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Abstract: This work proposes a full pipeline for a robot to explore, model and segment an
apartment from a 2-D map. Viewpoints are found offline and then visited by the robot to create
a 3-D model of the environment. This model is segmented in order to find the various rooms
and how they are linked (windows, doors, walls) yielding a topological map. Moreover areas of
interest are also segmented, in this case furniture’s planar surfaces. The method is validated on
a realistic three rooms apartment. Results show that, despite occlusion, autonomous exploration
and modeling covers 95% of the apartment. For the segmentation part, 1 link out of 14 is wrongly
classified while all the existing areas of interest are found.

Keywords: Autonomous, Exploration, Modeling, Segmentation, Service Robotics.

Fig. 1. The ADREAM apartment is used to illustrate the
different algorithms and to perform the experiments
described later. Note that the furniture visible in this
view is slightly different from the real setup.

1. INTRODUCTION

Let us consider a robot designed to help humans at home.
It faces an unknown environment, regularly evolving and
always unpredictable. In order to operate in such an
environment, the robot has to first explore and model
it. This model can be a two dimensional map, e.g. for
navigation, or a three dimensional map, e.g. for full body
motion planning or scene understanding. When a model
of the environment is available, given by the user or
created by the robot, it must be segmented to extract
places and areas of interest. Indeed, typical requests from
the user will be ”fetch OBJECT from PLACE in/on
AREA”, where PLACE and AREA are room and furniture
names. This implies segmenting the environment model
in various parts and associating spacial volumes with
semantic information. On top of that, humans may lack
precision, so a user could just ask "fetch OBJECT from
AREA”, omitting the place. In order to handle the lack of
information, the environment model segmentation has to
provide areas-places links.

The present work focuses on robots using directional sen-
sors in indoor scenarios. The next section shows that in
this case most existing works propose online exploration
and modeling methods. To the best of our knowledge,
there are no offline methods. In section 3, we propose an
offline method to find the best 3-D viewpoints to explore
a site. Then, a segmentation method based on local and
global cues is presented to build a topological map of the
site with the different places and how they interconnect.
Areas of interest are also extracted and associated to the
different places. Finally, section 4 describes an experiment
in a real environment to demonstrate the possibility of
autonomously discovering areas, places and how they are
linked in an initially unknown environment. The results
are discussed and error sources identified. The algorithms
described hereafter are illustrated on the ADREAM apart-
ment (Figure 1).

2. EXISTING WORK

As analysed in Aouina et al. (2014), an environment
can be modeled at various levels: the geometric level,
based on features; the topological level, based on views;
the semantic level, based on objects and places. Though
different, all these problems can be expressed using the
SLAM formalism. In Rusu et al. (2009) the authors show
good localization performances by using a SLAM approach
where landmarks are known fixed objects and triangulated
surfaces dynamically acquired. The authors of Niichter
and Hertzberg (2008) recommend the use of a semantic
map to enable the robot knowledge to be reviewable and
communicable. They use a 3-D laser scanner to acquire a
3-D map through 6-D SLAM. The SLAM considers coarse
features, like walls, and finer features, like objects. The
work of Aouina et al. (2014) shows how to decouple the
construction of a localization model and of a dense 3-



D map. The localization is performed with a 2-D laser
range finder while the 3-D modeling is done with a tilting
laser. In the present work, two problems are tackled: site
exploration and modeling, i.e. automated construction of
a volumetric map, and segmentation of the site model into
meaningful parts, i.e construction of a semantic map. We
provide a quick review of the state of the art for these
problems.

