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A Markov Decision Process-based approach for trajectory planning with

clothoid tentacles
Hafida Mouhagir1,2, Reine Talj 1, Véronique Cherfaoui1 , Franck Guillemard2, François Aioun2

Abstract—The work presented in this paper focuses on
reactive local trajectory planning which plays an essential
role for future autonomous vehicles. The challenge is to avoid
obstacles in respect to road rules while following a global
reference trajectory. The planning approach used in this work
is the method of clothoid tentacles generated in the egocentered
reference frame related to the vehicle. Generated tentacles in a
egocentered grid represent feasible trajectories by the vehicle,
and in order to choose the right one, we formulate the problem
as a Markov Decision Process.

I. INTRODUCTION

The area of autonomous navigation has seen significant
advances in recent years, specially thanks to the efforts
of the scientific and engineering teams participating in the
DARPA Urban Challenge [1], as well as other contests [2].
Concerning the trajectory planning, mainly approaches at a
local on-road level have been inventoried and summarized in
the survey [3], some of them are presented below.

The RTT algorithm (Rapidly exploring Random Trees)
generates open-loop trajectories for nonlinear systems with
state constraints. RRTs are suited for path planning prob-
lems that involve obstacles and non-holonomic constraints.
This method ensures kinematic feasibility and can easily be
implemented in real-time [4]. However, under the presence
of many obstacles or heavy traffic, RRTs will check every
possible collision for every expanded node which may lead
to computational complexity.

Another local trajectory planning approach is Lattice plan-
ners [5] which is an extension of grid-based planners. It
defines a state lattice that is discretized in all state parameters
of interest, such as position, heading, curvature, and velocity.
A trajectory generator is used to precompute feasible motions
between states in the lattice in the absence of obstacles. The
states define nodes in a graph, where edges describe motions.
They are generally well-suited for non-holonomic and highly
constrained environments, such as the road environment.
Lattice planners are resolution complete. This means that
the control space can automatically be adjusted for every
resolution change and the space is explored consistently.
Lattice planners also guarantee optimality and smoothness
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because they do not introduce discontinuities related to back-
pointers but the main drawback was found to be curvature
discontinuity.

At a local on-road level, one of the most popular technique
is based on a search space which contains a certain geometric
curve (e.g. clothoids or splines) and several lateral shifts of
this curve [1][6][7]. Each candidate path is then evaluated
through a cost function with several considerations, such as
distance and time costs, acceleration and collision checking.
The Tentacles method uses a set of virtual antennas that are
called tentacles and an egocentric occupancy grid around
the vehicle [8]. The occupancy grid expresses the state of
the environment surrounding the vehicle and contains the
obstacles if they exist. The tentacle is a geometric shape
that models a possible trajectory of the vehicle and we can
find in the literature multiple shapes of tentacles. In [8], the
shape adopted for tentacles is circular. The weakness of this
approach appears in considering all the tentacles generated
for a certain speed as trajectory candidates even if their
curvature is not well-suited to the current vehicle steering an-
gle. An improvement has been made by introducing clothoid
tentacles method [9]. The clothoid approach considers the
current dynamical state of the vehicle and makes a smooth
variations in the vehicle dynamic variables.

Decision making for autonomous driving is a challenging
task due to the uncertainty of the complex environment sur-
rounding the vehicle. Partially Observable Markov Decision
Process (POMDP) [10], [11] and [12] offers a framework
for autonomous robot navigation in dynamic environments.
With this approach, the state of a car’s environment can
be estimated and the development of traffic situations can
be predicted. Unfortunately, the implementation of these
methods requires expensive collection of training data.

In this paper, we propose an original method based on
trajectory planning with clothoid tentacle, to avoid obstacles
and follow the reference trajectory, coupled with a decision
process inspired from well known MDP (Markovian Decision
Process) model.

The paper is organized as follows: Section II presents
our trajectory planning strategy with the method of clothoid
tentacles. In Section III, we detail the principal of Markov
Decision Process and explain the proposed MDP like model
for trajectory planning with clothoid tentacles. The simulation
results based on data taken from Scaner-Studio simulator are
discussed in Section IV . Finally, conclusions and perspec-
tives are given is Section V.



II. TRAJECTORY PLANNING WITH THE METHOD OF
CLOTHOID TENTACLES

Local trajectory planning is based on following a de-
sired global reference trajectory defined on a global map
while avoiding collisions over time by using the perception
information that represent the environment. Our trajectory
planning strategy can be divided into three main steps (Fig.
1):
• Creating and updating occupancy grid with data coming

from exteroceptive sensors.
• Generating tentacles which will represent dynamically

feasible trajectories.
• Choosing of the best tentacle that the vehicle will exe-

cute.

