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ABSTRACT:

To improve the management of maintenance planning and spare parts ordering of a fleet of

components, different investments plans need to be compared. A new investments plan is compared with a
reference one through an economic variable called the Net Present Value (NPV). Classically, Monte Carlo
simulations are used to assess economic indicators such as the expected NPV and the probability for the NPV
to be negative which stands for the probability to regret the performed investments plan. In this document, we
propose to use quasi Monte Carlo methods as an alternative to the Monte Carlo (MC) method, which replace
the random uniform numbers of the MC method by deterministic sequences with better uniformity properties.

1 INTRODUCTION

In order to optimize the maintenance cost of a fleet
of components, several investments plans are usually
investigated. In our context, a fleet of identical com-
ponents is considered. These components are expen-
sive and their unavailability is also costly. Moreover,
the manufacturing time of the components is long and
consequently, the ordering process must be rigorous.
One goal of asset management is to help deciding
whether a new preventive maintenance strategy is bet-
ter than another one. With that aim, the new invest-
ments plan is compared with a reference one, usually
the one without planned investment, through an eco-
nomic indicator called the Net Present Value (NPV).
The NPV stands for the difference between the cumu-
lated discounted cash-flows of both current and new
investments plans. As failure dates of components are
random, the NPV is also random. A first indicator for
the assessment of an investment plan is the expected
NPV. However, this quantity does not catch neither
the NPV variability nor the probability for the NPV
to be negative, which is a valuable quantity for deci-
sion making because it is the probability to regret the
new investments plan. Figure 1 shows two probability
distribution functions of the NPV (NPV 1 and NPV
2). In this figure, the expected NPV for strategy 2 is
higher than for strategy 1, but strategy 2 has the high-
est probability for the NPV to be negative. According

to the risk aversion of the decision maker, strategy 2
is not necessarily better than strategy 1. The NPV is
hence an important variable to choose a relevant in-
vestments plan and its numerical assessment needs to
be accurate. Of course, others indicators can be used
to compare maintenance strategies. For example, the
expected maintenance cost which is the most com-
mon economic indicator. Nevertheless, we will focus
on the NPV which is used in the context of our study.

In order to model the random behaviour of the fleet
of components, a Piecewise Deterministic Markov
Process (PDMP) is used. PDMPs have been intro-
duced by Davis (1984). Several methods have been
used for the numerical assessment of a PDMP. Clas-
sically, Monte Carlo (MC) simulations are used to as-
sess quantities of interest for a PDMP (Zhang et al.
(2009)). The main drawback of MC method is its
slow convergence. Thus, MC simulations require a
long computational time to obtain accurate results.
This may be prohibitive within an optimization algo-
rithm. It is also possible to assess quantities of interest
for a PDMP by finite volume methods (Eymard et al.
(2008)) and quantization method (Brandejsky et al.
(2012)).

In this article, quasi Monte Carlo (QMC) meth-
ods are proposed for the numerical assessment of the
NPV. They are well-known for often having a faster
convergence than MC method. These methods sub-



stitute random uniform variables on [0,1]%,d > 1 by
deterministic sequences which have better uniformity
properties. The uniformity of a sequence is measured
by the so-called discrepancy (Lemieux (2009)). Se-
quences which have such good properties of unifor-
mity are called Low Discrepancy Sequences (LDS).
There are two families of LDS (Lemieux (2009)): lat-
tices and digital nets/sequences. Two different QMC
methods are proposed for the assessment of the NPV.
The first QMC method consists in estimating the
quantities of interest (expected NPV, probability for
the NPV to be negative...) as an integral of a func-
tion. The dimension of LDS is then linked to the num-
ber of events occurring during the lifetime of the fleet.
The second QMC method simulates several copies of
a Markov chain in parallel and reorders copies at each
step in ascending order. The sorting step allows to in-
troduce a dependence between them and to provide
a better estimation of the distribution of the Markov
chain (Lécot and Tuffin (2004), Haddad et al. (2010)).
In L’Ecuyer et al. (2008), the authors introduce the
term "Array” to illustrate the parallel simulation of
Markov chains and we follow this terminology in this
paper. Randomized versions of the QMC methods are
also used and consist in replacing the deterministic
LDS of the QMC methods by randomized versions.
An other randomized quasi Monte Carlo, called array
randomized quasi Monte Carlo (ARQMC) method,
is also presented (more details in L’Ecuyer et al.
(2008)). As the LDS have better uniformity than ran-
dom sequences, the QMC methods are theoretically
more effective than the MC method. Thus, within an
optimization algorithm, they will provide accurate re-
sults with a shorter computational time than the MC
method. The aim of this paper is to apply and test the
efficiency of the QMC method for the numerical as-
sessment of maintenance strategies.

The structure of the article is as follows: Section
2 introduces both corrective and preventive mainte-
nance strategies, and the NPV. Section 3 presents the
constitutive variables of the PDMP which models the
evolution of the fleet of components under mainte-
nance strategies. Different methods for the numerical
assessment of the NPV (MC, QMC and randomized
QMC methods) are presented in Section 4. Numeri-
cal results are provided in Section 5 and a conclusion
ends the paper in Section 6.