Though this task can appear similar to the modelling of an
unknown object by a mobile sensor, like in Amigoni and
Caglioti (2010), it is different. In this problem the site may
be cluttered by objects preventing the robot from accessing
some viewpoints. This problem is also different from the
art gallery problem (Blaer and Allen (2009)). In the art
gallery problem, guards have infinite view range and field
of view; this is not the case for a robot. It is also different
from a dense reconstruction (Newcombe et al. (2011);
Arbeiter et al. (2012)) as we try to limit the robot motion
by minimizing the number of viewpoints needed. Accord-
ing to Amigoni and Caglioti (2010) exploration strategies
are divided among three types: fixed trajectories, random
movements and observation positions. The first approach
uses precomputed trajectories to explore any kind of site
(Taylor and Kriegman (1993)). Though easy to implement,
these methods do not adapt to the site’s specificities and
can fail for some geometrical configurations. In the random
movements approach of Freda and Oriolo (2005), random
points or trajectories are chosen and the robot explores
them. This kind of approach has already been rather suc-
cessfully applied to vacuum cleaner robots, see Tribelhorn
and Dodds (2007). However, it suffers from the trade off
between number of random draw, i.e. time spent, and
quality of the coverage. Finally, the last type of methods
determine the best viewpoints to visit depending on some
constraints. Because they are adaptive and robust to the
geometry of the site, we focus on these approaches. In Reed
and Allen (2000), the authors start by acquiring manually
a rough estimate of the environment. Then, the model is
completed automatically. This method relies on a geomet-
rical approach with volumes representing visibility, mobil-
ity and occlusion constraints. In Blaer and Allen (2009),
the three dimensional exploration is initialized with the
information of a two dimensional map. A voxel grid is filled
with empty, occupied and unknown cells. Then, a greedy
algorithm is used to select from a set of random viewpoint
the one seeing the maximum number of unknown voxels.
Ray casting is used to test visibility of every unknown
voxel. A similar approach has been demonstrated at LAAS
in Albalate et al. (2002) in the framework of the Euro-
pean project CAMERA. A voxel grid is progressively filled
with voxels being classified as unknown, empty, occupied,
occluded, occplane (occluded but adjacent to an empty
voxel) and border (on the border of the line of sight). The
next best view is selected based on the number of visible
unknown voxels and on an estimation of the number of
occluded, occplane and border voxels discovered. Finally,
in Amigoni and Caglioti (2010), the authors develop a
probabilistic framework based on information theory to
choose the next best view according to given constraints
like travel distance and expected information. In these four
works, the aim is to find the best view, acquire it and
search for the next best view, and so on.

In the context of this work, the robot has already many
critical processes running (motion planning, human per-
ception, actuators control, task planning, etc.) and limited
computational power. Site exploration is not a critical ac-
tivity, so instead of taking processing power, we advocate
in favor of doing this offline, e.g. when the robot is idle.
Thus the process finds all the good viewpoints at once
and they can be explored when the apartment is quiet and
not being modified, for example at night. Such method is
proposed in the first part of section 3.

Once a 3-D map of the environment is available, the robot
should segment it into meaningful parts. This segmenta-
tion depends on various criteria. In Wurm et al. (2008),
the authors propose a segmentation algorithm for multi-
agent exploration. They segment a 2-D map geometrically
with a Voronoi Graph (VG) (Choset and Burdick (2000)).
The graph is then partitioned by separating clusters at
junction nodes which are: local minima, at least of degree
2 (two edges), with at least a neighbor of degree 3 and
that lead from unknown to known areas. The work from
Holz et al. (2010) elaborates on this method by changing
the conditions to choose a critical node. The node must
be: close to a Voronoi site, of degree 2, adjacent to a
junction node or adjacent to a node adjacent to a junction
node (2"¢ degree adjacency). These modifications provide
a better representation of locations such as doorways. In
both cases, the segmentation is based on a geometrical
criterion. A more comprehensive survey on the subject is
available in Bormann et al. (2016)

However, the present work aims at a human representation
of the site. In particular, we want to discover the location
of rooms and how they are connected by doors and
windows. This allows building a graph representation of
the site where rooms are vertices and windows and doors
are represented by edges. The segmentation method is
shown in the second part of Section 3. The resulting
graph with the rooms and their connectivity is of crucial
importance for tasks like object search (see Rogers and
Christensen (2013)) or learning areas-place context.

3. EXPLORATION, MODELLING AND
SEGMENTATION

To deal with an unknown environment, the first step is to
explore it and represent it as a model. In this work, the
entities of interest are rooms and areas, so the second step
is finding the different rooms and areas from the model.
These two steps are described hereafter.

