
HAL Id: hal-01355118
https://hal.science/hal-01355118v2

Preprint submitted on 24 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying the Survival Uncertainty of
Wolbachia-infected Mosquitoes in a Spatial Model *

Martin Strugarek, Nicolas Vauchelet, Jorge Zubelli

To cite this version:
Martin Strugarek, Nicolas Vauchelet, Jorge Zubelli. Quantifying the Survival Uncertainty of
Wolbachia-infected Mosquitoes in a Spatial Model *. 2016. �hal-01355118v2�

https://hal.science/hal-01355118v2
https://hal.archives-ouvertes.fr


Quantifying the Survival Uncertainty of Wolbachia-infected Mosquitoes

in a Spatial Model

Martin Strugarek∗ Nicolas Vauchelet† Jorge P. Zubelli‡

July 24, 2017

Abstract

Artificial releases of Wolbachia-infected Aedes mosquitoes have been under study in the past years
for fighting vector-borne diseases such as dengue, chikungunya and zika. Several strains of this bac-
terium cause cytoplasmic incompatibility (CI) and can also affect their host’s fecundity or lifespan,
while highly reducing vector competence for the main arboviruses.

We consider and answer the following questions: 1) what should be the initial condition (i.e. size
of the initial mosquito population) to have invasion with one mosquito release source? We note that it
is hard to have an invasion in such case. 2) How many release points does one need to have sufficiently
high probability of invasion? 3) What happens if one accounts for uncertainty in the release protocol
(e.g. unequal spacing among release points)?

We build a framework based on existing reaction-diffusion models for the uncertainty quantification
in this context, obtain both theoretical and numerical lower bounds for the probability of release success
and give new quantitative results on the one dimensional case.

1 Introduction

In recent years, the spread of chikungunya, dengue, and zika has become a major public health issue,
especially in tropical areas of the planet [CDC16, BGB+13]. All those diseases are caused by arboviruses
whose main transmission vector is the Aedes aegypti. One of the most important and innovative ways
of vector control is the artificial introduction of a maternally transmitted bacterium of genus Wolbachia
in the mosquito population (see [BAGDG+13, Joh15, WJM+11]). This process has been successfully
implemented on the field (see [HMP+11]). It requires the release of Wolbachia-infected mosquitoes on
the field and ultimately depends on the prevalence of one sub-population over the other. Other human
interventions on mosquito populations may require such spatial release protocols (see [Alp14, AMN+13]
for a review of past and current field trials for genetic mosquito population modification). Designing and
optimizing these protocols remains a challenging problem for today (see [HSG11b, VC12]), and may be
enriched by the lessons learned from previous release experiments (see [HIOC+14, NNN+15, YREH+16])

This article studies a spatially distributed model for the spread of Wolbachia-infected mosquitoes in a
population and its success as far as non-extinction probabilities are concerned. We address the question
of the release protocol to guarantee a high probability of invasion. More precisely, what quantity of
mosquitoes need to be released to ensure invasion, if we have only one release point? What if we have
multiple release points and if there is some uncertainty in the release protocol? We obtain lower bounds
so as to quantify the success probability of spatial spread of the introduced population according to a
mathematical model.
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We define here an ad hoc framework for the computation of this success probability. As a totally
new feature added to the previous works on this topic (see [CMS+11, HG12, HSG11a, JTG08, Tur10,
YMW+11]), it involves space variable as a key ingredient. In this paper we provide quantitative estimate
and numerical results in dimension 1.

It is well accepted that stochasticity plays a significant role in biological modeling. Probabilities
of introduction success have already been investigated for genes or other agents into a wild biological
population. The recent work [BT11] makes use of reaction-diffusion PDEs to describe the biological phe-
nomena underlying sucessful introduction as cytoplasmic analogues of the Allee effect. The infection of
the mosquito population by Wolbachia is seen as an “alternative trait”, spreading across a population
having initially a homogeneous regular trait. Other recent models have been proposed either to compute
the invasion speed ([CK13]), or get an insight into the induced time dynamics of more complex systems,
including humans or pathogens (see [FJBH11, HB13]). In the mosquito part, models usually feature two
stable steady states: invasion (the regular trait disappears) and extinction (the alternative trait disap-
pears). Since this phenomenon is currently being investigated as a tool to fight Aedes transmitted diseases,
the problem of determination of thresholds for invasion in this equation is of tremendous importance.

The issue of survival probability of invading species has attracted a lot of attention by many re-
searchers. Among such we may cite [BR91] and [RB87]. We stress, however, that this is not the direction
followed in this paper. In the cited articles indeed, the basic underlying model is either a stochastic PDE
or its discretization, and the uncertainty concerning the initial state is not considered.

In other words, although in a deterministic model as ours one can in principle numerically check for a
specific initial configuration whether the invasion by the Wolbachia-infected mosquitoes will be successful
or not, in practice such a specific initial condition is subject to uncertainty, and therefore the uncertainty
quantification of the success probability is a natural question.

Our modeling goes as follows: We consider a domain Ω, a frequency p : Ω → [0, 1] that models the
prevalence of the Wolbachia infection trait. More specifically, in the case of cytoplasmic incompatibility
caused in Aedes mosquitoes by the endo-symbiotic bacterium Wolbachia, p is the proportion of mosquitoes
infected by the bacterium (e.g. p = 1 means that the whole population is infected). Then, this frequency
obeys a bistable reaction-diffusion equation. We aim at estimating the invasion success probability with
respect to the initial data (= release profile).

In [BT11, SV16] it was obtained an expression for the reaction term f in the limit Allen-Cahn equation

∂tp− σ∆p = f(p) (1)

in terms of the following biological parameters: σ diffusivity (in square-meters per day, for example), sf
(effect of Wolbachia on fecundity, = 0 if it has no effect); sh (strength of the cytoplasmic incompatibility,
= 1 if it is perfect); δ (effect on death rate, di = δds where ds is the regular death rate without Wolbachia)
and µ (imperfection of vertical transmission, expected to be small). It reads as follows:

f(p) = δdsp
−shp

2 +
(
1 + sh − (1− sf )(

1−µ
δ + µ)

)
p+ (1− sf )

1−µ
δ − 1

shp2 − (sf + sh)p+ 1
. (2)

Bistable reaction terms are such that f < 0 on (0, θ) and f > 0 on (θ, θ+). Usually, we consider θ+ = 1.
This is the case if µ = 0.

The outline of the paper is the following. In the next section, we state and prove our main result:
the existence of compactly radially symmetric functions such that if the initial data is above one of such
function, then invasion occurs. Then we explain how this result provides an estimate of the probability
of success of a release protocol. Section 3 and the following is devoted to the one dimensional case.
In Section 4 we provide an analytical computation of the probability of success. Numerical results are
displayed in Section 5. We conclude in Secion 6. Finally an appendix is devoted to the study of the
minimization of the perimeter of release in one dimension.
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2 Setting the problem: How to use a threshold property to design a

release protocol?

2.1 The threshold phenomenon for bistable equations

In Equation (1), we assume that





∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0,

f < 0 on (0, θ), f > 0 on (θ, 1),
∫ 1
0 f(x)dx > 0.

(3)

A consequence of this hypothesis is the existence of invading traveling waves. From now on, we denote F
the anti-derivative of f which vanishes at 0,

F (x) :=

∫ x

0
f(y) dy. (4)

Since we have assumed F (1) > 0, by the bistability of the function f , there exists a unique θc ∈ (0, 1)
such that

F (θc) =

∫ θc

0
f(x)dx = 0.

By making use of biologically reasonable parameters (ds = 0.27, sf = 0.1, µ = 0, sh = 0.8 and
δ = 0.3/0.27 = 10/9), we obtain the profiles for f and its anti-derivative in Figure 1. In [HB13], the
authors used the notations φ = 1− sf , δ = di/ds, u = 1− sh and v = 1− µ. They gave a range of values
of these parameters for three Wolbachia strains, namely wAlbB, which has no impact on death (δ = 1)
but reduces fecundity, wMelPop which highly increases death rate but isn’t detrimental to fecundity, and
wMel which has a moderate impact on both. Values are given in Table 3 of the cited article (which
contains also a parameter r, standing for differential vector competence of Wolbachia-infected mosquitoes
for dengue, a feature we do not include in our modelling since we focus on the mosquito population
dynamics), see the references therein for more details. According to the aforementioned references, the
authors always assumed perfect CI and maternal transmission, that is, with our notations sh = 1 and
µ = 0. Our notations mimic those of [BT11, FJBH11], where they did not give as detailed tables for the
parameters as in [HB13], although we refer the reader to the references they gave, which contain some
quantitative estimations of these parameters. Our choices for ds and sf reflect the field data exposed
in [DdSC+15], for the (life-shortening) wMel strain in the context of the city of Rio de Janeiro, in Brazil.

