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Abstract

Supervised classification consists in learning a predictive model using a set of labeled samples. It is accepted
that predictive models accuracy usually increases as more labeled samples are available. Labelled samples
are generally difficult to obtain as the labelling step if often performed manually. On the contrary, unlabeled
samples are easily available. As the labeling task is tedious and time consuming, users generally provide a
very limited number of labeled objects. However, designing approaches able to work efficiently with a very
limited number of labeled samples is highly challenging. In this context, semi-supervised approaches have
been proposed to leverage from both labeled and unlabeled data.

In this paper, we focus on cases where the number of labeled samples is very limited. We review and
formalize eight semi-supervised learning algorithms and introduce a new method that combine supervised
and unsupervised learning in order to use both labeled and unlabeled data. The main idea of this method is
to produce new features derived from a first step of data clustering. These features are then used to enrich
the description of the input data leading to a better use of the data distribution. The efficiency of all the
methods is compared on various artificial, UCI datasets, and on the classification of a very high resolution
remote sensing image. The experiments reveal that our method shows good results, especially when the
number of labeled sample is very limited. It also confirms that combining labeled and unlabeled data is very
useful in pattern recognition.
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1. Introduction

The number of available labeled samples is very important in supervised classification. If too few ex-
amples are given to a supervised learning algorithm, the induced predictive model will generally have poor
performance. Unfortunately, in many real-world applications, labeled samples are difficult to obtain due
to the cost of manual labeling. Moreover, in many applications, the user only gives few examples and the
system has to find similar objects in a database (e.g. content-base image retrieval, on-line web-page recom-
mendation, etc.). In these cases, only few labeled samples are available although many unlabeled data are
present (i.e. all the other instances in the database). In web-page recommendation for example, the user
labels only interesting pages. It is not possible to ask him to produce other samples as he might not know
other pages interesting him. The same problem appears with on-line shopping services, when a customer
buys a product and the system targets to automatically advise him for other related products. The system
only knows which products the user bought and their ratings (i.e. collaborative filtering). Furthermore, in
the problems involving the user for visual content analysis, the amount of available knowledge is generally
very limited.
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Another challenging task is to obtain a high classification accuracy when the ratio between available
labeled data and the number of features is unbalanced. If the number of features is high, standard classifiers
will need many training samples to perform an accurate classification. This observation is known as the
Hughes phenomenon [1]. In the remote sensing field, the hyperspectral sensors produce data with multiple
spectral bands, up to 200 (which means 200 floating values for each pixel). With such data, more details
can be observed in the land cover, i.e. the number of classes of interest is increased. More features and
more classes call for more samples, which are generally expensive and time consuming to acquire. The same
observation can be made with the object-based analysis of Very High Spatial Resolution (VHSR) images.
With these images, a first step of segmentation is generally performed to build regions (i.e. homogeneous set
of pixels). These regions are then characterized by multiple features (e.g. spectral, spatial or contextual).
Thus, the dataset is often composed of objects described by a high number of characteristics, but with very
few samples.

Despite the fact that labeled samples are rare and insufficient compared to the data space dimension,
unlabeled samples are generally available in important quantities. Some research efforts revealed that these
samples can be used to improve supervised classification [2, 3, 4, 5, 6, 7]. Moreover, as stated by Zhou [8],
semi-supervised learning and ensemble learning are complementary, and stronger learning machines can be
generated by leveraging unlabeled data and classifiers combination.

The method proposed in this paper is slightly different from the existing ones, as we use many unsuper-
vised classifications to create new features to describe the labeled samples. Then, a supervised classification
algorithm is applied in this new data space. As an unsupervised classification creates clusters that tend to
maximize intra-cluster similarity and inter-cluster dissimilarity, no labeled sample is needed, but no label is
assigned to the different clusters. The clustering could be seen as a way to summarize the distribution of the
samples. It is sometimes used to reduce the data before the classification step. Moreover, as unsupervised
learning can only use data distribution, the classes must respect, to some extends, this distribution. If two
classes form a highly homogeneous cluster in the feature space, one can not expect a simple clustering to
separate them. Even if our approach can weaken this condition, it must be kept in mind.

In this article, we first present some related work and motivate our method in Section 2. The contribution
of this paper is also to draw an overview of the classical semi-supervised approaches in a common formal-
ization, and to present our new way of dealing with datasets having very few samples (Section 3). They are
also compared through many experiments on a large set of artificial datasets and classical datasets from the
UCI repository (Section 4). The results are compared with other semi-supervised algorithms and classical
supervised methods to quantify the improvement gained from the unsupervised clustering pre-processing.
We also present some results obtained on a real dataset extracted from a VHSR remote sensing image of
an urban area of Strasbourg (France). Finally, we conclude and draw some perspectives about this work in
Section 5.

2. Related work

Multiple previous efforts have shown that unlabeled data can help to improve the classification accuracy
when very few labeled samples are available. As proposed by Gabrys and Petrakieva [9] or Bouchachia [10],
these methods can be grouped into three main families: (1) pre-labeling approaches, where unlabeled data
are labeled with an initial classifier trained on the set of labeled objects, (2) post-labeling approaches, where
clusters of the whole dataset are labeled estimating their composition in terms of labeled objects, and (3)
semi-supervised approaches, which consist in dealing with both labeled and unlabeled data at the same time
during the clustering process.

2.1. Pre-labeling approaches

A first way to exploit unlabeled objects is the co-training method defined in [11]. The main idea is to
use two complementary classification methods to iteratively label the unlabeled data. This assumes that
two independent and complementary feature sets exist on the data.

To extend this method and to avoid the independence and redundancy of the feature sets (which is
not realistic in real-life problems), Goldman and Zhou presented in [12] a co-training strategy which uses
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unlabeled data to improve the performance of a supervised classifier. Their method uses two different
supervised learners which can select some unlabeled data to label the other learner in an iterative way.
Experiments have shown that the method increases the accuracy of the ID3 algorithm. In [13], another
version based on the Expectation Maximization (EM) algorithm is proposed and applied to text classification.

More recently, Raskutti et al. [14] exposed a co-training method that does not necessary need two
complementary supervised learning algorithms. The idea is to produce an alternate view of the data by
performing an unsupervised classification algorithm on all the dataset (i.e. labeled and unlabeled). Then,
the original view and the view built from the clustering are used to create two independent predictors for
co-training.

In [15], the authors presented a co-training approach assuming to have two views of the data. The
method uses the correlation between the two views to produce extra positive and negative samples in an
iterative process. Experiments were performed when only one labeled sample is available. They show that
the method overcome other co-training approaches.

Unlike co-training, Assemble [16] can build semi-supervised ensemble of any size, and does not require
the domain to have multiple views. Assemble incorporates self-labeled examples in a boosting framework.
At each iteration of Assemble, examples from the unlabeled set are labeled by the current ensemble and
added to the training set.

2.2. Post-labeling methods

The idea of these approaches is to first produce a clustering of the dataset and then to evaluate the
purity of each cluster, by calculating their composition in terms of label. Any clustering algorithm can be
used in the first step. In [17], a general approach based on the Expectation Maximization (EM) algorithm
is proposed.

Other methods [18, 19] work on the optimization of the purity in the clusters extracted from the dataset.
They propose to use a Genetic Algorithm (GA) to iteratively refine the class membership of the unlabeled
objects so that the maximum a posteriori based predicted labels of the data in the labeled dataset are in
agreement with the known labels.