8.1 Exploration and Modelling

The exploration step searches for a set of observation
points from which the environment can be modeled. Then,
the modeling process aggregates the point clouds found
at each observation point and handles occlusions. In the
following, it is assumed that the robot has a 2-D map
of the environment for localization purposes and is able
to localize itself in the world. It also assumed that the
environment is not heavily cluttered so that the robot can
move around and observe most of the room.

For the exploration step, the world is considered flat, so
there is no line of sight occlusion. Starting from the 2-
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Fig. 2. View point selection process. The boundaries of
the 2-D map are extended, horizontally in this case.
Though, a RANSAC scheme could be used to extend
lines with arbitrary orientation. Small and unreach-
able regions are removed. Regions with similar view
points are merged.

D map, a RANSAC scheme is used to find the obstacle
boundary lines and extend them until they intersect with
another obstacle (Figure 2c). The new boundaries define
regions, the center of these regions form a raw set of
observation points. This set is refined by removing regions
too small to be of interest. Some parts of the site may not
be accessible by the robot. Based on the size of the robot
base, a reachability map is created (Figure 2d). The points
out of reach are also excluded. Finally, regions fully visible
from a single observation point are merged (Figure 2e).
Visibility is tested by ray casting. To find the shortest
route along the observation points, the robot solves a
salesman problem with a nearest neighbor approach.

Now, the modeling part assumes the world is 3-D. It
starts from the observation points obtained in the previous
step. The robot goes from point to point and observes
its surroundings. At each point, a ray casting algorithm
classify each voxel as occupied, empty or unknown, if
occluded. After this first observation, if large regions
of voxels remain unknown, they are represented by the
projection of their barycentre on the floor plane. Taking
circles centered on the robot sensor with various radii
allows searching for a point of view from which the
unknown region centre is visible. The robot moves to this
point and explores the unknown region. This is repeated
until there are no more large unknown regions around
the observation point. Then the robot moves on to the
next observation point. The 3-D point clouds acquired
at each observation point are registered based on the
robot localization and fed into a probabilistic voxel map
representation, in this case an Octomap Hornung et al.
(2013).

The resulting model is a voxel map containing occupied
and empty voxels. The voxel map is built with its Z axis
pointing upwards and its X and Y axis in the ground plane.
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(c) Ceiling slice (d) Minimum slice

Fig. 3. The original voxel map (3a). The floor slice (3b)
is removed in further processing to avoid detecting
plans at the floor level. In the ceiling slice (3c), the
walls are clearly visible and the rooms well segmented.
The slice where the number of point is minimum (3d),
shows holes at the door and windows position, plus
there is little traces of furniture.

8.2 Rooms and Areas Segmentation

With a voxel map of the environment, the goal is now to
extract rooms and areas. A room is defined as an empty
space enclosed by walls, while an area is defined as a
horizontal surface, corresponding to the planar parts of
furniture.

To segment both rooms and areas, we take advantage
of the fact that the model is aligned with the vertical
axis. It means that some Z = cst planes, hereafter called
slices, bear a particular signification. There are three slices
of interest. The lower Z slice corresponds to the floor
(Figure 3b). The higher Z slice corresponds to the walls
(Figure 3c). For the third slice we make the assumption
that the windows and doors represent a considerable
amount of empty surfaces with respect to the walls. Then,
the slice with the minimum number of occupied points
corresponds to a slice going through the door and windows
holes and where the other obstacles are as little visible
as possible (Figure 3d). To obtain the minimum slice,
the histogram along Z of the voxel map is computed.
The minimum slice corresponds to the smallest bin of the
histogram. In order to reduce noise, each slice is processed
with a morphological opening step. These three slices are
central to segment rooms and areas.