We will always assume µ = 0 (perfect vertical transmission) in the following. Note that our results
also apply when µ > 0, but in this case the “invasion” state is not exactly p = 1, but p = p+(µ) < 1,
because there is a flaw in Wolbachia vertical (=maternal) transmission.

Moreover, following estimates from [DdSC+15, VCF+15] for Aedes aegypti in Rio de Janeiro (Brazil),
and general literature review and discussion in Section 3 of [OSS08] we consider that mosquitoes spread
at around σ = 830m2/day (see the references given in [OSS08] for more details). With these estimations
of the parameters, the quantitative results we get are satisfactory because they appear to be relevant for
practical purposes. For example, in order to get a significant probability of success, the release perimeter
we find is around 595m wide (in one dimension). In the example from Figure 1, θc ≃ 0.36.

We say that a radially symmetric function φ on R
d is non-increasing if φ(x) = g(|x|) for some g that

is non-increasing on R
+.

The following result gives a criterion on the initial data to guarantee invasion.

Theorem 1. Let us assume that f is bistable in the sense of (3). Then, for all α ∈ (θc, 1] there exists
a compactly supported, radially symmetric non-increasing function vα(|x|), with vα : R+ → R+ non-
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Figure 1: Profile of f (left) and of its anti-derivative F (right).

increasing, vα(0) = α (called “α-bubble”), such that if p is a solution of

∂tp− σ∆p = f(p), (5)

p(t = 0, x) = p0(x) ≥ vα(|x|),

then p −−−→
t→∞

1 locally uniformly. Moreover, we can take Supp(vα) = BRα with

Rα =
√
σ inf

ρ∈Γ

√√√√ 1− ρd

(1− ρ)2
1

( ∫ α
0

(
1− 1−ρ

α x
)d
f(x)dx

)
+

, (6)

where Γ = {ρ ∈ (0, 1),
∫ α
0 (1− 1−ρ

α x)df(x)dx > 0}.
In one dimension, we have the sharper estimate Supp(vα) = [−Lα, Lα] with

Lα =

√
σ

2

∫ α

0

dv√
F (α) − F (v)

. (7)

Remark 1. Clearly, the set Γ is nonempty. Indeed for ρ ∼ 1,

∫ α

0
(1− 1− ρ

α
x)df(x)dx > 0,

since F (α) > 0. However, it is hard to say more unless we consider a specific function f .

Theorem 1 is a well-known fact (see [DM10, MP16, MZ17, Pol11, Zla06]), even though the explicit
formulae (6), (7) are seldom found in the literature. We postpone to Section 2.4 the proof of this result,
which follows essentially from the ideas developped in [MZ17].
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We recall the definition of a “ground state” as a positive stationary solution v of (1), i.e.:

−∆v = f(v)

that decays to 0 at infinity. In dimension d = 1 (and in some special cases in higher dimensions, see
[MZ17]), such a ground state is unique up to translations. When d = 1 we denote vθc the ground state
which is maximal at x = 0. It is symmetric decreasing and vθc(0) = θc, which is consistent with the
notation vα in Theorem 1. Although we won’t use it in the rest of the paper, we note that with a similar
argument, we have a sufficient condition for the extinction:

Proposition 1. In dimension d = 1, let p be a solution of equation (1), associated with the initial value
p0. If p0 < θ or p0 < vθc(· − ζ) for some ζ ∈ R, then p goes extinct: p −−−→

t→∞
0 uniformly on R.

2.2 The stochastic framework for release profiles

When releasing mosquitoes in the field, the actual profile of Wolbachia infection in the days right after
the release is very uncertain. In order to quantify this uncertainty, we define in this section an adequate
space of release profiles. The pre-existing mosquito population is assumed to be homogeneously dense, at
a level N0 ∈ R+.

From now on, we assume that we have fixed a space unit, so that we may talk of numbers or densities
of mosquitoes without any trouble.

We define a spatial process X·(ω) = X(·, ω) : R
d → R+ as the introduced mosquitoes profile.

We expect that the time dynamics of the infection frequency will be given by (1)





∂tp− σ∆p = f(p),

p(t = 0, τ ;ω) =
Xτ (ω)

Xτ (ω) +N0
.

(8)

We want to measure the probability of establishment associated with this set of initial profiles.
Making use of Theorem 1, we want to give a lower bound for the probability of non-extinction (which

is equivalent to 1 minus the probability of invasion, by the sharpness of threshold solutions, as described
in [MP16, MZ17]).

An initial condition Xτ ensures non-extinction if

∃α ∈ (θc, 1], ∃τ0 ∈ R, ∀τ ∈ R
d,

Xτ

Xτ +N0
≥ vα(τ + τ0), (NEC)

where vα is the “α-bubble” used in Theorem 1.

An example. Now, we assume that we have a known number of mosquitoes to release, say N . When
we release mosquitoes in the field (out of boxes), they will spread out to find vertebrates to feed on (if not
fed in the lab prior to the release), to mate or to rest. Many environmental factors may influence their
spread (see [MdFSSCLdO10]). As a very rough estimate we consider that the distribution of the released
mosquitoes can be described by a Gaussian. A Gaussian profile is typically the result of a diffusion process.
However, we shall not use very fine properties of these profiles, and mainly focus on a “significant spread
radius”, so that this assumption is not too restrictive.

Due to the above simplification, the set of releases profiles (“RP”) for a total of N mosquitoes at k
locations in a domain [−L,L]d is defined as

RP d
k (N) :=

{
τ 7→ N

k

k∑

i=1

e
− (τ−τi)

2

2σi

(2πσi)d/2
, with τ1, . . . , τk in [−L,L]d, σi ∈ [σ0 − ǫ, σ0 + ǫ]

}
, (9)
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where σ0 is an estimated diffusion coefficient and ǫ > 0 represents the uncertainty on this parameter (σi
is the “significant spread radius”). In other words, for any i between 1 and k, the release profile is locally
at the i-th release point a centered Gaussian with fixed amplitude N/k and variance σi.

The basic requirement for a release profile is that
∫
Rd Xτdτ = N . It is obviously satisfied for the

elements in RP d
k (N).

We use uniform measure on
(
[−L,L]d× [σ0− ǫ, σ0+ ǫ]

)k
to equip RP d

k (N) with a probability measure,
denoted M in the following.

According to our estimate, the success probability satisfies

P[Non-extinction after releasing N mosquitoes at k locations ]

≥ P[Xτ (ω) satisfies (NEC)], (SP)

where Xτ (ω) is taken in RP d
k (N) according to the uniform probability measure.

2.3 First result: relevance of under-estimating success

Though it may seem naive, our under-estimation by radii given in Theorem 1 is not extremely bad, and
this can be quantified in any dimension d. Indeed, in any dimension we can prove convergence of our
under-estimation in (SP) to 1 as the number of releases goes to infinity, if we fix the number of mosquitoes
per release.

More precisely, we define for a domain Ω ⊂ R
d,

P d
k (N,Ω) := M

{
(xi)1≤i≤k,∃α ∈ (θc, 1),∃x0 ∈ Ω,

x0 +BRα ⊂ Ω and ∀x ∈ x0 +BRα ,
N

k

k∑

i=1

Gσ,d(x− xi) ≥ α
}
, (10)

where Gσ,d(y) = 1
(2πσ)d/2

e−|y|2/2σ and BRα = BRα(0) is the ball of radius Rα, centered at 0. Then,

the probability of success of a random (in the sense of Section 2.2) k-release of N mosquitoes in the
d-dimensional domain Ω is bigger than P d

k (N,Ω), because of Theorem 1.
Fixing the number of mosquitoes per release and letting the number of releases go to ∞ yields:

Proposition 2. Let 1 > α > θc, N ≥ N∗ := (2πσ)d/2 α
1−αN0 and Ω ⊂ R

d a compact set containing a ball
of radius Rα. Then,

P d
k (kN,Ω) −−−→

k→∞
1. (11)

Proof. There are two ingredients for the proof: First, we minimize a Gaussian at x on a ball centered at
x by its value on the border of the ball. Second, if we pick uniformly an increasing number of balls with
fixed radius and center in a compact domain, then their union covers almost-surely any given subset (this
second ingredient is connected with the well-known coupon collector’s problem). Namely,

‖y‖ ≤
√

2σ log(2) =⇒ e−‖y‖2/2σ ≥ 1/2.

Now, when we pick uniformly in a compact set the centers of balls of fixed radius α, the probability of
covering a given subset Ωc ⊂ Ω increases with the number k of balls. Therefore it has a limit as k → +∞.
In fact, this limit is equal to 1.