Figure 1: Trajectory planning strategy (V is the vehicle speed and
δ0 is the current steering angle)

A. Occupancy grid

The occupancy grid is a metric and discrete represen-
tation used in robotics algorithms such as path planning.
This grid can be used to represent and visualize a vehicle
workspace. The occupancy grid is built by a mapping process
that integrate sensor data coming from exteroceptive sensor
(Camera, Lidar, Radar) and the pose of the vehicle. They are
used in mapping applications, as finding collision-free paths,
performing collision avoidance, and calculating localization.

In our work, a 2D egocentered grid is constructed as a
discrete representation of the environment around the vehicle
by a set of square cells. Each cell contains information about
the occupancy of the corresponding surface (Fig. 2).

Figure 2: Occupancy grid principle
There are various frameworks used for creating and updat-

ing occupancy grid like Bayesian framework and evidential
framework. Fig. 3 shows an occupancy grid [13] example
based on evidential theory. The green color in the occupancy
grid shows the navigable space, the red shows the occupied
space, while the blue represents conflicting cells and the
black represents unexplored cells. The color intensity reflects
the certainty degree. In this paper, only binary grids are
considered (free/occupied cells) but future work will take into
account of the uncertainties modeled in the grid.

Figure 3: Occupancy grid example of a road

B. Generating tentacles

The method of tentacles consists in using a set of virtual
antennas called tentacles in the egocentered reference frame
related to the vehicle. Tentacles are a geometrical shape
which models the dynamically feasible trajectories of the
vehicle.

Several forms of tentacles exist:
1) Circular tentacles: In [8], tentacles are represented by

arcs of circle. For a fixed speed, all the tentacles begin
at the center of gravity of the vehicle and take the shape
of arcs of circles. Every arc represents a trajectory with a
specific steering angle. The most bent tentacles (those of
the extremity) correspond respectively to the positive and
negative maximal value of the steering angle which the
vehicle can make at the current speed without losing stability.
The length of tentacles increases with the increase of the
speed (Fig. 4)

Figure 4: The tentacle’s lengths increase with higher speed [8]
All the tentacles generated for a given speed are estimated

as candidates for the execution of the movement, even if their
curvature is not well adapted to the current steering angle of
the vehicle.

2) Clothoid tentacles: Clothoid is a curve whose curvature
varies linearly with curvilinear abscissa, also known as an
Euler spiral, Cornu spiral or linarc. Its expression is presented
by (1):

ρ =
2

k2
s (1)

where ρ is the clothoid curvature, s is the curvilinear abscissa
and k is a constant, representing the clothoid parameter.

In [9] and [14], a set of tentacles is generated at each
speed. All the tentacles are represented in the vehicle local
coordinate system. They start at the center of gravity of the
vehicle and take the form of clothoids.

We assume that all tentacles generated for a given speed
Vx have the same length:

Ltentacle(m) =

{
t0 Vx − L0 Vx > 1(m/s)

2(m) Vx ≤ 1(m/s)
(2)

where t0 = 7s and L0 = 5m.
The initial curvature ρ0 of the tentacles is calculated from

the current vehicle steering angle δ0 .

ρ0 =
tan δ0
L



where L is the vehicle’s wheelbase. The set of calculated
clothoids depends on the vehicle speed and corresponds to
feasible trajectories of the vehicle without losing stability
till some defined distance (Fig. 5). A tentacle is considered
navigable if there is no obstacle within the collision distance
that corresponds to the distance needed to stop the vehicle
with a comfortable deceleration.
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(a)Vx = 6m/s , δ0 = 0.3 rad
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(b)Vx = 10m/s , δ0 = 0.3 rad

Figure 5: Examples of set of clothoid tentacles

In our work, we use clothoid tentacles because this method
considers the current dynamical state of the vehicle and make
a smooth variations in the vehicle dynamic variables such as
the yaw rate, the sideslip angle and the steering angle [14].

C. Choosing the best tentacle

For both circular and clothoid tentacles, after generating
the tentacles and to guarantee a secure navigation, a security
region is generated around each tentacle [8], [14]. This area
takes into account the width of the vehicle, plus a security
margin. Using the superposition of the security area with
the occupancy grid, the navigable tentacles are obtained.
The final step of the method is to choose the best tentacle
from several navigable tentacles using different criteria. The
best tentacle is then considered as a trajectory to execute. If
there is no navigable tentacle, the authors choose the tentacle
having the greatest distance to the first obstacle and they
proceed to brake the vehicle with a constant deceleration
along this tentacle.