2.3. Semi-supervised clustering

In [20], an empirical study of various semi-supervised learning techniques on a variety of datasets is
presented. Different experiments were made to evaluate the influence of the size of the labeled and unlabeled
sets, or the effect of noise in the samples. The paper concludes that the performance of the methods is heavily
dependent of the field of application and the nature of the dataset. However, using labeled and unlabeled
samples improves the accuracy in most of the cases.

Basu et al. [21] have defined two variants of the Kmeans algorithm, dealing with labeled data. The main
idea is to used the labeled objects to guide the seeding step of the algorithm. In the first method, the seeds
are calculated according to the labeled data and the algorithm is ran classically, while in the second case,
the labeled objects used for the seeding stay in their initial cluster.

Another approach was exposed in [22]. The idea is to simultaneously compute the clustering and the
classification, instead of proceeding in two sequential steps. To achieve this goal, the authors define an
objective function evaluating not only the classification but also the clustering ability by mixing two terms:
the misclassification rate (for the supervised part) and the clustering impurity (for the unsupervised aspect).
A quite similar method is presented in [23] and applied to real marketing datasets.

Ao et al. [24] proposed to combine supervised and unsupervised models via unconstrained probabilistic
embedding. In their approach, they considered an ensemble problem in which outputs coming from models
developed in the supervised and unsupervised modes are combined to improve the classification accuracy of
supervised model ensemble.

2.4. Ensemble clustering methods

Ensemble clustering methods consist in building a consensus clustering from multiple different cluster-
ings. The task of merging multiple clustering results is considered more complicated than merging multiple
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classification models as there is no common set of classes that can be used to merge the decisions. Conse-
quently, multiple methods have been proposed to (1) generate the set of clusterings to merge and (2) obtain
a single clustering result [25, 26, 27, 28, 29].

A strong interest has been given in evaluating diversity present in the ensemble [30, 31]. The underlying
idea is that merging highly similar clusterings is not likely to improve the final result as all the input
clusterings would bring the same information. Thus, different strategies can be used to increase the diversity
within the ensemble [32]. For example, using different clustering methods, or the same method with different
parameters can lead to the generation of different results.

More recently, Yu et al. [33, 34, 35] proposed a new approach of semi-supervised constraint ensemble
clustering. The idea is to transfer expert knowledge into pairwise constraints used to make a feature selection
to avoid noise degradation of the results. Then, a selection of a subset of representative clustering results is
extracted and they are merged to obtain the final solution.

Sampling the instances, or the attributes, can also be used to generate multiple views [36] of the same
dataset and to cluster them individually to obtain multiple clustering results. Random projection [37] is also
an interesting approach to generate diverse results. In this paper, we choose to combine different strategies
to control the diversity in the generated clusterings on the unlabeled data. We used two different clustering
methods (i.e., Kmeans and EM), with different parameters (i.e., number of clusters) and with different
combination of features as input (i.e., with or without original features).

2.5. Remote sensing applications

As mentioned previously, semi-supervised methods have been applied in many different domains (e.g.
text, web or image processing). In this paper, we are interested in assessing these methods for remote sensing
image classification. In this field, some previous work to take advantage of unlabeled data in the classification
process were undertaken by [38, 39, 40]. They proposed three methods to incorporate simultaneously labeled
and unlabeled samples in parametric, nonparametric and semi-parametric classifiers. They also gave some
results on a small extract of an AVIRIS remote sensing image, to show the enhancement of the classification
performance.

Later, in [41], the authors presented a new covariance matrix estimator. It produces a higher accuracy
classification than standard covariance matrix estimation methods, when using a limited training data set.
Some experiments on the classification of an agricultural zone of the Nevada, based on an AVIRIS image,
showed the efficiency of the estimator on real problems.

Jia et al. [42] presented a new method to deal with hyperspectral data. The idea is to cluster the training
data and then, to associate spectral clusters to information classes to build a cluster-space classification.
Then, each pixel is classified according to its cluster membership and the membership of the cluster to
information classes.

Morgan et al. [43] proposed another approach to solve the problem of the small amount of labeled data. It
consists in using a feature reduction scheme that adaptively adjusts itself to the size of the samples dataset.
Some experiments are presented on hyperspectral data obtained with the HyMap sensor (Hyperspectral
Mapper). The results show that even if the feature space is reduced and the number of samples is very low,
the produced classification has a high accuracy.

More recently, a novel approach using ensemble of semi-supervised classifiers was proposed by Roy et al.
[44] for change detection in remotely sensed images. The novelty of this method is to use multiple classifiers
instead of using a single weak classifier. The classifiers are trained using selected unlabeled and few labeled
objects. A consensus is computed between the classifiers’ results to help the choice of the unlabeled patterns
for the next training step.

The method presented in this paper is slightly different from the ones presented above. All the co-
training methods use the labeled and unlabeled samples together in the training step. If more labeled
samples are available, the entire training step needs to be computed again, which is often costly. In our
approach, the unsupervised classification can be seen as a pre-processing step, which is performed only once.
Then, depending on the availability of labeled samples, the supervised classification can be computed. This
training part is very efficient as the number of samples is very low.
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3. Semi-supervised methods

In this section, we formally present the different approaches used in our experiments. Let X denote a
set of n data objects xj ∈ X. We consider a q-class classification problem with m labeled and l unlabeled
objects where m is very low and l >> m.
Let L be the set of labeled objects of X:

L = {(x1, y1), . . . , (xm, ym)} (1)

where yi ∈ {1, . . . , q} are the class values of the samples.
Let U be the set of unlabeled objects of X:

U = {(xm+1, 0), . . . , (xm+l, 0)} (2)

where 0 means that there is no label assigned to this object.
The objective of the semi-supervised classification is to build a classifier based on the training dataset

X. This classifier is a function associating one of the q classes to any object x. It can be formally defined
as:

y = CX(x) : y ∈ {1, . . . , q} (3)

3.1. Pre-labeling methods

The first methods are called pre-labeling methods. The idea is to perform an initial classification CL on
the labeled data only (L). Then, the unlabeled data are labeled according to this classification.

In the static labeling (SL) [9] method, the unlabeled data are all labeled in one step by simply applying
CL to U . A new dataset W is built as:

W = {(xj , yj) : yj = CL(xj), xj ∈ U} (4)

Then, in a second step, the final classification is computed as:

y = CL∪W (x) (5)

The algorithm of this method is described in Algorithm 1.

Algorithm 1 Static labeling (SL)

1: build a classification CL given the labeled dataset L
2: let W = {(xj , yj) : yj = CL(xj), xj ∈ U}
3: build the final classifier CL∪W

Another pre-labeling approach is the dynamic labeling (DL) [9] method. As for the static labeling
method, a classifier CL is build according to the labeled dataset. Then, instead of labeling all the objects
of U , they are iteratively labeled, one sample at a time. One object xj of U is chosen and labeled according
to CL. Then it is added to L and a new classifier is trained with L ∪ {xj}. The process iterates until all
unlabeled samples are labeled. The algorithm is presented in Algorithm 2.

The order in which the objects are chosen can be defined according to the confidence in the classification
of each one. The definition of the most confidently classified object depends on the classification method
used.