One can prove this claim using the coupon collector problem (see the classical work [ER61] for the
main results on this problem), after selecting a mesh for the compact domain Ωc. We take this mesh such
that each cell has diameter less than

√
2σ log(2)/2, and positive measure. The domain Ω is compact,

hence finitely many cells is enough. Picking the center of a random ball in a given cell of the mesh has
probability > 0, and we simply need to have picked one center in each element to be done. It remains to
choose the (compact) set Ωc = BRα + x0 ⊂ Ω to conclude the proof.
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Remark 2. We could have been a little more precise, and get an estimate for the expected value of the
number k of small balls required to cover the domain. According to classical results [ER61] on the coupon
collector problem, it typically grows as Nc log(Nc), where Nc is the number of cells. If the domain Ω has
diameter R, Nc is typically (2R/

√
2σ log(2))d, in dimension d.

Therefore we should expect E[k] ∼ d
(

2R√
2σ log(2)

)d
log( 2R√

2σ log(2)
), and for a typical release area R should

be of the same order as Rα.

In fact, any N > 0 enjoys the same property, but then we need to assume that each cell contains a
large enough number of release points.

Corollary 1. For any N > 0 and α ∈ (θc, 1), for Ω ⊂ R
d a compact set containing a ball of radius Rα,

then for any compact subset Ωc ⊂ Ω containing a ball of radius Rα we have

P d
k (kN,Ωc) −−−→

k→∞
1.

Proof. Let ι = VN∗

N W. With the same technique as for proving Proposition 11, we get a coupon collector
problem where ι coupons of each kind must be collected, whence the result.

2.4 Proof of invasiveness in Theorem 1 in any dimension

We consider in this section the proof of Theorem 1 in any dimension. The case d = 1 is postponed to the
next section.

We use an approach based on the energy as proposed by [MZ17]. In the present context, the energy
is defined by

E[u] =

∫

Rd

(σ
2
|∇u|2 − F (u(x))

)
dx. (12)

It is straightforward to see that if p is a solution to (5), then the energy is non-increasing along a solution,
i.e.,

d

dt
E[p] = −

∫

Rd

(
σ∆p+ f(p)

)2
dx ≤ 0.

Thus, E[p](t) ≤ E[p0] for all nonnegative t and for p solution to (5). Moreover, Theorem 2 of [MZ17]
states that if limt→+∞E[p(t, ·)] < 0, then p(t, ·) → 1 locally uniformly in R

d as t → +∞. Thus, since
t 7→ E[p(t, ·)] is non increasing, it is enough to choose p0 such that E[p0] < 0 to conclude the proof of
Theorem 1.

For any α > θc, we construct p0(x) = vα(|x|) as defined in the statements of Theorem 1. To do
so, consider the family of non-increasing radially symmetric functions, compactly supported in BR0 with
R0 > 0, indexed by a small radius 0 < r0 < R0, defined by φ(r) = 1 if r ≤ r0, φ(r) =

R0−r
R0−r0

if r0 < r < R0,
and φ(r) ≡ 0 if r > R0.

For any 0 < r0 < R0 φ is continuous and piecewise linear. We define vα(r) = αφ(r), for r ≥ 0. By the
comparison principle, it suffices to find (r0, R0) such that E[αφ] < 0 to ensure that Rα = R0 is suitable
in Equation (6) of Theorem 1. To do so, we introduce

Jd(r0, R0, α, φ) :=
E[αφ]

|Sd−1| = α2σ

∫ ∞

0
rd−1|∇φ(r)|2dr −

(rd0
d
F (α) +

∫ R0

r0

rd−1

∫ αφ(r)

0
f(s)dsdr

)
. (13)

Now, we use our specific choice of non-increasing radially symmetric function φ. Introducing ρ :=
r0/R0, and with obvious abuses of notation, Jd stands again for

Jd(ρ,R0, α) := Rd
0

( σ

dR2
0

1− ρd

(1− ρ)2
− F (α)

ρd

d
− 1− ρ

α

∫ α

0

(
1− 1− ρ

α
x
)d−1

F (x)dx
)
, (14)

7



where F is the antiderivative of f (as introduced in (4)). After an integration by parts, we have

Jd(ρ,R0, α) = Rd
0

( σ

dR2
0

1− ρd

(1− ρ)2
−

∫ α

0

(
1− 1− ρ

α
x
)d
f(x)dx

)
.

We choose ρ ∈ (0, 1) such that ∫ α

0

(
1− 1− ρ

α
x
)d
f(x)dx > 0 (15)

Then the energy Jd(ρ,R0, α) decreases to −∞ with R0 and is positive for R0 → 0, so the minimal scaling

ensuring negative energy is obtained for some known value of R0 =: R
(d)
α (ρ), such that Jd(ρ,R

(d)
α (ρ), α) =

0. Namely,
(
R(d)

α (ρ)
)2

= σ
1− ρd

(1− ρ)2
1

∫ α
0

(
1− 1−ρ

α x
)d
f(x)dx

, (16)

which is a rational fraction in ρ. Thus we recover formula (6) in Theorem 1 by minimizing with respect
to those ρ satisfying constraint (15).

We examine in particular formula (16) in the case d = 1. To do so, we introduce

U(α) := F (α) − 1

α

∫ α

0
F (x)dx, V (α) :=

1

α

∫ α

0
F (x)dx. (17)

Since F (x) ≤ F (α) for x ≤ α, we know that U is positive and V is increasing with respect to α
(V ′(α) = 1

αU(α)). Moreover, V (θc) < 0. We get

R(1)
α (ρ) =

α
√
σ√

(1− ρ)(V (α) + ρU(α))
, (18)

under the constraint V (α) + ρU(α) > 0. The optimal choice for ρ is then ρ∗1(α) :=
1
2 − 1

2
V (α)
U(α) . It satisfies

V (α) + ρ∗1(α)U(α) > 0 since U(α) = F (α)− V (α) > 0 and F (α) > 0.
Finally, ρ∗1 corresponds to a minimal radius

R(1),∗
α := R(1)

α (ρ∗1(α)) = 2
√
σ
α
√

U(α)

F (α)
, (19)

with U(α) as in (17).

Remark 3. We emphasize that Rα quantifies the minimal radius which ensures invasion from level α,
in the sense that it provides an upper bound for it. However, we were not able to perform an analytical
computation of the actual optimal radius (=support size) of a critical bubble.

Remark 4. We note in passing that the same energy (12) appears for instance in the review paper [BH89]
and in associated literature, but is used in a different spirit (stemming from statistical physics).

Before restricting to dimension 1 in the sequel, we end the general exposition in this section with
a numerical illustration. In order to help the reader getting a clearer picture of the invasion problem
we investigate in the present paper, Figure 2 displays the time dynamics of equation (1) in two spatial
dimensions, with three different initial conditions. It illustrates the fact that with a fixed number of
release points taken uniformly in a rectangle, invasion typically appears only if the size of the rectangle
is well chosen.

If it is too small (Figure 2-Right) the pressure of the surrounding Wolbachia-free environment is too
strong for the infection to propagate. If it is too large (Figure 2-Left), the release points are likely to be
too scattered and never reach and invasion threshold. Whereas in Figure 2-Center, the release area and
the number of releases is sufficient to generate a wide enough domain of Wolbachia-infected mosquitoes
which spreads for larger times.
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Figure 2: Time dynamics with three different initial releases belonging to the set RP 2
50(N) of (9), with

N/(N +N0) = 0.75. Integration is performed on the domain [−L,L] with L = 50km. The release box is
plotted in dashed red on the first picture of each configuration. Left: Release box [−2L/3, 2L/3]2. Center:
Release box [−L/2, L/2]2. Right: Release box [−L/12.5, L/12.5]2 . From top to bottom: increasing time
t ∈ {0, 1, 25, 50, 75}, in days. The color indicates the value of p (with the scale on the right).
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3 Critical bubbles of non-extinction in dimension 1

3.1 Construction

In this section, we consider the particular one dimensional case for which we can construct a sharp critical
bubble. To do so, we consider the following differential system:

σu′′α + f(uα) = 0 in R+, uα(0) = α, u′α(0) = 0. (20)

Proposition 3. System (20) admits a unique maximal solution uα; it is global and can be extended by
symmetry on R as a function of class C2. Moreover, if α > θc, then Lα defined in (7) is finite and uα is
monotonically decreasing on R+ and vanishes at Lα.

Definition 1. For α ∈ (θc, 1], we denote by an α-bubble in one dimension the function vα defined by

vα(x) = uα(|x|)+ := max{0, uα(|x|)} .

From Proposition 3 and Definition 1 we have that vα is compactly supported with supp(vα) =
[−Lα, Lα].