Three criteria are used to choose one tentacle among
navigable tentacles, the clearance criterion allows to estimate
the distance to the first obstacle if it exists, the curvature
criterion shows if the tentacle corresponds to a smoothly
varying steering angle and the trajectory criterion reflects
the closeness of the tentacle to the reference trajectory. The
criteria are normalized to the interval [0, 1] and then linearly
combined into a single function to be minimized, namely,

Vcombined = a0Vclearance + a1Vcurvature + a2Vtrajectory
(3)

where a0, a1 and a2 are weighting parameters that can be
used to prefer a criterion than another. Though the method
is simple and easy to understand, it is difficult to adjust the
weighted coefficients in different environments. To solve this
problem, a geometrical ripple tentacles technique is used to
choose a tentacle as a sub-optimal path [15].

In this paper, we propose to use a method inspired from
Markov Decision Process model to choose the best tentacle.

III. PROPOSED MDP APPROACH FOR TRAJECTORY
PLANNING WITH TENTACLES

A. Markov Decision Process principle

A Markov Decision Process (MDP) is a discrete-time state-
transition system. The system is assumed to be in a state at
any given time. The agent observes the state and performs
an action accordingly. The system then makes a transition to
the next state and the agent receives some reward.

It can be described formally with 5 components
(S,A, T,R, γ):
• States: S is the set of states. The state usually captures

the complete configuration of the system. Once the state
of the system is known, the future of the system is
independent from all previous system transitions. This
means that the state of the system is a sufficient statistic
of the history of the system.

• Actions :A(s) : S → A is the set of actions allowed in
each state where A is the set of all actions.

• Transition Probabilities : T : S×S×A→ [0, 1] defines
the transition probabilities of the system. This function
specifies how likely it is to end up at any state s′, given
the current state s and a specific action a performed by
the agent.

• Rewards : R : S × A → R . Depending on the current
state of the system and the action taken, the agent will
receive a reward drawn from this model.

• Discount Factor : γ ⊂ [0, 1) is the discount rate used to
calculate the long-term attenuation.

The agent starts in an initial state s0 ∈ S. At each time step
t, an action at ∈ A(s) is taken by the agent. The system then
makes a transition to st+1 with the probabilityT (st, st+1, at)
and the agent receives an immediate reward rt ∼ R(st, at).
The goal of the agent is to maximize the discounted sum of
rewards over the planning horizonh (which could be infinite).
This is usually referred to as the value (V):

V =

h∑
t=0

γtrt (4)

There are several algorithms used to calculate an optimal
policy in MDP problems, the most popular ones are: value
iteration introduced in [16] and policy iteration introduced
three years later in [17].

The MDP framework with completely known dynamics
has been studied within artificial intelligence (AI) as a
planning problem. AI planning thus reduced to finding a
single action sequence taking the agent from a start state
to a goal state. An example is shown in Figure 6. In this
gridworld, states are presented by the grid cells and the
primitive actions are steps up, right, and left, which usually
cause the agent to move to the corresponding cell (but a third
of the time they cause it to move to one of the other three
neighbor cells).

In this planning problem, the agent is told that a positive
reward can be obtained only at the goal state (cell a4)
and a negative reward is obtained at state (cell b4). In this



Figure 6: An environment with cell-to-cell actions

example (11 states and 3 actions), and with a policy iteration
algorithm, it would take 3 iterations to find an optimal policy.

For autonomous vehicle trajectory planning strategy, the
size of grid is around 800*800 cells and actions that could
be executed by the vehicle are defined by the steering
angle and/or acceleration. Hence, to formalize the planning
problem with MDP the states are defined by the grid cells and
actions as the variation of steering angle and/or acceleration.
Due to numerous states and actions, the calculation time is
not suited for real application. To reduce the complexity, we
propose exploiting the possible trajectories defined by the
tentacle method.

B. Proposed decision approach based on MDP

As described just before, we have to define the states of
the system, the actions that can be taken, the transition matrix
and the reward that the agent will receive for each action.
• States: are represented by circles si around the tentacles

(Fig. 7), their diameter represent the width of the vehicle
with a margin of security. Each tentacle is composed of
ns states, and we dispose of nt tentacles.

• Actions: we dispose of nt actions because each tentacle
represents an action.