3.2. Post-labeling methods

At the opposite of pre-labeling methods that use the unlabeled objects to enhance an initial classifier,
post-labeling methods first build a clustering of all the objects of the dataset, but without considering their
label. Then, the unlabeled data of each cluster are labeled to the majority class of their cluster. Let Kl,
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Algorithm 2 Dynamic labeling (DL)

1: let U ′ = U and W ′ = ∅
2: build a classifier CL∪W ′

3: for all xj ∈ U ′ chosen according to their class confidence do
4: W ′ := W ′ ∪ {(xj , tj) : tj = CL∪W ′(xj)}
5: U ′ := U ′ r {(xj , 0)}
6: end for
7: build the final classifier CL∪W ′

l = 1, . . . , k, denote the clusters produced by the initial clustering on the dataset, and clj , j = 1, . . . , q the
number of labeled objects from class j in the cluster l:

clj = ‖{(xi, yi) ∈ L : (xi, yi) ∈ Kl, yi = j}‖ (6)

Cluster labeling by majority. The post-labeling method presented hereafter is called cluster labeling by
majority (CLM) [9] and is described in Algorithm 3. It is composed of three steps.

� The first step consists in labeling all clusters containing at least one labeled sample. The label assigned
to each of these clusters is the majority class of all labeled objects of the cluster.

� The second step labels the clusters containing no labeled sample with the label of the most similar
already labeled cluster. The similarity measure ∆(Kj ,Kk) depends on the clustering method and
estimates the similarity between two clusters Kl and Kk.

� Finally, in the third step, the final classifier is build according to all the new labeled objects.

Algorithm 3 Cluster labeling by majority (CLM)

1: build a clustering K = {Kl, l = 1 . . . k} on X
2: let LK := ∅
3: for all Kl, l = 1 . . . k do
4: if

∑q
j=1 clj 6= 0 then

5: yKl
= arg maxj∈{1...q} (clj)

6: Wl = {(xi, yKl
), xi ∈ Kl}

7: LK := LK ∪Kl

8: end if
9: end for

10: for all Ku :
∑q

j=1 cuj = 0 do
11: Km = arg maxKl∈LK (∆(Kl,Ku))
12: label all objects in cluster Ku with label yKm

13: Wu = {(xi, yKm), xi ∈ Ku}
14: end for
15: build the final classifier CW1∪...∪Wk

Purity optimization. Another family of methods [19] is based on the optimization of the purity of each
cluster found by an initial clustering K on the dataset. The evaluation of the purity Π of a cluster is based
on two criteria:

� the class impurity which measures the percentage of minority examples in the different clusters of K;

� the number of clusters k, which should be kept low in a majority of cases.
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The minority examples are labeled objects belonging to a class that is not the majority class of their
cluster. As previously defined, the majority class of a cluster Kl is yKl

= arg maxj∈{1...q} (clj). Thus, the
minority examples m(Kl) of a cluster Kl can be defined as:

m(Kl) = {(xi, yi) ∈ Kl : yi 6= yKl
} (7)

and the minority examples M(K) of the clustering K:

M(K) = {m(Kl) : ∀l ∈ [1 . . . k]} (8)

The purity can be defined as:

Π(K) = impurity(K) + η × penalty(k) (9)

where

impurity(K) =
‖M(K)‖

n

and

penalty(k) =

{ √
k−q
n k > q

0 k < q

The parameter η (0 < η < 2) determines the penalty associated to the number of clusters k.
The first algorithm defined by Eick et al. [19] is a greedy algorithm called Single Representative In-

sertion/Deletion Steepest Decent Hill Climbing with Randomized Restart (SRIDHCR) [19]. Some objects
are randomly selected (between q and 2q objects) to be the initial representatives of the clusters, which
are created by affecting each object to its closer representative. Then, one object is added to the set of
representative or one representative object is removed from this set. The quality Π(K) is evaluated and
the algorithm iterates until no significant improvement is observed on the quality of the clustering. The
algorithm is run r times and the best solution is kept. It is completely described in Algorithm 4.

Algorithm 4 Single Representative Insertion/Deletion Steepest Decent Hill Climbing with Randomized
Restart) (SRIDHCR)

1: for i = 1 to r do
2: rep := {(xi, yi) ∈ L : randomly chosen} and q 6 ‖rep‖ 6 2q
3: while not terminated do
4: let s1 = rep ∪ (xi, yi) : xi /∈ rep
5: let s2 = repr (xi, yi) : xi ∈ rep
6: let S = arg mins∈{s1,s2}Π(s)
7: if Π(S) < Π(rep) then
8: rep := S
9: else if Π(S) = Π(rep) and ‖S‖ > ‖rep‖ then

10: rep := S
11: else
12: terminate
13: end if
14: end while
15: end for
16: the best solution is kept

The second algorithm, called Supervised Clustering using Evolutionary Computing (SCEC) [19], tries to
find the best representatives set by using an evolutionary computing approach. A first set of ps clusterings is
randomly generated and genetic operators are then applied to create the next generations. Three operators
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are used in the SCEC algorithm:

� mutation: a representative object is replaced by another object that is not in the representative set of
one solution;

� crossover: a new solution is created from two initial solutions; the intersection of the representatives
of the two initial solutions are included in the new solution, and each representative only present in
one of the initial solutions is included with a probability of 50% in the new solution;

� copy: a solution of the current generation is copied in the new generation.

The new representatives are randomly chosen according to a k-tournament technique among the new rep-
resentatives built with the operators. The process iterates over a fixed number N of generations. The
algorithm is described in Algorithm 5.

Algorithm 5 Supervised Clustering using Evolutionary Computing (SCEC)

1: pop0 = {Sr = {sri = (xi, yi) ∈ L : randomly chosen}
1 6 r 6 ps}

2: for i = 1 to N do
3: mui = mutation(popi−1)
4: cri = crossover(popi−1)
5: coi = copy(popi−1)
6: popi = select by k tournament(mui, cri, coi)
7: for all Sr ∈ popi do
8: let Kr be the clustering corresponding to the representatives Sr

9: for all l ∈ [1 . . . k] do
10: Kr

l = {(xj , yj) : dist(xj , s
r
l ) is minimal }

11: end for
12: compute Π(Sr)
13: end for
14: end for
15: the best solution Sr is kept

3.3. Semi-supervised clustering

The last type of approaches, called semi-supervised clustering approaches, incorporates labeled and
unlabeled data at the same time. The idea is that the clustering of the data is guided by the labeled
samples.

Refined clustering. The refined clustering (RC) [9] method consists in two steps:

1. creation of a new fully labeled dataset from both labeled and unlabeled objects (L ∪ U);

2. application of a nearest neighbor classifier to learn the new dataset.

The first step is very important and is composed of two stages:

1. creation of a new dataset, including both labeled and unlabeled data subsets and representing as much
as possible information;

2. labeling of this dataset by the CLM technique described previously.

To create the new dataset, a divisive approach is proposed. The idea is to split the existing clusters
containing more than one type of class label. A threshold is used to define the minimal representative
ratio of a class in a cluster. Moreover, to prevent minority classes from disappearing, minority classes only
present in one cluster are conserved by splitting the cluster into two. The complete algorithm of the method
is presented in Algorithm 6.
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Algorithm 6 Refined clustering (RC)

1: build a clustering K = {Kl, l = 1 . . . k} on X with k relatively small
2: for all Kl, l = 1 . . . k do
3: if

∑q
j=1 clj 6= 0 then

4: while nbc > 1 do
5: nbc := 1
6: for all m ∈ [1 . . . q] do
7: let rm = clm∑q

j=1 clj

8: if rm < Θ and ∀i ∈ [1 . . . k], i 6= l, gim = 0 then
9: K ′ := split(K, l)

10: else if rm > Θ then
11: nbc := nbc+ 1
12: K ′ := split(K, l)
13: end if
14: end for
15: end while
16: end if
17: end for
18: apply CLM to K ′

Seeding methods. Finally, we used in this study the seeding methods proposed by Basu et al. [21]. These
methods are variants of the well-known Kmeans partitioning method. The objective of the Kmeans method
is to generate a k-partitioning K =

⋃k
i=1Ki of the dataset X. Each cluster Ki is represented by its gravity

center µi. As previously mentioned, we consider a q-class classification problem of a dataset X = L ∪ U
where L are labeled objects. The idea is to guide the Kmeans algorithm by using the labeled objects L as
initial seeds. A first q-partitioning {Si}i=1...q of L is calculated by grouping the objects of L having a same
label into one cluster. An assumption is made that corresponding to each cluster Si, there is at least one
seed point.

