall the O(n3) com-
plexity), the algorithm is very fast since the previous steps
(eigen vectors and values construction of the substrate and
VNF-FG graphs), reveal the candidate subgraphs out of the
entire substrate graph (NFVI) to explore for the solutions.
Consequently the eigendecomposition method accelerates the
search for the solution by transforming the exploration space
and providing hints about the most relevant candidates.

Eigen Greedy
Convergence Time (ms) 4,93 236,56
Rejection Time (ms) 5 279,31

TABLE IV: Convergence and Rejection Time
(SG size = 100, NCT c size = 10, PNCTc=0.5)

0.1 0.3 0.5 0.7 0.9

·104

99.75

99.8

99.85

99.9

99.95

100

Time units

A
cc

ep
ta

nc
e

R
at

e
%

Eigendecomposition Approach
Greedy

Fig. 15: Acceptance Rate (SG size = 100, NCT c size =[2,10],
PSG = 0.5, PNCT c=0.5)

Figure 16 compares the Eigendecomposition approach with
the Multi-Stage algorithm in terms of acceptance rate and
provider revenue. The results show (in Figure 16a) that the
proposed Eigendecomposition algorithm performs much better

than the Multi-Stage algorithm in terms of acceptance rate
since it accepts 99% of the VNF chaining requests while
the Multi-Stage algorithm accepts only 20%. The computed
revenue (Figure 16b) corresponds to the total revenue (num-
ber of accepted cpu and bandwidth resources multiplied by
the associated revenue units) generated when accepting the
NCT requests at time t. The Eigendecomposition algorithm
increases the provider revenue by 77.75% compared with the
Multi-Stage algorithm and confirms the results obtained by the
acceptance rate performance in Figure 16a.

Because the acceptance rates of the eigendecomposition
and the greedy algorithms are relatively close to each other,
they are reported in Figure 15 without the multi-stage whose
acceptance rates are significantly different and distant from
the other two algorithms. For visibility reasons, the acceptance
rate of the Multi-Stage algorithm was reported in a separate
Figure 16a with the Eigendecomposition (only).

2,000 4,000 6,000 8,000
0

20

40

60

80

100

Time units

A
cc

ep
ta

nc
e

R
at

e
% Eigendecomposition Approach

Multi-Stage

(a)

2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

0.8

1

1.2

·105

Time units

R
ev

en
ue

Eigendecomposition Approach
Multi-Stage

(b)

Fig. 16: Acceptance Rate and Provider Revenue

(4) Eigendecomposition based heuristic accepts more
requests when requests are willing to wait:

Encouraged by the superior performance of the eigende-
composition method compared with the greedy algorithms, we
introduce a waiting queue for the requests to take advantage
of departures to repeat or persistently launch the algorithm
when it does not find a solution on first attempt and would
hence reject the request. Given the margin provided by the
eigendecomposition algorithm, the additional delay can be
tuned to be transparent to the consumer or to stay within
the limit the consumer is willing to wait before receiving an
allocation or be rejected. Introducing the queue can enhance
the acceptance rate of requests when and if departures occur
in the system.

The results are depicted in Figure 17 where variable R
represents the number of authorized attempts before rejecting
a request and parameter D is the number of departures the
algorithm waits before it launches an optimization for finding
solutions for the requests waiting in the queue. We can
observe, as expected, that there is a tradeoff that needs to
be achieved between R, D and the acceptance rate. The most
favorable combination for these simulations is achieved by
the curves R3D3 and R3D10 when the results are analyzed
jointly with the summary provided in Table V.

The performance metric “waiting (%)” reported in Table V
is the ratio of the waiting time in queue to the sojourn time

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

of accepted requests in the substrate. This is a measure of
user/tenant satisfaction when their tolerance to delay before
getting a service is used to improve the acceptance rate.

The results are respectively a waiting time of 8, 6% and 117
request rejected (instead of 148 for Eigen or EigenR0D0)
and 32, 7% for the waiting time and only 80 requests rejected.
Note also that the average number of reattempts to find a
solution remains quite low, less than 2 attempts. Depending
upon the tolerance or willingness to wait for the consumer,
the rejection rate can be reduced even further to 46 of course
at the expense of delay (actually that increases to 67, 32% for
R10D10).