Proof. Local existence is granted by Cauchy-Lipschitz theorem. Then, we multiply Equation (20) by u′α,

σ

2

(
(u′α)

2
)′
+

(
F (uα)

)′
= 0,

which implies (since u′α(0) = 0, uα(0) = α and the domain is connected) that:

σ

2
(u′α)

2 = F (α) − F (uα).

Recall that F (x) =
∫ x
0 f(y)dy is positive increasing from θc. Hence, for α > θc, uα stays strictly below α

except at 0; u′α cannot vanish unless uα = α. Hence, uα is decreasing on R+.
Because uα is decreasing, its derivative is negative and thus:

√
σ
duα
dx

= −
√
2(F (α) − F (uα)). (21)

Then, uα, being monotone, is invertible on its range. Let us define χα(uα(x)) = x, so that uα(χα(ω)) = ω.
By the chain rule, we have

dχα

dω
= −

√
σ

2(F (α) − F (ω))
,

so that,

χα(ω) =

∫ α

ω

√
σ

2(F (α) − F (v))
dv. (22)

Thus the function χα evaluated at ω is equal to the unique radius at which the solution of (20) takes the
value ω.

Moreover, if α > θc, F (α) − F (v) vanishes if and only if v = α. Therefore, if v = α− h, we can write
F (α − h) = F (α) − hf(α) +O(h2), which means that locally:

1√
F (α)− F (v)

∼
v→α

1√
f(α)

1√
α− v

,

which is integrable as long as f(α) 6= 0, which is true since α ∈ (θc, 1) ⊂ (θ, 1).
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On the other hand, the integral diverges for α = θc and ω = 0. Indeed, saying that the integrand
stays controllable at v = α = θc is equivalent to the same statement for 1√

f(θc)

1√
θc−v

. But then, at the

other side v = 0 we get (recall that F (θc) = 0 = F (0)):

1√
−F (v)

∼
v→0+

1

v

√
− 2

f ′(0)
,

which is not integrable. (Assuming f ′(0) < 0 for convenience.)

Proposition 4. The limit bubble uθc (also known as the “ground state”) has exponential decay at infinity.

Proof. The function uθc satisfies the following equation:

σ

2
(u′θc)

2 = F (θc)− F (uθc) = −F (uθc).

Hence, √
σu′θc = −

√
−2F (uθc) on R+.

Moreover, for small ǫ,
√

−2F (ǫ) = ǫ
√
−f ′(0) + o(ǫ).

As a consequence, as uθc gets small (at infinity), it is equivalent to the solution of

y′ = −
√
−f ′(0)y,

that is x 7→ e−
√

−f ′(0)x.

Proof of Theorem 1 in dimension d=1. Let α ∈ (θc, 1], and let us assume that the initial data for
system (1) satisfies p(0, ·) ≥ vα where vα is the α-bubble defined in Definition 1. From Proposition 3, it
suffices to prove that p(t, ·) → 1 locally uniformly on R as t → +∞.

We first notice that the α-bubble vα is a sub-solution for (1). Indeed it is the minimum between the
two sub-solutions 0 and uα. Therefore, by the comparison principle, if p(0, ·) ≥ vα, then for all t > 0,
p(t, ·) ≥ vα.

Then, the proof follows from the “sharp threshold phenomenon” for bistable equations, as exposed
for example in [DM10, Theorem 1.3], which we recall below:

Theorem 2. [DM10, Theorem 1.3] Let φλ, λ > 0 be a family of L∞(R) nonnegative, compactly supported
initial data such that
(i) λ 7→ φλ is continuous from R

+ to L1(R);
(ii) if 0 < λ1 < λ2 then φλ1 ≤ φλ2 and φλ1 6= φλ2 ;
(iii) limλ→0 φλ(x) = 0 a.e. in R.

Let pλ be the solution to (1) with initial data pλ(0, ·) = φλ. Then, one of the following alternative
holds:
(a) limt→∞ pλ(t, x) = 0 uniformly in R for every λ > 0;
(b) there exists λ∗ ≥ 0 and x0 ∈ R such that

lim
t→∞

pλ(t, x) =





0 uniformly in R (0 ≤ λ < λ∗),
uθc(x− x0) uniformly in R (λ = λ∗),
1 locally uniformly in R (λ > λ∗).

In our case, we define φλ(x) = vα(
x
λ) for λ > 0. We have φ1 = vα. Since vα is a sub-solution to (1),

the solution to this equation with initial data φ1 stays above vα for all positive time. From the alternative
in the above Theorem, we deduce that the solution to (1) with initial data vα converges to 1 as time goes
to +∞ locally uniformly on R. (Indeed, the ground state uθc is bounded from above by θc < α.) By
the comparison principle, we conclude that if p(0, ·) ≥ vα, then limt→+∞ p(t, ·) = 1 locally uniformly as
t → +∞.
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3.2 Comparison of the energy and critical bubble methods

Our construction of a critical α-bubble, inspired by [BT11], holds in dimension 1. In this context we may
compare the “minimal invasion radius” at level α for initial data, given by the two sufficient conditions:
being above an α-bubble (which is the maximum of two stationary solutions), or being above an initial
condition with negative energy.
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Figure 3: Comparison of minimal invasion radii Rα (obtained by energy) in dashed line and Lα (obtained
by critical bubbles) in solid line, varying with the maximal infection frequency level α. The scale is such
that σ = 1.

We first compute the energy of the critical α-bubble vα of Definition 1,

E[vα] =

∫

R

(σ
2
|v′α|2 − F (vα)

)
dx.

From Equation (20), we have

E[vα] =

∫ Lα

−Lα

(
σ|v′α|2 − F (α)

)
dx = 2

∫ Lα

0
σ|v′α|2 dx− 2LαF (α).

Performing the change of variable v = vα(x) we have

∫ Lα

0
|v′α|2dx =

∫ α

0
v′α(v

−1
α (v)) dv =

1√
σ

∫ α

0

√
2(F (α) − F (v))dv,
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where we use Equation (21) for the last equality. Finally, using the expression of Lα in (7) we arrive at

E[vα] = 2
√
σ

∫ α

0

F (α)− 2F (v)√
2(F (α) − F (v))

dv.

To emphasize the difference between the two sufficient conditions, we observe that when α → θc, since
F (θc) = 0, we obtain

E[vθc ] = 2
√
σ

∫ θc

0

√
−2F (v) dv.

Lemma 1. The α-bubbles vα have positive energy if α is close to θc.

Proof. This follows from continuity of α 7→ E[vα].

Remark 5. In particular, the energy estimate alone does not imply invasiveness of the α-bubbles, which
justifies the interest of our particular approach in one dimension. We do not claim that the “energy” or
the “bubble” method is better, but we highlight the fact that they do not perfectly overlap.

Figure 3 gives a numerical illustration of the fact that α-bubbles give smaller radii at level α, except
for α ∼ 1, and at any rate provide a smaller minimal radius for invasion when the same parameters as in
Figure 1 are used.

4 Specific study of a relevant set of release profiles

In this section we discuss a specific release protocol, with a total of N mosquitoes divided equally into k
locations, in a space of dimension 1. It yields a release profile in the set RP d

k (N) we defined in (9).

4.1 Analytical study of the case of a single release

In the case of a single release (k = 1), we can easily describe the relationship between the mosquito
diffusivity σ and the total number of mosquitoes to release. Morally, as long as the mosquitoes diffuse
they could theoretically invade (in dimension 1) by a single release, by introducing a sufficiently large
amount of mosquitoes. This is the object of the next proposition:

Proposition 5. Let pσ(τ) :=
NGσ(τ)

NGσ(τ)+N0
be the proportion of released mosquitoes right after introduction

(at t = 0+), where Gσ(τ) := Gσ,1(τ) =
1√
2πσ

e−τ2/2σ.

(i) If N ∈ (0,+∞) is fixed, then there exists a range of values for the diffusivity S(N) = (0, σ+(N)]
such that σ ∈ S(N) if, and only if, there exists α ∈ (θc, 1] such that pσ(τ) ≥ uα(τ) for all τ ∈ (0, α).
Moreover, S(N) is increasing (with respect to inclusion).

(ii) If there exists σ+ such that σ ∈ (0, σ+] then there exists Nm(σ+) ∈ R+ such that if N ≥ Nm(σ+)
then there exists α ∈ (θc, 1] such that pσ(τ) ≥ uα(τ) for τ ∈ [0, α].

In both cases, evolution in (1) with initial data pσ yields invasion by the introduced population.