The first method, Seeded-Kmeans (SK) [21], simply uses this seed partition instead of a random initial-
ization. Then, the algorithm is run without any modification. The complete algorithm of the SK method is
presented in Algorithm 7.

Algorithm 7 Seeded-Kmeans (SK)

1: µ
(0)
i = 1

|Si|
∑

x∈Si
x for i = 1 . . . q

2: t = 0
3: repeat

4: K(t+1) =
{
K

(t+1)
i , i = 1 . . . q

}
where K

(t+1)
i =

{
x ∈ X : i = arg minh ‖x− µ(t)

h ‖2
}

5: µ
(t+1)
i = 1

|K(t+1)
i |

∑
x∈K(t+1)

i
x for i = 1 . . . q

6: t = t+ 1
7: until convergence

The second method, called Constrained-Kmeans (CK) [21], the seed clustering is used as in the Seeded-
Kmeans method, to initialize the clustering. However, the labeled objects are not reassigned during the
execution of the algorithm. They are constrained to stay in their initial cluster. The algorithm is given in
Algorithm 8.
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Algorithm 8 Constrained-Kmeans (CK)

1: µ
(0)
i = 1

|Si|
∑

x∈Si
x for i = 1 . . . q

2: t = 0
3: repeat

4: K(t+1) =
{
K

(t+1)
i , i = 1 . . . q

}
where
K

(t+1)
i = Si ∪

{
x ∈ X : i = arg minh ‖x− µ(t)

h ‖2
}

5: µ
(t+1)
i = 1

|K(t+1)
i |

∑
x∈K(t+1)

i
x for i = 1 . . . q

6: t = t+ 1
7: until convergence

3.4. Semi-supervised learning enhanced by multiple clusterings

The method that we propose, called Semi-supervised learning enhanced by multiple clusterings (SLEMC),
could be categorized as a post-labeling method. Indeed, it tries to improve the classification by first produc-
ing a clustering of the dataset. The clustering, computed on all the labeled and unlabeled objects, regroups
the similar instances together, maximizing the intracluster similarity and the intercluster dissimilarity. If
the classes are well separated in the feature space, we should be able to associate to each cluster one of the
classes, using the class of the labeled samples belonging to the cluster.

Unfortunately, in real world problems, classes are generally not well separated. It is then possible to have
samples from different classes in one cluster, or no sample in others. To address this issue, the proposed
method uses a combination of multiple clusterings.

We consider here b clustering methods {Ck}1≤k≤b. Each method is an instance of one clustering algorithm

(e.g. Kmeans, EM, SOM, etc.), having its own parameters and producing a partition Kk = {K1
k , . . . ,K

n
k }

of the n objects from the dataset X composed of both labeled and unlabeled samples.
Each object xi ∈ X is described by a vector of p features (ai1, . . . , a

i
p). The idea is to affect to each

labeled sample (xi, yi) ∈ L, ∀i : 1 < i < m, a new features vector:

v(xi) =
(
ai1, . . . , a

i
p,K

i
1, . . . ,K

i
b, yi

)
(10)

where Ki
j is the cluster affected in the jth clustering partition Kj to xi, and yi is the label of the sample xi

(see equation 1).
Then, a predictive model CV : X → {1, . . . , q} where {1, . . . , q} are the class values of the samples (see

equation 3), can be induced from this new dataset V = {v(xi)}mi=1, using a classical supervised learning
method (e.g. Naive Bayes).

The description of each unlabeled object xj of U is then extended in the same way:

v′(xj) =
(
aj1, . . . , a

j
p,K

j
1 , . . . ,K

j
b , 0
)

(11)

The predictive model CV , learned previously on the labeled samples, can be applied for each unlabeled
object xj ∈ U . The algorithm presenting the complete classification process is presented in algorithm 9.

The computational cost of the proposed method is directly linked to the clustering algorithms and the
supervised learning algorithm that are used in Algorithm 9. It is interesting to note that the clustering step
can be performed offline, as the model only needs to be trained once. Then, on runtime, the affectation of
unlabeled samples to the clusters can be performed without computing the entire clustering again. As we
assume that the number of labeled sample is very low, it is not likely that their use in the clustering process
would have significantly affected the clustering result. In the following experiments, we used Naive Bayes to
train the model, which has a standard complexity of O(nd) for n points in d dimensions. Consequently, the
complexity of SLEMC increases linearly with the addition of new dimensions obtained using the clustering
algorithms (i.e. KMeans, EM, etc.).
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Algorithm 9 Semi-supervised learning enhanced by multiple clusterings (SLEMC)

1: apply b clustering algorithms {Ck}1≤k≤b to the dataset X

2: each method Ck produces a partition Kk = {K1
k , . . . ,K

n
k } of the n objects

3: for all (xi, yi) ∈ L do
4: v(xi) =

(
ai1, . . . , a

i
p,K

i
1, . . . ,K

i
b, yi

)
5: end for
6: apply a supervised learning method to produce a predictive model CV from V = {v(xi)}mi=1

7: affect the features vector v′(xj) =
(
aj1, . . . , a

j
p,K

j
1 , . . . ,K

j
b , 0
)

to each xj ∈ U
8: use CV to label all objects of U

4. Experiments

To evaluate the efficiency of the SLEMC approach, three sets of experiments were carried out. First on
artificial datasets (Section 4.1) where the data and the samples are well correlated to the class information
(i.e. the ideal case), then on standard UCI datasets (Section 4.2), and finally on a real application in the
domain of remote sensing image analysis (Section 4.3). For all experiments, we compare the SLEMC method
to semi-supervised methods presented in Section 3. Comparison is also performed with supervised classifiers,
using only the labeled objects for the learning (i.e. the unlabeled data were ignored). Several supervised
algorithms were selected, from different families of learning methods: the standard tree inducer C4.5, Naive
Bayes (NB) and a 1-nearest-neighbor (1-NN) algorithm.

To apply SLEMC, the number of clusterings to compute on the dataset has to be fixed (i.e. how many
attributes will have each object in the new data space). Then, the different clustering methods have to be
chosen. Four different configurations were tested, to study the importance of the number of clusterings. The
four configurations are the followings:

1. Simple: one EM (Expectation-Maximization);

2. Low : one EM and one KMeans;

3. Medium: two EM and two KMeans;

4. High: c EM and c KMeans (with c the number of classes in the dataset).

Note that only EM and KMeans algorithms were chosen for convenience (i.e. low complexity) but other
clustering algorithms could have been used. Furthermore, as the method aim at leveraging from the class
distribution in the data space, these two algorithms are particularly well suited. The supervised method
used to produce the learning model is Naive Bayes in all experiments.