• Transition probabilities: in this work, we assume that
we don’t have a possible transition from one tentacle to
another one. Thus we choose deterministic transitions;
for all states s and all a ∈ A(s) we assume that p(s′ |
s, a) = 1 for a unique s′ ∈ S , while p(s′′ | s, a) = 0
for all s′′ 6= s′ . Thus each action leads deterministically
from one state to another (or the same) one.

• Reward: we will define a different reward for every state
depending on its occupancy degree and its closeness to
the reference trajectory. Moreover, we add a positive
reward if the tentacle is one of the left side tentacles
because the overtaking is always done on the left side of
the vehicle that precede us, in order to avoid ambiguity
in case of total symmetry of tentacles (δ0 = 0) when
executing an overtaking manoeuver.

Since we have deterministic transition, the number of states
can be reduced. After affecting for every state a reward
regarding if it’s free, occupied and close from the reference
trajectory, we merge the states si of every tentacle in order to
have just one state sf per tentacle. Hence the total number of
states sf isnt plus the initial state which is the actual position
of the vehicle.

We consider a safety distance which corresponds to the
distance travelled during two seconds with a given speed,

Figure 7: States of MDP model with clothoid tentacles

if a state of a tentacle is occupied within this distance, the
tentacle is classified as non navigable. The next step of the
method is to choose the best tentacle from several navigable
tentacles to execute. If there is no navigable tentacle, we
choose the tentacle having the greatest distance to the first
obstacle and they proceed to brake the vehicle with a constant
deceleration along this tentacle.

In order to define rewards, we use the occupancy grid.
Since there is no transition from a tentacle to another, we

consider a tentacle as a state sf, and we calculate its reward
as following:

R(sf ) =

ns∑
k=0

γkt R(sik|trajectory) +

ns∑
k=0

γkoR(sik|occupied)

+

ns∑
k=0

γkfR(sik|free) +R(sf | left) (5)

where γt , γo and γf are discount factors that can be used
to change the behavior of our approach, and that represent
distance attenuation of each kind of reward.

To calculate rewards, we observe the cells of the occupancy
grid that are superposed with the state. The state is considered
as occupied if more than fs (threshold) cells inside the state
are occupied, otherwise it is considered as a free state.

In case of occupied state, the vehicle risks collision,
so the corresponding tentacle receives a negative reward
R(sik|occupied) = Ro, and the left tentacles receive a positive
rewardR(sf | left)since the overtaking is done by the left. If
the state is free, it receive a positive rewardR(sik|free) = Rf.

To calculate the reward to be attributed to states with
regard to their closeness of the global reference trajectory,
defined for example by GPS waypoints and a global map,
we calculate the lateral displacement between the tentacles
and the reference trajectory at different levels of the crash
distance.

The crash distance lc is the distance needed to stop a vehicle
traveling with a speed Vx , with a maximum longitudinal de-
celeration am = 1.5m/s2 that maintains passenger comfort,
it is calculated by:

lc =
V 2
x

2am
+ ls (6)

where ls is a security marge.



For each tentacle, a set of measurements di is calculated
(Fig. 8) by taking both the lateral distance ai and relative
tangent orientationsαi between the tentacle and the reference
trajectory [8]. Each di is calculated at a longitudinal distance
κilc from the vehicle position.

di = ai + cααi (7)

here, cα represents a scale between the linear distance and
the tangent orientation.

We combine all the distances as follows:

d =

n∑
i=1

λidi (8)

with λi is weighting constants.
All the states of the same tentacle receive a reward

R(s|trajectory) according to the distance d:

R(s|trajectory) = Rtrajectory − d (9)

withRtrajectory = Rt, a fixed constant reward.

Figure 8: Distance between a tentacle and the reference trajectory
[8]

The main advantage of the proposed algorithm is the
significant number of freedom degrees which can allow us
to change the behavior of the approach.

IV. SIMULATION RESULTS

A. System set-up

In this part we report the simulation results based on data
taken from Scaner-Studio simulator. The data taken from the
Scaner-Studio was processed and simulated in Matlab. With
these data, we generate a global map indicating the reference
trajectory with its right and left borders and obstacles with
red circles (Fig. 9). We indicated the navigable space of the
road by black cells having the value "0" and the not navigable
space by white cells having the value "1".

At every sampling period (100 ms in our case) the sensor
provides a new measure and the occupancy grid, considered
to be ego-centered around the vehicle, is built. This 2D
occupancy grid is constituted of 800*800 cells. The size of
each cell is 25cm* 25cm. As said before, grid mapping is
not in the scope of this study, so we do not accumulate data
and suppose that the frequency used for grid generation is
sufficient to ensure safe navigation.