For rooms segmentation, empty connected regions are
extracted on the walls slice with a flood-fill algorithm, this
yields the different rooms. Note that we define rooms as
empty spaces limited by walls. The contour of each room
is represented as the bounding box of the empty pixels
belonging to the room (Figure 4a). The next step is to
find out how the rooms are linked. This means determining
which rooms are linked by how many windows or doors.
Bridges are created between the rooms by connecting
each point of a room’s bounding box to the closest point



(a) Rooms

(b) Bridges

Fig. 4. The rooms are segmented and their bounding
box extracted (red boxes). The exterior of the map
forms an additional room. Bridges (green strips) link
a room’s bounding box to the closest room bounding
box, without going through an occupied pixel of the
minimum slice. For clarity, only one in five bridges is
drawn.

Occupied

Height Height

(a) Window descriptor (b) Door descriptor

(c) Initial classification (d) Final classification

Fig. 5. Typical descriptors for a bridge going respectively
through a window (5b) and a door (5b). Initial classi-
fication (5¢) with the walls in blue, windows in green
and doors in red. In the final classification (5d), hard
cases are labeled as unknown and colored in purple.

on any other room bounding box. Raycasting between
these pair of points is done with the Bresenham algorithm
and the points along the ray form a bridge. A bridge
is a set of points linking two points from two different
rooms. If a bridge comes across an occupied pixel from
the minimum slice, it is to say if a bridge goes across
a wall, it is classified as a wall. The remaining bridges
connect rooms through doors and windows (Figure 4b).
Note that the world beyond the borders of the map is
considered as an additional room. To classify a bridge as
going through a window or a door, we use the Z column
of each point of the bridge. The columns are combined
with a OR operation to obtain a binary descriptor for
the whole bridge. The descriptors are then fed to a
hierarchical clustering method to categorize each bridge.
The clustering is done by computing the euclidean distance
with respect to the clusters medians. The descriptors have
specific shapes depending on whether they go across a door
(Figure 5b) or a window (Figure 5a). This results in an
initial classification (Figure 5¢).

With all the bridges classified, the adjacent bridges are
grouped into segments. The segments represent whole win-
dows and doors. To categorize a segment, each composing
bridge votes for its category (door or window). This allows
classifying correctly partially filled windows or doors, for
example with a potted plant. If the difference in number of
door and window bridges is lower than 75%, it is classified
as unknown (Figure 5d). Small segments are removed as
they are likely to originate from noise. Finally, in the same
way as for the category, the bridges from a segment vote to
determine the rooms connected by the segment. Knowing
the number of rooms and the segments that join them, a
topological map of the site is created (Figure 6b).

(a) Rooms numbering and
windows/doors labels

(b) Topological map

Fig. 6. Rooms are numbered from left to right, top to
bottom: 2,3,1. Room 4 corresponds to the map’s
exterior.

For area segmentation, the first step is to remove the floor
slice from the voxel map so the floor does not get extracted
as an area. The columns corresponding to occupied pixels
in the walls slice are also removed so the walls are no
longer present. Then, for each part of the voxel map
corresponding to a room, a histogram along Z is computed
and the local maxima of the histogram are extracted
(Figure 7). The slices at these heights are the ones with the
most occupied points, they correspond to the slices where
planar surfaces are present. Slices closer than a certain
threshold, 20cm in this work, are merged as it is likely
only the upper one is visible. For each of these slices, the
connected regions are extracted to retrieve a set of areas
(Figure 8). Using such method to retrieve the areas offers
higher resilience to noise compared with a RANSAC based
plane extraction.
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Fig. 7. Histogram of room 2 with local maxima in red.



Fig. 8. Each red box represents an area. Boxes can be
superimposed meaning that there are areas at various
height levels.

The result of this rooms and areas segmentation stage is a
set of places and a topological map with their connections,
plus corresponding areas for each room. The areas are
represented by bounding boxes with their center and
dimensions.

4. EXPERIMENTAL DETAILS AND RESULTS
4.1 FExperiments

For validation, the methods described above are illustrated
on a three room apartment staged at the LAAS-CNRS
experimental ADREAM building (Figure 3a). The apart-
ment is composed of three rooms furnished with IKEA
furniture and as similar to a real apartment as possible.
The robot is a PR2 running ROS and equipped with a base
2-D laser range finder, a head mounted Kinect. A map
of the apartment is built with the laser range finder by
teleoperating the robot while running the gmapping pack-
age. The localization is done through the AMCL package
which merges the laser SLAM, odometry and map data to
estimate the robot pose. The localization and laser data
allow updating a 2-D collision map. Finally, the navigation
and collision avoidance is done with the PR2 navigation
stack.