Moreover, we also evaluate an alternative setup for SLEMC, that keeps the description along with
adding new features for each object. These configurations are referred as Simple+, Low+, Medium+ and
High+. Each method was run with a number of clusters equals to the number of classes actually present in
the dataset except for the High configuration where the clustering method had k clusters (k ∈ {2, . . . , c},
randomly chosen).

For each experiment, each dataset was split into two sets, each composed of 50% of the objects. The
first set was used as data with unknown label for the unsupervised learning task of the semi-supervised
methods. The second set was used to select few samples considered as the available knowledge. The rest of
the second set was used to evaluate the methods (i.e. compute accuracy measure). We chose to evaluate
the method when 2, 4, 8 and 16 samples per class were available. We carried out the experiments for each
of these configurations (2, 4, 8 and 16 samples) for each dataset.

As the number of available labeled samples is very low the performance can greatly differ depending on
their selection. Consequently, the experiments were carried out 30 times and the results were averaged. At
each execution, we split randomly the datasets in two sets (50% for the unsupervised learning, 50% in which
we selected the available labeled samples and used the remaining objects for the evaluation).

11
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(c) 2d-4c-no8 dataset.

Figure 1: Example of artificial datasets used in the experiments.

For the sake of readability, only the top 3 accuracies are presented for each experiment in result tables.
However, the full results are available on the companion web page of the paper 1.

4.1. Evaluation on artificial benchmarks

The first set of experiments were carried out on artificial datasets, generated by the software provided
by Julia Handl [45]. Three different datasets configurations were used:

� 2d-4c-noX: 4 classes described by 2 attributes;

� 10d-4c-noX: 4 classes described by 10 attributes;

� 2d-10c-noX: 10 classes described by 2 attributes.

For all of them, 10 different datasets were randomly generated (no0, no1, ... no9). Figure 1 shows three
datasets generated for the 2d4c series.
For each experiment, the accuracy of the model was calculated. Tables 1, 2 and 3 present the top 3 accuracies
respectively for the series 2d-4c, 10d-4c and 2d-10c.

1http://germain-forestier.info/src/is2015/ (Accessed: 4 January 2016)

12

http://germain-forestier.info/src/is2015/


From these tables, one can notice that the High configuration of our method outperforms all the other
approaches as it appears most of the time in rank 1 for multiple datasets. This is even more visible for
the configurations where very few (2 or 4) samples are available. For example in Table 1 and Table 2, the
configuration High is - always - ranked first when 2 samples are available and is first 9 times out of 10 in
Table 3. One can also notice that when the number of labeled sample increase (8, 16) the method that keep
the description along with the new features (i.e. configurations with the ”+”) tend to perform better.

We also computed for the three sets of artificial datasets (2d-4c-noX, 2d-10c-noX and 10d-4c-noX)
the average ranking among the datasets. This is computed by summing the rank of each method for each
experiment and dividing the result by the number of experiments. The Table 4 shows these results. In
this table, one can observe that the configuration “High” performs particularly well as it is always in first
position when the number of labelled samples available is low (2 or 4). When the number of available
samples increases (8 and 16) the DL method provides better results.

4.2. Evaluation on UCI datasets

In this section, we compare our approach to the semi-supervised methods presented previously on various
datasets of the UCI repository [46]. The Table 5 summarizes information on each dataset. Note that it is not
guarantee that the class distribution is correlated with the data clusters distribution. With such datasets,
the information provided by the clustering will not give any relevant insight to enhance the model learning.

The results for each dataset and for each experiment are presented in Tables 7 and 8, where the values
are the accuracy of the top 3 methods for each configuration. The number of samples used is presented in
brackets at the beginning of each line.

In these tables, one can observe that the proposed methods outperformed, most of the time, the super-
vised learning and the other semi-supervised approaches, especially when the number of samples is very low
(2 or 4 samples per class). The best results are obtained on the wine dataset, where our methods are 8
times in the top 3 for the 12 configurations. On ionosphere, anneal, heart, cardio and thyroid, they are 6
times cited for the 12 configurations.

It is also important to notice that for some configurations and some datasets the difference of accuracy
between our method and the other semi-supervised methods appears to be important. For example, for the
configuration (2) on the dataset optidigits, our method with the High configuration gives 54.77% of accuracy
while the other semi-supervised present in the top 3 (DL and 1-NN) respectively gives 50.85% and 48.88%.
This can also be noted on the wine dataset for the configuration (2) as our method gives 88.40% and 83.25%
respectively for the High and the Medium configurations, while the SCEC method only obtained 79.96%.

Our method using the High configuration (i.e. c EM and c KMeans) seems to give the best results as
it appears 23 times considering all the top 3. This result enforces the intuitive feeling that adding more
clusterings improves the result, as the objects are described with more details (i.e. have more attributes).

Moreover, one can also observe that most of the time, the configurations without keeping the description
of the objects (Low, Simple, Medium and High) give good results when the number of available labeled
objects is low (2 and 4), whereas the configurations which keep the description along with adding new
features (Low+, Simple+, Medium+ and High+) give better results when the number of available labeled
objects is higher (8 and 16).

This can be explained by observing that, when the number of available labeled samples is low, their
description is too weak to build an efficient classifier. However, as the features added from the clustering
algorithms are computed on 50% of the dataset, the descriptions are more relevant. When the number
of available labeled samples increases, the description of the objects (i.e. the original features) are more
meaningful, and are more precise than the rough information offered by the clusterings.

As stated in the introduction, if the data space of the dataset is not correlated with the class information,
using clustering is useless. This affirmation can be studied on the segment and robot datasets, where the
proposed semi-supervised approach obtains worse results than 1-NN or C4.5, regardless of the number of
available samples.

Among the other semi-supervised methods, the DL gave particularly good results as it is present 22
times in the top 3. It is followed by the SL which is present 5 times. These results tend to show that the
pre-labeling give better results than the other ones on these datasets.
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Table 1: Top 3 accuracies for the experiments on the 2d-4c series.