0.1 0.3 0.5 0.7 0.9

·104

99.75

99.8

99.85

99.9

99.95

100

Time units

A
cc

ep
ta

nc
e

R
at

e
%

Eigen
Greedy
Eigen R3D3
Eigen R3D10
Eigen R10D3
Eigen R10D10

Fig. 17: Acceptance Rate (SG size = 100, NCT c size =[2,10],
PSG = 0.5, PNCT c=0.5)

Rejected request Waiting (%) Repeat (%)
Eigen 148 0 0

Greedy 164 0 0
Eigen R3D3 117 8,6 1,69

Eigen R3D10 80 32,7 1,59
Eigen R10D3 98 24,29 3,99
Eigen R10D10 46 67,32 3,4

TABLE V: Convergence Time
(SG size = 100, NCT c size = 10, PNCTc=0.5)

VIII. CONCLUSION

In this paper, we presented a new approach to address the
joint placement of virtualized network functions (VNFs) and
their associated chains over distributed cloud environments.
By relying on the eigendecomposition of the requested graph
and the infrastructure graphs, we show that the placement of
the VNFs and their chaining can be integrated in the adjacency
matrices to find the closest mapping graph in the infrastructure
that can respect the directed nature of VNF forwarding graphs
(VNF-FG), their network paths and the dependence of these
paths (and hence the traffic flows traversing the VNFs). The
algorithm is shown to scale to thousands of nodes and links
and to be insensitive to the number of requested VNF-FGs,
the proportion of resource types and the connectivity in these
input graphs. The algorithm has a fairly flat convergence
time penalty governed by the size of the infrastructure graph.
This stability in performance of the eigendecomposition makes

this algorithm quite attractive compared to other conventional
approaches that are very sensitive to the nature and proportions
of resource types and to problem size such as the greedy
algorithm presented also in this work. This robustness and
stability and scaling capability of the algorithm encourage us
to continue exploring how the eigendecomposition approach
can be extended using a wider set of objectives and criteria
to generalize the solution and address the multiple constraints,
criteria and objectives encountered in NFV.

REFERENCES

[1] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “A novel approach to virtual networks
embedding for SDN management and orchestration,” in 2014 IEEE
Network Operations and Management Symposium, NOMS 2014,
Krakow, Poland, May 5-9, 2014, 2014, pp. 1–7. [Online]. Available:
http://dx.doi.org/10.1109/NOMS.2014.6838244

[2] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Cloud Networking (CloudNet), 2014
IEEE 3rd International Conference on, Oct 2014, pp. 7–13.

[3] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in Network and Service Management
(CNSM), 2014 10th International Conference on, Nov 2014, pp. 418–
423.

[4] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Cloud Networking
(CloudNet), 2015 IEEE 4th International Conference on, Oct 2015, pp.
171–177.

[5] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[6] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. K.
Ramakrishnan, and T. Wood, “Virtual function placement and traffic
steering in flexible and dynamic software defined networks,” in 2015
IEEE International Workshop on Local and Metropolitan Area Networks,
LANMAN 2015, Beijing, China, April 22-24, 2015, 2015, pp. 1–6.
[Online]. Available: http://dx.doi.org/10.1109/LANMAN.2015.7114738

[7] X. Li and C. Qian, “The virtual network function placement
problem,” in 2015 IEEE Conference on Computer Communications
Workshops, INFOCOM Workshops, Hong Kong, China, April 26
- May 1, 2015, 2015, pp. 69–70. [Online]. Available: http:
//dx.doi.org/10.1109/INFCOMW.2015.7179347

[8] Y. Zhang et al., “Steering: A software-defined networking for inline
service chaining,” in Proceedings of the 21st IEEE ICNP, 2013, pp.
1–10.

[9] Z. Abbasi, M. Xia, M. Shirazipour, and A. Takcs, “An optimization
case in support of next generation nfv deployment.” in HotCloud,
I. Ahmad and T. Kraska, Eds. USENIX Association, 2015. [Online].
Available: http://dblp.uni-trier.de/db/conf/hotcloud/hotcloud2015.html#
AbbasiXST15

[10] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 459–473. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616491

[11] R. Riggio, T. M. Rasheed, and R. Narayanan, “Virtual network
functions orchestration in enterprise wlans,” in IFIP/IEEE International
Symposium on Integrated Network Management, IM 2015, Ottawa, ON,
Canada, 11-15 May, 2015, 2015, pp. 1220–1225. [Online]. Available:
http://dx.doi.org/10.1109/INM.2015.7140470

[12] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, and L. Gaspary, “Piecing
together the nfv provisioning puzzle: Efficient placement and chaining
of virtual network functions,” in Integrated Network Management (IM),
2015 IFIP/IEEE International Symposium on, May 2015, pp. 98–106.

[13] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in Network Operations
and Management Symposium (NOMS), 2014 IEEE, May 2014, pp. 1–9.