For the exploration and modelling, the robot autonomously
computes the observation points and models the site.
When moving, the robot is localised thanks to AMCL,
this allows registering the point clouds from the Kinect
and aggregating them in an Octomap (see Hornung et al.
(2013)).

The segmentation step is done offline and a number of
rooms and interest areas are found. To estimate the
segmentation quality, the number of areas and their height
are compared with the ground truth. Area dimensions are
not accounted for as they are considered small enough
to be handled by an appropriate scanning strategy. The
percent of false positive and false negative are used as error
metric.

4.2 Results

Contrary to the preferred full-teleoperation method when
modeling a site, in this work the robot is only teleoperated
when creating the 2-D localization map. The environ-
ment’s 3-D map is created in a fully autonomous fashion.

The exploration results (Figure 9) show that as few as 5%
of the voxels remain unknown, these represent the parts

Percent of voxels discovered

5 10 15 20 % ) 35
Number of observation points

Fig. 9. The number of unknown voxels goes down as the
number of observation points increase.
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(b) Bedroom

(a) Living room

Fig. 10. Three situations where the segmentation is not
sure about the segment category. Each time a piece
of furniture is blocking the view: the couch (10a), the
bed and the chest of drawers (10b).

of the site where the robot could not go. The resulting
map is noisy for three main reasons. First comes the
intrinsic precision of the Kinect sensor. In this work, the
viewing range is limited to two meters but significant error
is already present at this range. Improving on this, for
example using a laser sensor, would dramatically reduce
the scanning speed of the robot. A second factor is the
robot controllers. The head motion when scanning its
surroundings is jerky due to the motion controllers. Using
soft controllers like in Zhao et al. (2014) could solve this
problem, however to the best of our knowledge, there
is no such package available for the PR2 robot. Third,
the registration process is dependent on the localization
precision which add to the noise. Using visual registrations
methods could help reduce this noise. Though the model
is noisy, it is currently hard to improve on this aspect
without human intervention.

Despite the noise, the topological map created by the
segmentation model (Figure 6b) has a single error, the
window W5 (Figure 6a) is mistaken as a door. This is due
to the fact that a table in front of the window prevents
the model from seeing the wall part under the window.
Moreover, when computing the bridges descriptors, the
table is barely visible, it corresponds to a peak at a specific
height which is not differentiable from noise. In the three
other cases where there is a piece of furniture below a
window (windows W1, W2 and W3), preventing points
from being acquired there during the modeling step, our
method finds the ambiguity and classify the segment as
unknown (Figure 10).

For the interest areas segmentation, the main goal is to
obtain as few false negative as possible, at the cost of
false positives. It is preferable to find useless areas than
to miss interest areas. Results on Figure 8 show that



there are no false negative, i.e. the 38 interest areas in the
apartment are found, though there are 46% false positives.
Roughly half of them are due to noise on partially reflective
surfaces, screens in this case, introducing enough noise
to make them appear like a narrow planar area. These
could be removed with close inspection when the robot
goes through the environment. It is not done here as the
goal of this work is to have a purely offline segmentation.

5. CONCLUSION

Through this work, we have proposed a full pipeline which
would allow a robot to autonomously explore, model and
segment a site in a realistic situation. There are no hypoth-
esis on the rooms except that a bounding box should be a
good approximation of the rooms and areas shapes. More
importantly, exploration and segmentation do not require
rooms to be aligned or in any particular arrangement. The
results showed that despite a noise inherent to modeling
with a robot using a low cost sensor, the segmentation and
classification stages can be performed correctly, yielding a
topological map of the site. Future works involve adding
online corrections to the process, so places and areas ex-
tracted during the offline segmentation are refined online.
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