dataset Rank 1 Rank 2 Rank 3

2d-4c-no0 (2) High 94.878 DL 94.313 Medium 93.992
2d-4c-no0 (4) High 97.973 DL 97.164 SCEC 96.705
2d-4c-no0 (8) High 99.356 DL 99.027 1-NN 98.146
2d-4c-no0 (16) DL 99.635 High 99.537 1-NN 98.849
2d-4c-no1 (2) High 93.446 DL 89.339 1-NN 88.142
2d-4c-no1 (4) High 99.292 DL 96.545 Medium 96.268
2d-4c-no1 (8) DL 99.768 High+ 99.286 Medium+ 99.261
2d-4c-no1 (16) DL 99.775 Simple+ 99.767 Medium+ 99.767
2d-4c-no2 (2) High 92.543 DL 85.093 Medium 84.984
2d-4c-no2 (4) DL 96.967 High 96.888 1-NN 95.19
2d-4c-no2 (8) High+ 99.606 Medium+ 99.483 High 99.392
2d-4c-no2 (16) High+ 99.893 Medium+ 99.866 Low+ 99.831
2d-4c-no3 (2) High 92.174 Medium 87.427 DL 86.695
2d-4c-no3 (4) High 98.128 DL 97.298 Medium 97.165
2d-4c-no3 (8) High 99.191 DL 99.0 1-NN 98.386
2d-4c-no3 (16) DL 99.576 High 99.188 1-NN 99.148
2d-4c-no4 (2) High 96.123 Medium 91.631 DL 90.946
2d-4c-no4 (4) High 94.867 DL 93.703 Medium 93.357
2d-4c-no4 (8) High 99.641 DL 99.273 1-NN 98.722
2d-4c-no4 (16) High 99.791 DL 99.637 Medium 99.591
2d-4c-no5 (2) High 92.477 Medium 88.577 DL 87.697
2d-4c-no5 (4) High 94.752 DL 93.431 1-NN 92.44
2d-4c-no5 (8) High 95.803 DL 95.268 1-NN 94.77
2d-4c-no5 (16) DL 99.437 High 99.423 1-NN 99.095
2d-4c-no6 (2) High 92.358 DL 90.066 SCEC 89.328
2d-4c-no6 (4) High 97.162 DL 94.926 1-NN 94.27
2d-4c-no6 (8) High 98.728 DL 98.271 1-NN 97.441
2d-4c-no6 (16) DL 99.985 1-NN 99.681 SL 99.548
2d-4c-no7 (2) High 96.088 DL 91.105 1-NN 90.296
2d-4c-no7 (4) High 99.078 Medium 95.745 DL 95.671
2d-4c-no7 (8) DL 99.465 High 99.226 Low+ 99.032
2d-4c-no7 (16) DL 99.737 SL 99.626 Simple+ 99.626
2d-4c-no8 (2) High 90.843 DL 89.037 Medium 87.273
2d-4c-no8 (4) DL 94.08 High 93.706 Medium 92.151
2d-4c-no8 (8) DL 99.328 High+ 99.264 Medium+ 99.183
2d-4c-no8 (16) DL 99.772 High+ 99.772 Medium+ 99.603
2d-4c-no9 (2) High 89.415 Medium 85.878 DL 85.305
2d-4c-no9 (4) High 97.242 DL 95.588 1-NN 93.579
2d-4c-no9 (8) DL 99.473 High+ 99.087 High 98.887
2d-4c-no9 (16) DL 99.608 SL 99.224 RC 99.16

The Table 6 shows the average ranking for two sets of the UCI datasets: Set 1 {iris, wine, ionosphere,
waveform, cardio, optidigts, mushroom} and Set 2 {wdbc, pima, anneal, heart, trans, robot, vehicle, thyroid,
liver}. The first set contains the datasets where the classes are following the data distribution, while in the
second they are not. As one can see in this table, for the first set, the proposed method provides the best
results and comes first in average ranking. For the second set, the 1-NN method and DL methods provide
the best results. However, the average rankings in the second set (e.g. 6.0) are much higher than the average
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Table 2: Top 3 accuracies for the experiments on the 10d-4c datasets.

dataset Rank 1 Rank 2 Rank 3

10d-4c-no0 (2) High 93.486 DL 91.041 Medium 90.539
10d-4c-no0 (4) High 90.57 DL 89.97 Medium 89.193
10d-4c-no0 (8) High 99.501 DL 98.917 Medium 98.84
10d-4c-no0 (16) DL 99.983 High 99.876 Medium 99.685
10d-4c-no1 (2) High 93.118 Medium 90.382 DL 90.076
10d-4c-no1 (4) High 98.814 DL 97.86 Medium 96.37
10d-4c-no1 (8) High 99.525 DL 98.75 1-NN 97.939
10d-4c-no1 (16) DL 100.0 High 99.906 RC 99.536
10d-4c-no2 (2) High 91.99 Medium 90.114 DL 87.576
10d-4c-no2 (4) High 98.58 DL 97.635 1-NN 94.522
10d-4c-no2 (8) DL 99.988 High 99.911 Medium 98.664
10d-4c-no2 (16) DL 96.66 High 96.591 SL 96.546
10d-4c-no3 (2) High 88.762 DL 86.992 Medium 85.782
10d-4c-no3 (4) High 98.618 Medium 96.919 DL 96.256
10d-4c-no3 (8) High 99.284 DL 99.21 Medium 98.561
10d-4c-no3 (16) DL 99.976 CLM 99.743 SL 99.639
10d-4c-no4 (2) High 93.987 Medium 91.515 DL 89.727
10d-4c-no4 (4) High 98.547 DL 97.197 Medium 95.033
10d-4c-no4 (8) DL 99.063 High 99.025 Medium 98.647
10d-4c-no4 (16) DL 99.901 High 99.69 Medium 98.97
10d-4c-no5 (2) High 96.662 Medium 93.447 DL 89.859
10d-4c-no5 (4) High 98.837 DL 98.533 Medium 98.391
10d-4c-no5 (8) DL 100.0 High 99.873 Medium 99.826
10d-4c-no5 (16) DL 100.0 High+ 99.966 Medium+ 99.961
10d-4c-no6 (2) High 93.234 Medium 90.744 DL 87.484
10d-4c-no6 (4) DL 96.624 1-NN 96.008 High 95.786
10d-4c-no6 (8) DL 98.562 High 98.306 1-NN 97.958
10d-4c-no6 (16) DL 99.678 1-NN 99.448 High 99.397
10d-4c-no7 (2) High 90.284 Medium 87.291 DL 86.367
10d-4c-no7 (4) DL 98.122 High 97.535 Medium 97.097
10d-4c-no7 (8) DL 99.587 High 98.984 Medium 98.286
10d-4c-no7 (16) DL 96.601 RC 95.793 SL 95.624
10d-4c-no8 (2) High 96.022 DL 94.245 Medium 90.742
10d-4c-no8 (4) High 95.697 DL 94.142 Medium 94.08
10d-4c-no8 (8) DL 99.729 High 99.686 Medium 98.48
10d-4c-no8 (16) High 99.838 DL 99.776 Medium 99.524
10d-4c-no9 (2) High 94.589 DL 89.319 Medium 89.249
10d-4c-no9 (4) High 94.732 DL 94.404 Medium 93.576
10d-4c-no9 (8) DL 96.548 High 96.305 Medium 96.231
10d-4c-no9 (16) DL 99.873 Medium+ 99.865 High+ 99.865

rankings in the first set (e.g. 1.71). It means that for this set, it is more difficult to find a single method that
outperforms the others. This is mainly due to the fact that most the semi-supervised methods compared in
this paper make also the assumption that the data distribution is following the classes distribution.

We also carried out an experiment to study the importance of the amount of unlabeled data in our
methods. We made some experiments in which we used 50% of the dataset as unlabeled data (as in the
previous experiment) but also made experiments with 25% and 10% of available unlabeled data. We used
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Table 3: Top 3 accuracies for the experiments on the 2d-10c series.