Part (i) of Proposition 5 asserts that if we fix the total number N of mosquitoes to introduce, single
introduction is a failure if diffusivity is too large. Part (ii) is just the converse viewpoint: if we know esti-
mates on the diffusivity (thanks to field experiments like mark-release-recapture for example [VCF+15]),
then we can define a minimal number Nm of mosquitoes to introduce at a single location to succeed.
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Remark 6. If α ∈ (θc, 1) makes NGσ satisfy (NEC) (“be above the α-bubble”), then necessarily (eval-
uating at 0 to take the maximum of Gσ), α ≤ N

N+
√
2πσN0

. In particular, our under-estimation of the

probability is equal to 0 as soon as

N <
√
2πσN0

θc
1− θc

.

Equivalently, the density of mosquitoes at the center of the single release location N√
2πσ

should exceed
θc

1−θc
N0 for our estimate to prove useful. (If θc = 0.8, this is already 4 times the existing mosquito

density. If θc = 2
3 , then it is only 2 times; in the case of Figure 1, θc = 0.36 and then the ratio is only

0.56).

Proof of Proposition 5. Both the introduction profile given by the fraction
NGσ(τ)

NGσ(τ) +N0
and non-

extinction bubbles from Theorem 1 built by (20) ((uα(τ))) are symmetric, radial-decreasing functions.
Instead of comparing them, we compare their reciprocals. We define Tσ,N such that for all p ∈ [0, α],

NGσ

(
Tσ,N (p)

)

NGσ

(
Tσ,N (p)

)
+N0

= p,

and χα such that uα(χα(p)) = p. Respectively, they read





Tσ,N (p) =
√
2σ

√
log

( N

N0

√
2πσ

1− p

p

)
,

χα(p) =

√
σ

2

∫ α

p

dv√
F (α) − F (v)

.

(23)

Lemma 2. The following equivalence holds

∀τ ∈ R+,
Xτ (σ,N)

Xτ (σ,N) +N0
≥ uα(τ) ⇐⇒ ∀ps. t. 0 ≤ p ≤ α, χα(p) ≤ Tσ,N (p).

This, in turn, rewrites as

log
( N

N0

√
2πσ

)
≥

( ∫ α

p

dv

2
√

F (α) − F (v)

)2 − log
(1− p

p

)
,∀p ∈ [0, α]. (24)

This property follows obviously from (23).
From (24), we define

Jα(p) := log(p)− log(1− p) +
( ∫ α

p

dv

2
√

F (α)− F (v)

)2
, (25)

I(σ,N) := log
( N√

2πσN0

)
. (26)

For any given N , the problem we want to solve amounts at finding couples (α, σ) such that

∀p ∈ [0, α], Jα(p) ≤ I(σ,N). (27)

Lemma 3. There exists C > 0 such that for all N,σ, there exists α ∈ (θc, 1] such that Jα ≤ I(σ,N) if,
and only if,

N ≥ CN0

√
2πσ. (28)
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Proof. First, we note that Jα(p) −−−→
p→0

−∞, Jα(α) = log
(

α
1−α

)
and it is continuous. Moreover,

J ′
α(p) =

1

p(1− p)
− 1√

F (α) − F (p)

∫ α

p

dv

2
√

F (α) − F (v)
,

and we may compute limp→α J
′
α(p) =

1
α(1−α) − 1

f(α) .
Then, we simply introduce

jα := max
p∈[0,α]

Jα(p), j∗ := min
α∈(θc,1]

jα,

which are well-defined.
Thus, the following is a necessary and sufficient condition for the existence of α ∈ (θc, 1] such that

(24) holds:
N ≥ N0

√
2πσej

∗
.

We arrived at (28), upon choosing C = ej
∗
.

Finally, Equation (28) gives Proposition 5 (i) with σ+(N) = e−2j∗

2π

(
N
N0

)2
and Proposition 5 (ii) with

Nm = N0
√
2πσ+e

j∗ .

Remark 7. For realistic values of diffusivity and density N0, the expected number of mosquitoes to release
is huge, since we may have N0 ≃ 10−2,

√
2πσ ≃ 72, but j∗ ≃ 38. Here, the model has a clear and crucial

conclusion: it is very hard to invade a wide area with a single, localized release.
Therefore, we must model several releases (whether in time or in space). In the rest of the paper we

are going to discuss the case of multiple releases at same time t = 0.

4.2 Equally spaced releases

Similarly, if we space the k release points regularly in the interval [−Lα, Lα], within a fairly good approx-
imation, we obtain the minimal number of mosquitoes to release as

Ñ(k, α, σ) =
N0

√
2πσ

2

α

1− α
ke

L2
α

2σ(k−1)2 .

This equation can be used in different ways, just like the above formula (28). If we fix σ then we may try
to find an optimal k (both optimization problems in α and in k must be solved together in this case). Or
fixing N , or N/k (number of mosquitoes per release), we can do the same and find the optimal number
of releases k.

It is straightforward, keeping in mind that Lα is proportional to
√
σ, that the optimal α here merely

depends on k, not on σ. We may introduce

j∗(k) := min
α∈(θc,1)

α

1− α
eL

2
α/(2σ(k−1)2).

Then, we find the minimal (in view of our sufficient criterion) value Ñ∗ for Ñ :

Lemma 4. For k equally spaced releases on the line, there exists an invading release profile with L1 norm:

Ñ∗(k, σ) = N0

√
2πσ

k

2
j∗(k). (29)

Then, it becomes an easy numerical task to find the best possible value for k.
However, we want to take into account the uncertainties and variability in the release protocol and

population fixation. Namely, the release points might not be exactly equally spaced, so that introducing
Ñ∗ mosquitoes would only give some probability of success. This is what we want to quantify now and
shall be addressed in Section 4.3.
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4.3 Multiple releases: towards a geometric problem

When we sum several Gaussians, the profile is neither symmetric (in general), nor monotone. Therefore
the previous analytical argument does not apply. However, at the cost of fixing σ we are left with a simple
geometric problem.

First step: fixing σ and bounding by level rather than profile. We assume first that there is
no uncertainty on σ, which is taken equal to σ0 (ǫ = 0 in (9)). As a further simplification, we shall not
compare the introduction frequency profile to some α-bubble (because it is too hard), but rather to the
very simple upper bound of an α-bubble: the characteristic function τ 7→ α1−Lα≤τ≤Lα .

Moreover, we assume that our k release locations (xi)1≤i≤k are within the compact set [−L,L], for
some L > 0. As above, we write

Gσ(y) :=
1√
2πσ

e−y2/2σ ,

and

G =
N

k

k∑

i=1

Gσ(· − xi).

We define

P (σ,
N

k
, (xi)1≤i≤k, L0, α) := min

[−Lα+L0,Lα+L0]
G (30)

Then, the probability of success for the release of N mosquitoes in a total of k different sites in
[−L,L]k, when they all spread according to σ diffusivity, and the initial population density was N0, is
given by:

Pk(N,L) = P

[
∃L0 ∈ R, ∃α ∈ (θc, 1), P (σ,

N

k
, (xi)1≤i≤k, L0, α) ≥

α

1− α
N0

]
. (31)

Here, the probability P is taken over all the real k-uples (xl)1≤l≤k such that −L < x1 ≤ · · · ≤ xk < L,
and [−L,L]k is equipped with the uniform measure.

Second step: transformation into a geometric problem. In order to get a more tractable bound,
we make use of the following property:

Proposition 6. Let (xi)1≤i≤k ∈ [−L,L]k with x1 ≤ · · · ≤ xk. Let G = N
k

∑k
i=1 Gσ(· − xi).

If there is α ∈ (θc, 1) such that
N

k

1√
2πσ

≥ α

1− α
N0

and 1 ≤ l < m ≤ k such that

(i) ∀l ≤ j ≤ m− 1, xj+1 − xj ≤ 2
√

2 log(2)
√
σ,

(ii) xm − xl ≥ 2Lα,

then
G

G +N0
≥ vα

(
· −xm + xl

2

)
.

We notice that the constant 2
√

2 log(2) ≃ 2.35 is optimal with this property: if two translated
Gaussians centered at x0, x1 are at a distance x1 − x0 = λ

√
σ, with λ > 2

√
2 log(2), then their sum is

smaller at x0+x1
2 than at x0.
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Figure 4: Two Gσ profiles and their sum (in thick line). The level Gσ(0) is the dashed line. On the left,
h =

√
2 log(2)σ. On the right, h >

√
2 log(2)σ.

Proof. This property relies on the simple computation that the sum of two Gσs, centered at −h and h
(h > 0), is greater than Gσ(0) on [−h, h] as soon as h ≤

√
2 log(2)

√
σ. Figure 4 illustrates this property.

Indeed, considering the sum of two Gaussian Gσ,

ξ(x) =
1√
2πσ

(
e−

(x+h)2

2σ + e−
(x−h)2

2σ

)
= 2e−

h2

2σ Gσ(x) cosh(
xh

σ
).