[14] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual Network
Functions Placement and Routing Optimization,” 2015. [Online].
Available: https://hal.inria.fr/hal-01170042

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

[15] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” in Integrated
Network Management (IM), 2015 IFIP/IEEE International Symposium
on, May 2015, pp. 89–97.

[16] A. Abujoda and P. Papadimitriou, “MIDAS: middlebox discovery
and selection for on-path flow processing,” in 7th International
Conference on Communication Systems and Networks, COMSNETS
2015, Bangalore, India, January 6-10, 2015, 2015, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/COMSNETS.2015.7098686

[17] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba,
“On orchestrating virtual network functions in NFV,” CoRR, vol.
abs/1503.06377, 2015. [Online]. Available: http://arxiv.org/abs/1503.
06377

[18] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, March 1973.

[19] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet,
and P. Demeester, “Network service chaining with optimized
network function embedding supporting service decompositions,”
Computer Networks, vol. 93, Part 3, pp. 492 – 505, 2015,
cloud Networking and Communications {II}. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138912861500359X

[20] ETSI GS NFV 003: ”Network Functions Virtualisation (NFV); Termi-
nology for Main Concepts in NFV”.

[21] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” Internet Requests for Comments, RFC Editor, RFC 7665, October
2015.

[22] ETSI GS NFV-MAN 001: ”Network Functions Virtualisation (NFV);
Management and Orchestration”.

[23] P. Garg, P. Quinn, R. Manur, J. Guichard, S. Kumar, A. Chauhan,
B. McConnell, M. Smith, C. Wright, U. Elzur, J. M. Halpern,
W. Henderickx, T. Nadeau, S. Majee, D. T. Melman, K. Glavin, and
P. Agarwal, “Network Service Header,” Internet Engineering Task Force,
Internet-Draft draft-quinn-sfc-nsh-07, Feb. 2015, work in Progress.
[Online]. Available: https://tools.ietf.org/html/draft-quinn-sfc-nsh-07

[24] ETSI GS NFV 001: ”Network Functions Virtualisation (NFV); Use
Cases”.

[25] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service function chaining use cases in mobile networks,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-sfc-use-
case-mobility-05, October 2015, http://www.ietf.org/internet-drafts/
draft-ietf-sfc-use-case-mobility-05.txt. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-ietf-sfc-use-case-mobility-05.txt

[26] Surendra, M. Tufail, S. Majee, C. Captari, and S. Homma,
“Service function chaining use cases in data centers,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-sfc-
dc-use-cases-04, January 2016, http://www.ietf.org/internet-drafts/
draft-ietf-sfc-dc-use-cases-04.txt. [Online]. Available: http://www.ietf.
org/internet-drafts/draft-ietf-sfc-dc-use-cases-04.txt

[27] VNF Orchestration For Automated Resiliency in Service Chains. draft-
bernini-nfvrg-vnf-orchestration-00.

[28] S. Umeyama, “An eigendecomposition approach to weighted graph
matching problems,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 10, no. 5, pp. 695–703, Sep 1988.

[29] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1982.

[30] C. G. F. Jacobi, “Concerning an easy process for solving equations
occurring in the theory of secular disturbances,” J. Reine Angnew. Math,
1846, 30:5194.

Marouen Mechtri has obtained an engineering
degree and a master degree from National School
of Computer Science, Tunisia and a Ph.D. from
Telecom Sudparis, France, in 2014. He is currently
a

research fellow at the Telecom SudParis. He con-
ducts his research within the Wireless Networks
and Multimedia Services Department. His main re-
search interests include network and Cloud comput-
ing resources optimization and emerging network
paradigm such as SDN and NFV.

Chaima Ghribi received the Ph.D. Degree in Com-
puter Science from Telecom SudParis, France, in
2014. She is currently a research fellow at the Tele-
com SudParis of Institut TELECOM in the Wireless
Networks and Multimedia Services department. Her
main research interests include Cloud computing,
Distributed systems, Virtualization, Mathematical
modelling and Algorithms.

Djamal Zeghlache Professor graduated from SMU
in Dallas, Texas in 1987 with a Ph.D. in Electrical
Engineering and joined the same year Cleveland
State University as an Assistant Professor. In 1992
he joined the Networks and Services Department
at Telecom SudParis of Institut Telecom where he
currently acts as Professor and Head of the Wire-
less Networks and Multimedia Services Department.
His current interests and research activities concern
network architectures, protocols and interfaces to
ensure smooth evolution towards loosely coupled

future Internet, cloud networking and cloud architectures. He is currently
addressing optimization, deployment, control and configuration challenges in
cloud, SDN and NFV environments and systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSM.2016.2598068

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