dataset Rank 1 Rank 2 Rank 3

2d-10c-no0 (2) High 82.603 DL 81.135 Medium 80.494
2d-10c-no0 (4) High 92.049 DL 91.146 1-NN 89.918
2d-10c-no0 (8) DL 98.503 High 97.696 1-NN 97.296
2d-10c-no0 (16) DL 99.401 High 98.99 1-NN 98.675
2d-10c-no1 (2) High 83.994 DL 82.526 1-NN 80.401
2d-10c-no1 (4) High 94.664 DL 94.366 1-NN 91.698
2d-10c-no1 (8) DL 94.774 High+ 94.148 Medium+ 93.903
2d-10c-no1 (16) DL 99.064 Medium+ 98.916 High+ 98.883
2d-10c-no2 (2) High 86.16 DL 84.689 1-NN 82.726
2d-10c-no2 (4) High 91.594 DL 91.577 1-NN 89.808
2d-10c-no2 (8) DL 98.388 High+ 97.702 High 97.695
2d-10c-no2 (16) DL 95.992 High+ 95.992 Medium+ 95.958
2d-10c-no3 (2) High 87.203 DL 83.754 1-NN 82.976
2d-10c-no3 (4) High 95.38 DL 95.012 1-NN 93.843
2d-10c-no3 (8) DL 97.767 High 97.24 1-NN 97.015
2d-10c-no3 (16) High+ 99.18 DL 99.05 Medium+ 98.917
2d-10c-no4 (2) High 86.224 DL 81.573 1-NN 80.373
2d-10c-no4 (4) High 96.087 DL 95.25 1-NN 92.966
2d-10c-no4 (8) DL 99.161 High 98.86 1-NN 97.738
2d-10c-no4 (16) DL 96.388 High+ 96.128 Medium+ 95.881
2d-10c-no5 (2) High 86.937 DL 86.667 1-NN 84.91
2d-10c-no5 (4) DL 95.057 High 94.187 1-NN 93.188
2d-10c-no5 (8) DL 90.649 High 89.76 1-NN 89.343
2d-10c-no5 (16) DL 94.983 High+ 94.611 High 94.284
2d-10c-no6 (2) High 87.379 DL 86.416 1-NN 85.233
2d-10c-no6 (4) DL 96.23 High 96.13 1-NN 95.212
2d-10c-no6 (8) DL 98.725 High 98.301 1-NN 98.118
2d-10c-no6 (16) DL 99.639 Low+ 99.402 Simple+ 99.377
2d-10c-no7 (2) DL 85.94 High 85.371 1-NN 84.026
2d-10c-no7 (4) DL 91.84 High 90.61 1-NN 90.152
2d-10c-no7 (8) DL 98.659 1-NN 97.191 High+ 97.158
2d-10c-no7 (16) DL 99.54 High+ 98.91 Medium+ 98.8
2d-10c-no8 (2) High 78.789 DL 76.083 Medium 73.937
2d-10c-no8 (4) DL 94.513 High 94.503 1-NN 91.705
2d-10c-no8 (8) DL 95.08 High 93.927 High+ 93.335
2d-10c-no8 (16) DL 95.943 High+ 95.548 Medium+ 95.475
2d-10c-no9 (2) High 88.696 DL 86.647 1-NN 85.887
2d-10c-no9 (4) High 95.156 DL 95.086 1-NN 94.145
2d-10c-no9 (8) DL 98.443 High 97.686 1-NN 97.565
2d-10c-no9 (16) DL 99.111 High 99.01 1-NN 98.488

the iris dataset and we run the experiment for 2, 4 and 8 labeled samples per class. The results are presented
in Figure 2 where each curve represents the evolution of the accuracy according to the amount of unlabeled
samples available. As expected, the method leverages from unlabeled samples, and the results improve as
more unlabeled samples are available.
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Table 4: Average ranking of top 3 methods for the artificial datasets.

dataset Rank 1 Rank 2 Rank 3

2d-4c-noX (2) High=1.0 DL=2.4 Medium=3.5
2d-4c-noX (4) High=1.2 DL=1.9 Medium=3.6
2d-4c-noX (8) DL=1.8 High=2.4 High+=4.6
2d-4c-noX (16) DL=1.5 High+=4.7 Medium+=5.3
2d-10c-noX (2) High=1.1 DL=1.9 1-NN=3.2
2d-10c-noX (4) High=1.4 DL=1.6 1-NN=3.0
2d-10c-noX (8) DL=1.0 High=3.4 High+=3.7
2d-10c-noX (16) DL=1.1 High+=2.9 Medium+=3.8
10d-4c-noX (2) High=1.0 Medium=2.4 DL=2.6
10d-4c-noX (4) High=1.3 DL=1.9 Medium=3.1
10d-4c-noX (8) DL=1.3 High=1.7 Medium=3.2
10d-4c-noX (16) DL=1.1 High=4.3 SL=5.0

Table 5: Information about the different datasets

dataset #classes #attributes #objects

iris 3 5 150
wine 3 14 178
wdbc 2 31 569
pima 2 9 768
ionosphere 2 35 351
anneal 5 39 898
waveform 3 22 5000
heart 2 35 349
cardio 10 36 2126
thyroid 3 22 3772
optidigts 10 63 5620
trans 2 5 748
robot 4 5 5456
vehicle 4 19 846
segment 7 20 2310
liver 2 7 345
mushroom 2 23 8124

Table 6: Average ranking of top 3 methods for two sets of UCI datasets: Set 1 {iris, wine, ionosphere, waveform, cardio,
optidigts, mushroom} and Set 2 {wdbc, pima, anneal, heart, trans, robot, vehicle, thyroid, liver}.

dataset Rank 1 Rank 2 Rank 3

Set 1 (2) High=1.71 Medium=2.71 1-NN=4.0
Set 1 (4) High=2.28 DL=3.28 1-NN=3.42
Set 1 (2,4) High=2.0 1-NN=3.71 DL=3.78
Set 2 (2) 1-NN=6.0 SL=7.0 DL=7.17
Set 2 (4) 1-NN=5.64 DL=6.9 SCEC=7.0
Set 2 (2,4) 1-NN=5.82 DL=7.05 SCEC=7.14
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(a) Experiments on iris with 2 samples per class.
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(b) Experiments on iris with 4 samples per class.
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(c) Experiments on iris with 8 samples per class.

Figure 2: Experiments with variable amount of available unlabeled data.

4.3. Remote Sensing data evaluation

As presented in the introduction, in the field of remote sensing classification, the problem of the low
ratio between the number of features and the number of samples is really important when dealing with
hyperspectral data or with very high resolution images. Indeed, in this last case, the classification is
basically computed in two steps: a segmentation of the image is performed, producing a set of regions (i.e.
groups of homogeneous pixels); then, these regions are characterized by many features (spectral attributes,
geometrical features, spatial attributes, etc.). Thus, we have a new dataset to classify, composed of few
regions (compared to the number of pixels in the image), but characterized by more features.

We present here an experiment on the classification of an extract of a very high remote sensing image
of an urban area of the city of Strasbourg (France). The input data is a pan-sharpened Quickbird© image
with 4 spectral bands and a spatial resolution of 0.7 meter, i.e. a pixel on the image represents a square of
0.7 × 0.7m on the ground. The image and the expert annotations used for the learning task are shown on
Figure 3.

After having computed a segmentation on this image using the watershed segmentation algorithm [47, 48],
we characterized each region by the 23 following features:

� 4 features representing the mean and the standard deviation of each spectral channel of the pixels
composing the region;
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Table 7: Top 3 accuracies for the experiments on the UCI datasets (1).