Then, recalling that σG′
σ(z) = −zGσ(z), we compute

1

2
e

h2

2σ σξ′(x) = −xGσ(x) cosh(
xh

σ
) + hGσ(x) sinh(

xh

σ
)

1

2
e

h2

2σ σ2ξ′′(x) = (h2 + x2 − 1

σ
)Gσ(x) cosh(

xh

σ
)− 2hxGσ(x) sinh(

xh

σ
).

As a consequence, the sign of ξ′′(x) is that of

γ(x) := h2 + x2 − 2hx tanh(
xh

σ
)− 1

σ
.

We notice that γ(0) = h2 − 1
σ . Hence, ξ has a local maximum (resp. a local minimum) at x = 0 if

h <
√
σ (resp. h >

√
σ). Since ξ(0) = 2e−

h2

2σ Gσ(0), the maximal h > 0 that ensures ξ(0) ≥ Gσ(0) is
h = h0 :=

√
2 log(2)σ.

Now, we examine the necessary condition ξ′(x) = 0 for a local extremum on (−h, h). It implies

x = h tanh(
xh

σ
).

This is true for x = 0 (and we have seen the condition on h − √
σ to have a local extremum indeed).

Then, there is a solution x+ > 0 if, and only if, h2

σ > 1, i.e. h >
√
σ. In this case, x+ is unique (and

x− := −x+ is a solution as well).
So, for h = h0 >

√
σ, we know that ξ has a local minimum at x = 0, is smooth, has at most one

local extremum on (0,+∞), and goes to 0 at +∞. Hence, this local extremum exists and is a maximum.
Therefore (and by symmetry), the minimum of ξ on (−h, h) is attained at x = 0 or x = h. Since h = h0,
ξ(h) > ξ(0) = Gσ(0). We deduce that ξ > Gσ(0) on (−h, h).
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We may use this property to prove Proposition 6. By condition (i) the above lower-bound holds
between xl and xm, and not only between two adjacent locations xj , xj+1. Now, the first condition
implies that Gσ(0) ≥ α

1−αN0. Combining these two facts with xm − xl ≥ 2Lα implies that

G
G +N0

≥ α,

on [xl, xm] which is an interval of length at least [−Lα, Lα]. Precisely, for all x ∈ R,

G(x− xm+xl
2 )

G(x− xm+xl
2 ) +N0

≥ α ≥ vα(x− xm + xl
2

).

As a consequence, we may translate the generic inequality (SP) into:

P 1
k (N, (−L,L)) = Pk(N,L) ≥ P

[
∃α ∈ (θc,

1

1 + N0
N k

√
2πσ

),∃1 ≤ l < m ≤ k,

xm − xl ≥ 2Lα and ∀l ≤ j ≤ m− 1, xj+1 − xj ≤ 2
√

2 log(2)
√
σ
]

(32)

Then, we define
L∗ := min

θc<α≤ 1

1+
N0
N

k
√

2πσ

Lα,

and estimate (32) is equivalent to

Pk(N,L) ≥ P

[
∃1 ≤ l < m ≤ k, xm − xl ≥ 2L∗ and max

l≤j≤m−1
(xj+1 − xj) ≤ 2

√
2 log(2)

√
σ
]
. (33)

The study of the minimization of Lα with respect to α is discussed further in Appendix.

Remark 8. Note that for this estimate, we only consider initial data that are above a characteristic
function at level α on an interval of length 2Lα. This is far from being the optimal way to be above the
α-bubble vα.

Remark 9. It is easy to check that our estimate yields 0 (no information) as long as k is too small,
namely k

√
2 log(2)

√
σ ≤ L∗. A necessary condition for our estimate not to yield 0 may read:

k ≥ 1√
2 log(2)

min
θc<α≤1

∫ α

0

dv√
2
(
F (α) − F (v)

) .

Specific discussion for α = θc. By Proposition 4, uθc decays exponentially. As a consequence, no sum
of Gσs may be above it. This is why this profile cannot be used in our approach (because we consider
that introduction profiles should be Gaussian).

4.4 Analytical computations of the probability of success: recursive formulae

In order to compute analytically the right-hand-side in (33), we may introduce the following notations:

• Tk(u, v) is the set of ordered k-uples between u and v (u < v ∈ R), the measure of which is

τk(u, v) =
(v − u)k+

k!
.
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• Cλ
k (u, v) ⊆ Tk(u, v) is the subset of k-uples such that y1 = u, yk = v and for all l ∈ J1, k − 1K,

yl+1 − yl ≤ λ. Its measure is denoted γλk (u, v).

• Bλ,R∗

k (u, v) ⊆ Tk(u, v) is the subset of k-uples such that ∃1 ≤ l < m ≤ k, ym − yl ≥ R∗ and

maxl≤j≤m−1(yj+1 − yj) ≤ λ. We denote βL,R∗

k (u, v) its measure.

We want to under-estimate the probability of success with k releases in the box [−L,L]. In view of (SP),

it amounts to computing
βλ,R∗

k (−L,L)

τk(−L,L) . In fact, we get a general recursive formula for β in the following
proposition.

Proposition 7. Let k0 := VR∗

λ W + 1. Then,

βλ,R∗

k (−L,χ) =

k∑

i=k0

k−i+1∑

j=1

∫ χ−R∗

−L

∫ min(χ,u+(k−1)λ)

u+R∗
γλi (u, v)

(
τj−1

(
− L, u− λ

)
− βλ,R∗

j−1

(
− L, u− λ

))
τk−(i+j−1)

(
v + λ, χ

)
dvdu. (34)

Proof. The idea is simple: we count each “positive initial data”, that is an ordered k-uple (yi)i such that
a subfamily satisfies ym−yl ≥ R∗ and yi+1−yi ≤ λ in between l and m, according to its leftmost “positive
sub-family”, which is then taken of maximal length.

We shall use the index i to denote the length of this maximal family (between k0 and k), and j its
first rank (1 ≤ j ≤ k − i+ 1). Then,

βλ,R∗

k (−L,χ) =

∫

[−L,χ]k
1{y1≤y2≤···≤yk}1{(y1,...,yk)∈Bλ,R∗

k (−L,χ)}dy1 . . . dyk. (35)

Now, we split:

1{(y1,...,yk)∈Bλ,R∗

k (−L,χ)} =
k∑

i=k0

k−i+1∑

j=1

1{yi+j−1−yj≥R∗}

j+i−2∏

l=j

1{yl+1−yl≤λ}

1{(y1,...,yj−1)6∈Bλ,R∗
j−1 (−L,χ)}1{yj−yj−1>λ}1{yi+j−yi+j−1>λ}. (36)

This identity requires some explanations. It comes directly from the partition of B using maximal leftmost
positive sub-family, as described above. Then, the term 1{(y1,...,yj−1)6∈Bλ,R∗

j−1 (−L,χ)} simply comes from the

definition of B. Since we consider the leftmost positive subfamily, no family on its left should be positive.
Moreover no element on its left can be added, which justifies the 1{yj−yj−1>λ}. Then, we have in addition
that for j > 1 and yj ≤ χ,

1{(y1,...,yj−1)6∈Bλ,R∗
j−1 (−L,χ)}1{yj−1≤yj}1{yj−yj−1>λ} = 1{(y1,...,yj−1)6∈Bλ,R∗

j−1 (−L,yj−λ)},

with the obvious convention that B(u, v) = ∅ if v < u.
In addition, for i+ j − 1 < k

∫

[−L,χ]k−(i+j−1)

1{yi+j−1≤···≤yk}1{yi+j−yi+j−1>λ}dyi+j . . . dyk

= τk−(i+j−1)(yi+j−1 + λ, χ)

=

(
χ− yi+j−1 − λ

)k−(i+j−1)

+(
k − (i+ j − 1)

)
!

.
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Combining these results, and using (36) in (35) yields

βλ,R∗

k (−L,χ) =
k∑

i=k0

k−i+1∑

j=1

∫ χ

−L
. . .

∫ χ

xi+j−2

1{yj+i−1−yj≥R∗}

j+i−2∏

l=j

1{0≤yl+1−yl≤λ}
(
τj−1

(
− L, yj − λ

)
−

βλ,R∗

j−1

(
− L, yj − λ

))
τk−(i+j−1)

(
yi+j−1 + λ, χ

)
dyj . . . dyi+j−1, (37)

with conventions τ0 = 1 and β0 = 0, regardless of their arguments.
We assume χ ≥ −L + R∗ (otherwise βλ,R∗

k (−L,χ) = 0). Using the notation γ we introduced, Equa-
tion (37) simplifies again into:

βλ,R∗

k (−L,χ) =
k∑

i=k0

k−i+1∑

j=1

∫ χ−R∗

−L

∫ min(χ,u+(k−1)λ)

u+R∗
γλi (u, v)

(
τj−1

(
− L, u− λ

)
− βλ,R∗

j−1

(
− L, u− λ

))
τk−(i+j−1)

(
v + λ, χ

)
dvdu,

where u stands for yj and v for yi+j−1. This is our recursive formula (34).