In our MDP-like model, states are represented by circles
around the tentacles, their diameter is fixed to 3m. Each

Figure 9: Global map of a test scenario with a static obstacle in
Scaner-Studio simulator

tentacle is composed of ns = 16 states, and we dispose of
nt = 41 tentacles. If a state is free, it receives a reward
Rf = 1, if it’s occupied it receives a negative reward
Ro = −50 and we fixedRt = 30 andRl = 0.5 . We calculate
the distance between the tentacles and the reference trajectory
at 3 different levels (κ1, κ2 and κ3) of the crash distance, and
we fixeλ1,λ2 andλ3 in order to give more importance to near
points of the tentacle.

The values of other parameters are in the table I below:

cα γt γo γf κ1 κ2 κ3 λ1 λ2 λ3

0.7 0.99 0.95 0.99 1
10

1
2 1 10 2 1

3
Table I: The values of various parameters

B. Results

We evaluate the presented approach with two different
scenarios (Fig. 10): following the reference trajectory, and
executing an overtaking manoeuver of a static obstacle. The
vehicle speed is set to 6m/s , we position the vehicle on the
map, and we generate the local map and apply our algorithm
to choose the tentacle to follow at each sampling step.

In the simulation, an occupied cell will have the value 1
and a free cell will have the value 0. We defined a threshold
fs = 1 used to decide if a state si is occupied or free.
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Figure 10: Overtaking manoeuver and following the reference
trajectory and different performance measures

In Figure 10, the reactions of the resulting MDP like
model policy for two both driving situations are shown. We
observe that the vehicle can make an overtaking manoeuver
and follow the reference trajectory. The table next to Figure
10 shows the performances of the algorithm like the mean
error between the global reference trajectory and the vehicle
trajectory (the calculation of this error begins after the
overtaking manoeuver).



In Figure 11, we show the influence of the parameters
γo and ns. γo represents the attenuation with regard to
the obstacle proximity. We noticed from Fig.(11a) and Fig.
(11b) that, with a bigger γo, the lateral displacement is more
important while executing an overtaking manoeuver, due to
the non-attenuation of the obstacle.ns represents the number
of states per tentacle, Figures (11c) and (11d) show that
an increase in the number of states, that corresponds to
farther vision horizon, allows to return faster to the reference
trajectory after an overtaking manoeuver.

710 715 720 725 730 735 740

630

635

640

645

650

655

660

665

670

675

X[m]

Y
[m

]

 

 

Global trajectory

Vehicle trajectory

(a)ns = 16 γo = 0.95
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(b)ns = 16 γo = 0.83

710 715 720 725 730 735 740

625

630

635

640

645

650

655

660

665

670

675

X[m]

Y
[m

]

 

 

Global trajectory
Vehicle trajectory

(c) ns = 10 γo = 0.95
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(d)ns = 25 γo = 0.95

Figure 11: Influence of parameters γo and ns with V = 6m/s

The main advantage of the proposed algorithm is the
significant number of freedom degrees which can allow us
to change the behavior of the approach. For example we can
attenuate the presence of distant obstacles or the importance
of following the reference trajectory in the presence of an
obstacle. With a MDP model we can introduce the uncer-
tainty on actions by using stochastic transitions instead of
deterministic ones. Thus, we can add a possible transition
from a clothoid to another. At the last, the method has the
capacity to develop more efficient reward calculation taking
into account the uncertainty of the environment surrounding
the vehicle by using the occupancy grid based on evidential
theory.

V. CONCLUSION AND PERSPECTIVES

In this work, we introduced a promising method for
vehicles autonomous trajectory planning and decision. The
method is based on a MDP like model for trajectory planning
with clothoid tentacles. The idea is to generate realistic
trajectories with tentacles method and select the best thanks
to the MDP like process. The simulation results show good
performance of our algorithm in avoiding obstacles and fol-
lowing the reference trajectory. In fact, this reactive algorithm
does not accumulate data and it takes into account vehicle
dynamics and real road structure by using clothoid shape.
Among the perspectives, we look to consider the uncertainty
of the environment surrounding the vehicle and to include

moving obstacles such as moving cars or pedestrians. This
improvement would be at the perception level, by using
an occupancy grid based on evidential theory, that can be
considered in the reward calculation. Further, an interesting
extension of our method would be to consider the uncertainty
on actions by introducing stochastic transitions instead of
deterministic ones.

We also look to implement our algorithm in a robotized
vehicle in order to highlight the validity of the algorithm.
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