dataset Rank 1 Rank 2 Rank 3

iris (2) High 80.821 Medium 77.246 1-NN 75.362
iris (4) 1-NN 89.577 DL 89.471 RC 87.725
iris (8) Low+ 93.007 DL 92.876 Simple+ 92.876
iris (16) DL 94.444 SL 94.321 Low+ 94.321
wine (2) High 88.394 Medium 83.253 SCEC 79.96
wine (4) High 88.009 Medium 87.706 DL 87.489
wine (8) High 90.051 DL 89.385 Medium 89.231
wine (16) NB 84.553 Simple+ 84.309 Medium+ 84.065
wdbc (2) Medium 89.369 High 88.0 CLM 87.429
wdbc (4) DL 81.92 CLM 81.655 RC 81.498
wdbc (8) DL 89.502 CLM 89.167 SL 89.055
wdbc (16) SL 77.817 Medium+ 77.712 High+ 77.632
pima (2) Medium 59.491 DL 58.193 1-NN 57.798
pima (4) DL 63.67 1-NN 63.378 SCEC 63.369
pima (8) DL 64.13 SL 62.255 NB 62.192
pima (16) NB 67.33 SL 67.301 DL 66.847
ionosphere (2) High 65.517 1-NN 65.107 DL 64.308
ionosphere (4) High 63.293 SCEC 62.974 Medium 62.854
ionosphere (8) SL 72.935 DL 72.327 High+ 71.95
ionosphere (16) Medium+ 69.65 Low+ 69.487 NB 69.441
anneal (2) Simple 74.088 Low+ 73.707 Medium+ 73.638
anneal (4) Medium+ 64.627 1-NN 64.58 Low+ 64.471
anneal (8) 1-NN 55.187 C45 53.267 Low+ 52.702
anneal (16) 1-NN 54.202 C45 54.127 NB 52.984
waveform (2) High 61.55 DL 60.306 1-NN 57.828
waveform (4) DL 67.712 High 64.204 1-NN 63.165
waveform (8) DL 73.669 SL 71.832 High+ 70.685
waveform (16) Simple+ 79.246 NB 79.126 Low+ 79.016
heart (2) 1-NN 63.157 Low+ 62.961 Medium+ 62.961
heart (4) Low+ 68.213 High+ 68.213 NB 68.193
heart (8) NB 66.076 Low+ 63.608 Medium+ 63.586
heart (16) CLM 74.038 NB 73.615 RC 72.535
cardio (2) High 89.143 1-NN 87.76 Medium 85.008
cardio (4) 1-NN 95.002 High 94.865 Medium 91.786
cardio (8) 1-NN 95.534 High 94.652 SCEC 92.981
cardio (16) C45 96.667 1-NN 96.641 High 96.183

� 4 features representing the mean and the standard deviation of the value of each spectral channel over
the sum of all channels values;

� 2 features representing the mean and the standard deviation of the mean of all spectral channels;

� 2 features calculated as the mean and the standard deviation of the NDVI (Normalized Difference
Vegetation Index ) of the pixels composing the region;

� 1 feature representing the area covered by the region;

� 1 feature calculated as the elongation of the shape represented by the region;
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Table 8: Top 3 accuracies for the experiments on the UCI datasets (2).

dataset Rank 1 Rank 2 Rank 3

thyroid (2) NB 86.188 Simple+ 86.188 Low+ 86.188
thyroid (4) NB 77.287 SL 76.382 C45 75.948
thyroid (8) High+ 67.879 SL 67.854 Medium+ 67.811
thyroid (16) Simple+ 46.627 NB 46.612 Low+ 46.607
optdigits (2) High 54.765 DL 50.845 1-NN 48.879
optdigits (4) High 77.561 DL 76.945 1-NN 75.001
optdigits (8) 1-NN 53.09 DL 52.469 High 51.618
optdigits (16) 1-NN 46.097 High 44.806 DL 44.387
trans (2) C45 74.685 SK 73.775 CK 73.775
trans (4) Simple 73.206 SK 72.641 CK 72.641
trans (8) CLM 68.399 RC 68.389 NB 68.222
trans (16) C45 71.452 CLM 71.326 RC 71.277
robot (2) C45 63.574 SL 56.363 Low+ 55.118
robot (4) C45 64.175 NB 58.029 Low+ 57.999
robot (8) C45 79.028 Simple+ 68.5 NB 68.484
robot (16) C45 77.603 NB 68.27 SL 68.011
vehicle (2) SCEC 38.024 1-NN 37.606 DL 35.992
vehicle (4) 1-NN 40.786 SCEC 39.615 C45 37.952
vehicle (8) 1-NN 34.851 C45 33.572 Simple+ 32.268
vehicle (16) C45 21.114 1-NN 20.929 SRIDHCR 18.561
segment (2) 1-NN 56.375 High 54.309 DL 52.571
segment (4) 1-NN 57.249 DL 54.655 SRIDHCR 54.543
segment (8) 1-NN 48.065 C45 47.27 High+ 46.372
segment (16) 1-NN 58.038 C45 57.507 SRIDHCR 54.155
liver (2) SCEC 51.865 Medium+ 51.429 High+ 51.429
liver (4) Simple+ 54.736 SCEC 54.634 NB 54.492
liver (8) 1-NN 51.923 C45 51.496 NB 51.261
liver (16) C45 54.857 1-NN 54.19 High 52.5
mushroom (2) Medium 78.472 SK 75.88 CK 75.88
mushroom (4) High+ 81.285 High 81.221 DL 80.887
mushroom (8) DL 91.211 1-NN 90.997 SL 89.342
mushroom (16) 1-NN 80.835 C45 80.022 DL 79.509

� 1 feature measuring the fitting of the shape represented by the region and its oriented bounding box.

Finally, the dataset generated (dataset remote sensing) was composed of 186 objects described by 15
features, divided into three classes. As for the previous experiments, we chose three different configurations
to study the importance of the number of clusterings. The three configurations are referred as Low (two
EM clusterers), Medium (two EM and two KMeans) and High (6 EM and 6 KMeans). We also compare
the result with three classical supervised classification methods (C4.5, 1-Nearest Neighbor and Naive Bayes)
and the other semi-supervised approaches presented in section 3. Again, the experiment is performed 30
times and the results are averaged. At each run, the different sets are filled with randomly chosen samples.
The results obtained with different number of samples are given in Table 9.

Again, these results confirm that High configuration improves the result, as it gives the best results when
only few samples are available. It confirms that a minimal number of samples are needed by supervised
methods to produce efficient results. But this lack of information can be balanced by the use of many
clusterings on the unlabeled data.
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(a) Extract of the Quickbird© image (Strasbourg,
France - 900×900 pixels - 0.7m per pixel - 2001)

(b) Manual annotations used as samples

Figure 3: Data used for the remote sensing dataset

Table 9: Top 3 accuracies for the experiments on the remote sensing datasets.

dataset Rank 1 Rank 2 Rank 3

remote (2) High 84.783 Medium 82.802 1-NN 82.657
remote (4) High 90.106 1-NN 90.0 SCEC 88.889
remote (8) 1-NN 89.412 SCEC 87.059 DL 86.993
remote (8) 1-NN 92.876 SRIDHCR 88.954 High 88.627

5. Conclusion

In this paper, we presented how multiple clustering results can be combined along with a supervised
classifier, in order to achieve better results than some classical semi-supervised and supervised algorithms.
The presented method has shown good results when the number of labeled samples is very low, and when
unlabeled samples are available. We also give a presentation of the main methods of semi-supervised
clustering in a same formalization and compared them objectively.

The experiments presented in this paper give some insights on how clustering results can help the
supervised learning task and is a way to incorporate unlabeled data into the training process. An experiment
on object-based remote sensing image processing highlights the suitability of such an approach for visual
content analysis and understanding.

In future work, we are planing to study how the characteristics of the clustering results used in the
method influence the classification accuracy. We plan to study ensemble clustering generation methods in
order to generate multiple clusterings with high diversity. The diversity in the input clusterings seems to
be the key to reach better accuracy as it provide complementary information. We also plan to study other
clustering methods and see how they compete with the ones used in this paper. Finally, we also plan to
further investigate how clustering can support the supervised classification process [49] for example for data
editing.

21



Supplementary materials

� Java package containing the source code for the proposed method. (Java ARchive file) – http:

//germain-forestier.info/src/is2016/ (Accessed: 20 May 2016)
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