Now, we may give an explicit formula γλi (u, v). We should notice that by definition,

γλi+2(u, v) =

∫ u+λ

u

∫ u1+λ

u1

. . .

∫ ui−1+λ

ui−1

1v≥ui≥v−λdui . . . du1,

that is

γλi+2(u, v) =

∫ u+λ

u
γλi+1(u1, v)du1. (38)

Hence, we deduce the recursive formula,

Lemma 5. For all i, λ, u, v as above,

γλi+2(u, v) = λi +
i+1∑

k=1

(−1)k

i!

(( i

k − 1

)(
v − u− kλ)i+ + (−1)i+1

(
i− 1

k − 1

)(
kλ− (v − u)

)i
+

)
. (39)

Proof. Obviously, γλ2 (u, v) = 1v≥u≥v−λ and we deduce from (38)

γλ3 (u, v) = λ+
(
v − u− 2λ

)
+
−

(
λ− (v − u)

)
+
−

(
v − u− λ

)
+

Then, using (38) again proves (39) by induction.

Remark 10. For k < 2k0, formula (34) simplifies a lot for it is no longer recursive. It enables us to

compute βλ,R∗

k0
(−L,L).

βλ,R∗

k0
(−L,L) =

∫ L−R∗

−L

∫ min(L,u+(k0−1)λ)

u+R∗
γλk0(u, v)dvdu. (40)

Then by (39) we know γλk0(u, v). With the change of variables w = v + u, when L > −L + (k0 − 1)λ,
equation (40) becomes

βλ,R∗

k0
(−L,L) =

∫ L−(k0−1)λ

−L

∫ (k0−1)λ

R∗

(
λk0−2+

k0−1∑

k=1

(−1)k

(k0 − 2)!

((k0 − 2

k − 1

)
(w − kλ)k0−2

+ + (−1)k0−1

(
k0 − 3

k − 1

)
(kλ− w)k0−2

+

))
dwdu

+

∫ L−R∗

L−(k0−1)λ

∫ L−u

R∗
γλk0(u, u+ w)dwdu. (41)
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Clearly, the first integral in the right-hand side of (41) may be written as
(
2L− (k0 − 1)λ

)
f1(λ,R

∗),

where f1 does not depend on L. With the change of variables z = L−u, the second term in the right-hand
side of (41) becomes

f2(λ,R
∗) :=

∫ (k0−1)λ

R∗

∫ z

R∗

(
λk0−2 +

k0−1∑

k=1

(−1)k

(k0 − 2)!

((k0 − 1

k − 1

)
(w − kλ)k0−2

+

+ (−1)k0−1

(
k0 − 3

k − 1

)
(kλ− w)k0−2

+

))
dwdz.

In particular, it appears that it does not depend on L. (Recall that by definition, k0 = VR∗

λ W + 1).
For χ ∈ (−L+R∗,−L+ (k0 − 1)λ), we can compute similarly

βλ,R∗

k0
(−L,χ) =

∫ χ−(−L)

R∗

∫ z

R∗
γλk0(0, w)dwdz,

and notice that our expressions are consistent since

βλ,R∗

k0
(−L,−L+ (k0 − 1)λ) =

∫ −L+(k0−1)λ−(−L)

R∗

∫ z

R∗
γλk0(0, w)dwdz = f2(λ,R

∗).

All in all, βk0 is expressed as follows:

βλ,R∗

k0
(−L,χ) =





0 if χ+ L ≤ R∗

∫ χ−(−L)

R∗

∫ z

R∗
γλk0(0, w)dwdz if χ+ L ∈ (R∗, (k0 − 1)λ),

(
χ+ L− (k0 − 1)λ)

)
f1 + f2 if χ+ L > (k0 − 1)λ

(42)

(This is an affine function for χ+ L > (k0 − 1)λ, with pent f1(λ,R
∗)).

Then, we obtain a bound on the probability of success with k0 (the minimal number of) releases after
dividing by τk0(−L,L) :

Pk0(L) ≥
βλ,R∗

k0

τk0
(−L,L) =

k0!

(2L)k0

(
(2L− (k0 − 1)λ)f1(λ,R

∗) + f2(λ,R
∗)
)
.

In particular, we see that this underestimation of the success probability is increasing and then de-
creasing, and thus reaches a unique maximum at L = L̂.

We find

2L̂ = λ
(
V
R∗

λ
W + 1

)
− k0

k0 − 1

f2(λ,R
∗)

f1(λ,R∗)
.

We may note that introducing the non-negative and non-decreasing function

Γλ,R∗

k (z) :=

∫ z

R∗
γλk (0, w)dw

we get

f1(λ,R
∗) = Γλ,R∗

k0

(
(k0 − 1)λ

)
,

f2(λ,R
∗) =

∫ (k0−1)λ

R∗
Γλ,R∗

k0
(z)dz.

As a consequence, f2 ≤
(
(k0 − 1)λ−R∗)f1 and thus

2L̂ ≥ k0
k0 − 1

R∗.

21



Remark 11. Back to problem (33), we recover the problem of estimating β with the notations of Propo-
sition 7 through a simple change of variables. We divide all positions (x1, . . . , xk) by

√
2σ. Then in the

right-hand side of (33) we replace 2L∗ by

R∗ := min
α

∫ α

0

dv√
F (α)− F (v)

,

and 2
√

2 log(2)σ by λ := 2
√

log(2). This was done in order to simplify computations. Moreover, it shows
that the success probabilities do not depend on diffusivity. In fact, scaling in σ as we did merely amounts
at choosing a space scale such that σ = 1. Even though probabilities themselves do not make σ appear,
one must keep in mind that the corresponding release protocols (including the space between release points
or the size of the release box) are proportional to

√
σ.

5 Numerical results

Now, we present some numerical results we obtained on this set of release profiles. Numerical simulations
confirm the intuition of Proposition 2. Our under-estimation is not very bad. Indeed, as one increases
the number of release points (k) in a fixed perimeter, with a fixed number of mosquitoes per release, then
our under-estimation of the probability of success converges to 1.

Figure 5 shows the probability profile as a function of the size L of the release box, for 20, 40 and
80 release points. (Here, R∗ = 10.981, λ = 1.665 and thus k0 = 8.) The curves are obtained by a
simple Monte-Carlo method. They lead to the appearance an optimal size for the release box (6.3 in this
example), that does not seem to depend on the number of release points between 20 and 80.

However, for small (relatively to k0) numbers of releases, the probabilities are very small. In the case
of 10 release points, the maximal probability we find is about 1.10−5.

Our numerical values are somehow consistent with field experiments (typically, the space between
release points is less than λ

√
2σ, which is about 68m, and the optimal box size is approximately equal to

6.3 ×
√
2σ ≃ 257m).

The factor 2
√

2 log(2) is crucial with this respect. Losing it changes λ from 2
√

log(2) ≃ 1.665 to
1/
√
2 ≃ 0.707 and makes k0 (“the minimal theoretical number of releases to make our under-estimation

of the probability of success positive”) increase from 8 to 17. We show in Figure 6 the probability profile
for 80 releases in this case, to illustrate the loss with this “worse” geometric estimation. It culminates at
around 50% only and is comparable with the green curve (for 40 release points) of Figure 5.

6 Conclusion and Perspectives

We considered spatial aspects of a biological invasion mechanism associated to release programs and their
uncertainty. We validated the framework in the one-dimensional case, and the two-dimensional case is
the natural extension.

Two difficulties must be tackled in higher dimensions. First, the radially-symmetric “α-bubbles” may
still exist, but we no longer have an exact formula like (7) for their support. Second, the geometric
problem underlying our estimation gets harder, but not impossible to manage. To deal with it, we need
an analogue of Proposition 6 in order to get a lower bound for a sum of Gaussians in two dimensions.

An interesting feature of the approach we introduced is that it can be extended to cases when neither
sub-solutions nor geometric properties are available. Heuristically, we need first a criterion to tell us if
a given initial data belongs to a “set of interest”. Second, we need to put a probability measure on the
set of “feasible initial data”. Combining these, we compute the probability that the criterion is satisfied.
This probability gives an insight into the role any given aspect of the release protocol plays.

We used a sufficient condition for invasion, the criterion from Theorem 1. However, we proved that
our under-estimation of probability is rather good: in particular, it converges to 1 when the number k of
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Figure 5: Under-estimation βλ,R∗
(−L,L) of introduction success probability for L ranging from R∗/2 =

5.49 to 3R∗/2 = 16.47. The seven curves correspond to increasing number of release points. (From
bottom to top: 20 to 80 release points).

releases goes to ∞. This fact is the object of Proposition 2, holds true in any dimension, and is supported
by numerical simulations in dimension 1.

We have always considered a homogeneous “context of introduction”, so that the stochasticity would
only affect the release process itself. Another natural continuation of this work, trying to go further into
spatial stochasticity for release protocols, is the use of other stochastic parameters, such as the diffusion
process (here it is given by a deterministic diffusivity σ), or the local carrying capacity. We let this open
for further research.

Some other questions remain open. For instance: in one dimension, we considered releases in [−L,L].
We know that if 2L < L∗ then our condition in the right-hand side of (33) is zero. On the other hand,
this right-hand side goes to 0 as L → +∞. This suggests that there exists a (non-necessarily unique) size
L̂ that maximizes this right-hand side. Back to (40), we obtained in Remark 10 a lower bound for L̂ in
this case:

L̂ ≥ R∗ 1 + VR∗

λ W

VR∗

λ W
. (43)

It is a numerical conjecture that the optimal value of L is close to 1
2(λ+R∗) for any k. For this particular

protocol feature (the optimal size of the release area), our approach already provides an interesting
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Figure 6: Effect of losing the constant 2
√

2 log(2) in Proposition 6: under-estimation βλ,R∗
(−L,L) of

introduction success probability for L ranging from R∗/2 = 5.49 to 3R∗/2 = 16.47, with 80 release points.

indication which - to the best of our knowledge - has not been used in previous release experiments.
As a possible follow-up to this work, one can set up several optimization problems. First, on a purely

theoretical side, how to optimize the threshold functions in Theorem 1 with respect to a cost functional
such as the L1 norm (for the total number of released mosquitoes)? Then, if we fix a cost, how to maximize
the under-estimated probability of success with respect to the size of the release area? Ultimately, how
to optimize a release protocol (playing on the probability law of the release profiles space)?

Appendix: Uniqueness of the minimal radius

In this appendix we investigate sufficient conditions for the uniqueness of a minimal radius among the α
bubbles we constructed in Section 3. More precisely, we establish the number of bubbles of a given radius
(which is typically 2). General results in any dimension on the exact multiplicity of solutions for such
problems (semilinear elliptic Dirichlet problems) have been obtained in [OS98] and [OS99], so in essence
the results below are not new and are even contained in the cited articles.

However we emphasize that our proof, limited to dimension 1, uses very simple arguments and even
provides an equivalent formulation of the problem in terms of a single real function h built from f and
F , see formula (45) below.
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Let f ∈ C2([0, 1],R) be a bistable function in the sense of (3) and F (x) =
∫ x
0 f(y)dy its antiderivative

as introduced in (4).
We make the following assumptions:

f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, (B0)

F (1) > 0, (B1)

∀x ∈ [0, 1],
(
f ′(x) + xf ′′(x)

)
f(x) ≤ x

(
f ′(x)

)2
. (B2)

Under assumption (B1), there exists a unique θc ∈ (θ, 1) such that F (θc) = 0. We introduce

g(x) := xf ′(x)/f(x). (44)

Lemma 6. Under assumption (B0), (B2), g is decreasing on [0, θ) and on (θ, 1]. In addition, g(0) = 1,
g(θ−) = −∞, g(θ+) = +∞ and g(1) = −∞. As a consequence, there exists a unique α1 ∈ (θ, 1) such that

g(α1) = 1.

Proof. straightforward computation.

We add the following assumption:

∀α > max(θc, α1), F (α)
(
f(α) + αf ′(α)

)
≤ α

(
f(α)

)2
. (B3)

Now, we recall the α-bubble radius, as introduced before, for α ∈ (θc, 1]:

Lα =
√
σ

∫ α

0

dv√
2
(
F (α) − F (v)

) .

Proposition 8. Under conditions (B0), (B1), the bistable (in the sense of (3)) function f is such that
Lα reaches its minimum on (θc, 1] (which is well-defined) at points in (θc, 1).

If in addition (B2), (B3) hold, then there exists a unique α0 ∈ (θc, 1) such that

Lα0 = min
α

Lα.

Remark 12. Although assumptions (B0) and (B1) are very general, (B2) and (B3) are debatable. They
yield a simple sufficient condition for uniqueness of minimum (which is the object of Proposition 8), but
are by no means necessary to get it. We expect that they can be refined and improved in order to get
uniqueness for a wider class of bistable functions.

However, typical reaction terms in the setting of Wolbachia easily satisfy these assumptions, and since
they are easy to check on any given reaction term, we are happy with them.

Proof. Without loss of generality we assume
√
σ =

√
2 to get rid of the constant. From (7), we deduce

the equivalent expression:

Lα =

∫ α

0

( 1√
F (α) − F (v)

− 1√
f(α)(α− v)

)
dv +

∫ α

0

dv√
f(α)(α − v)

=
1√
f(α)

( ∫ α

0

( √
f(α)√

F (α)− F (v)
− 1√

α− v

)
dv + 2

√
α
)

Hence
d

dα
Lα =

1√
αf(α)

+
1

2
√

f(α)

∫ α

0

( 1

(α− v)3/2
−

( f(α)

F (α) − F (v)

)3/2)
dv,
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which is a continuous function from (θc, 1) to R. It is easily seen that d
dαLα goes to −∞ as α → θ+c ,

and to +∞ as α → 1− (recalling f(1) = 0). Therefore, we know that Lα reaches its minimum (which is
well-defined) at points strictly in the interior of (θc, 1). This is the first point of Proposition 8.

Then, d
dαLα = 0 if and only if

1√
α
+

1

2

∫ α

0

( 1

(α− v)3/2
−

( f(α)

F (α) − F (v)

)3/2)
dv = 0.

For α ∈ (θc, 1), we introduce

h(α) :=

∫ 1

0

( 1

(1−w)3/2
−

( αf(α)

F (α) − F (αw)

)3/2)
dw. (45)

Then d
dαLα = 0 if and only if h(α) = −2. In addition, h(θc) = −∞ and h(1) = +∞ are well-defined

by continuity.
We compute

h′(α) = −3

2

∫ 1

0

(
αf(α)

)1/2
(
F (α)− F (αw)

)5/2
((

f(α) + αf ′(α)
)(
F (α)− F (αw)

)

− αf(α)
(
f(α)− wf(αw)

))
dw, (46)

and introduce

z(α,w) :=
(
f(α) + αf ′(α)

)(
F (α)− F (αw)

)
− αf(α)

(
f(α)− wf(αw)

)
.

Now, we are going to prove that under conditions (B2), (B3), for all α ∈ (θc, 1], w ∈ [0, 1],

z(α,w) ≤ 0,

with strict inequality almost everywhere. First, we notice that z(α, 1) = 0 and

z(α, 0) = F (α)
(
f(α) + αf ′(α)

)
− αf(α)2.

Then we compute

∂wz = −αf(αw)
(
f(α) + αf ′(α)

)
+ αf(α)f(αw) + α2wf(α)f ′(αw)

= α2wf(α)f ′(αw) − α2f(αw)f ′(α).

Now, denoting g(x) = xf ′(x)/f(x), we get

∂wz = αf(αw)f(α)
(
g(αw) − g(α)

)
. (47)

We are going to make use of the assumptions on f and of equation (47) to prove that z ≤ 0.
Recall that there exists a unique α1 ∈ (θ, 1) such that g(α1) = 1. If α ≤ α1, then for all w ∈ [0, α/θ),

g(αw) ≤ g(α) while for all w ∈ (α/θ, 1], g(αw) ≥ g(α) (these facts are stated in Lemma 6).
Hence w 7→ z(α,w) is increasing on [0, α/θ] and on [α/θ, 1]. Since z(α, 1) = 0, it implies that z ≤ 0.
Now, if α > α1, there exists a unique β(α) ∈ (0, θ) such that g(β(α)) = g(α). In this case, if

w ∈ [0, α/β(α)] ∪ (θ, 1], g(αw) ≥ g(α). If w ∈ (α/β(α), θ), then g(αw) < g(α). Hence, ∂wz ≤ 0 on
[0, β(α)/α] and ∂wz ≥ 0 on [β(α)/α, 1]. It implies that h ≤ 0 if, and only if, z(α, 0) ≤ 0 for all α > α0.
This is assumption (B3).

All in all, we proved that z ≤ 0 for all α,w. Hence h′(α) > 0, and there exists a unique α0 ∈ (θc, 1)
such that h(α0) = −2.

We conclude that Lα is decreasing on (θc, α0) and increasing on (α0, 1]. Hence α0 is the unique
minimum point of Lα.
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