2 PRESENTATION OF THE PROBLEM

A fleet of n identical and independent components
is considered, which share a common stock of spare
parts. These components are subject to both corrective
and preventive replacements (CR and PR). At initial
time, the stock is assumed to contain one single spare
part and the supply time is deterministic, denoted by
7. Moreover, the components of the fleet are assumed
to be new at time ¢ = 0. The corrective and preven-
tive maintenance strategies are compared through the
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Figure 1: Comparison of probability distribution function (p.d.f)
of two NPVs

NPV on a fixed operation horizon term denoted by
H. As all components are new at the initial time, they
have the same operating time H.

2.1 The corrective replacement policy

The corrective maintenance (CM) strategy consists in
replacing a failed component by a new one if a spare
part is available. If the stock is empty at a failure time,
the failed component becomes unavailable and it re-
mains down until a spare becomes available. The or-
dering process of a new spare part is as follows:

e On [0, H — 7|, anew spare part is ordered at each
failure of a component.

e On [H — 7, H], no order is made. Indeed, the
spare part would be delivered after the operation
horizon term.

2.2 The preventive replacement policy

Let ¢ be a fixed deterministic time such that
( < H — 7. The preventive maintenance (PM)
strategy consists in preventively replacing at time (
all components which did not fail before. The PM
strategy is an exceptional maintenance. It involves
significant investments and takes place only once
on the operation term. With that aim, spare parts
are ordered at time ( — 7. The stock of spare parts
is common to CR and PR. A CR has a priority on
a preventive one. If CR are pending at time of the
PM then, they are first carried out. After all pending
CR have been performed at ¢, PM actions take place
if remaining spare parts are still available. When
only a part of components awaiting for PR can be
replaced (by lack of spare parts), the components
to be replaced are randomly selected among all the
equally likely components awaiting for PR. In this
case, the PR of the remaining components is deferred
until a new spare part becomes available.

The ordering process of a new spare part is the fol-
lowing:



e On [0,( — 7[, a new spare part is ordered at each
failure of a component.

e Attime ( — 7, if there are components that have
never failed, then spare parts are ordered in readi-
ness for their PR at time (.

e On |( — 7,(], a spare part is still ordered at fail-
ure of a component C (say) but only in the case
where component C has already suffered a fail-
ure before. Indeed, in the opposite case, the PR
of component C has been planned at time ¢ and
a spare part has already been ordered for its re-
placement. This spare part will be used for the
CR of component C at (.

e Attime (, spare parts arrive, which are used first
for CR and next for PR. Note that some of these
replacements may be deferred by lack of enough
available spare parts.

e On|(, H — 7|, a spare part is ordered at failure of
a component C which has already been replaced
(CR or PR). Indeed, in the other case, the PR of
component C has been deferred at time ¢ and an
order is already in progress for its replacement.

e On [H — 7, H], no order is made.

The final goal is to optimize the time ( where the
components will be replaced. The optimal time will
be the one which maximizes the expected NPV under
the constraint that the probability to regret the invest-
ments is lower than a fixed threshold.

2.3  Costs data

The cost function associated to an investments plan
takes into account costs due to CR or PR, purchase
of spare parts and components unavailability. Dis-
counted costs are considered. The discount rate is de-
fined in John et al. (2009) as “’the interest rate at which
future receipts or payment are discounted to find their
present value.” In this paper, an exponential discount-
ing is considered. Thus, if C' is a cost at time ¢, then
the discounted cost is C' x e~ at time 0 with o the
discount rate. The costs of CR and PR actions are re-
spectively denoted ¢, and c,. They are cashed at the
replacement time. These costs do not include the cost
of spare parts orders. The price of one spare part is
denoted by c4. It is cashed at delivery in case of a
planned replacement at time (. In the opposite case
(any other time), it is cashed at time of order. The
downtime cost of one component is denoted C;,,4 and
it is cashed at the end of the period of unavailability.

2.4 The Net Present Value

In John et al. (2009), the Net Present Value (NPV)
is ’the present value of a security or an investment
project, found by discounting all present and future

receipts and outgoings at an appropriate rate of dis-
count. If the NPV calculated is positive, it is worth-
while investing in a project”. Then, a positive NPV
reflects the fact that the cash inflows deriving from
an investment is greater than the cost of investment.
The NPV can hence be seen as a relevant indicator for
knowing whether an investment should be profitable
or not.

As mentioned previously, the NPV stands for the
difference between the cumulated discounted cash-
flows of both strategies (CM and PM). The NPV is
zero as long as the two strategies coincide. The time 7'
when the two strategies first differ depends on the sce-
nario: if all components have already suffered a fail-
ure before ( — 7, then no PR is planned at time (, and
T is equal to H (N PV = 0). On the contrary, if there
is at least one component which has not suffered any
failure up to time ¢ — 7, then a spare part is ordered
in view of its PR at time (, and this makes the two
strategies differ from time 7" = ( — 7. Note that, even
in that case, the two strategies coincide on [0,{ — 7]
and the NPV is the difference of costs on [( — 7, H].
After time ¢ — 7, the two maintenance strategies are
assumed to evolve independently. However, they are
correlated through their common history up to  — 7.
Hence, the NPV is the difference of two dependent
costs.

Assessing the NPV requires the joint modelling of
the evolution of the components lifetimes, of the size
of the stock, of the arrival times of the spare parts
and of the cost functions under both maintenance
strategies. This includes both discrete and continuous
random parts. Piecewise Deterministic Markov Pro-
cesses (PDMPs) are consequently well adapted.

3  MODELLING THROUGH PDMPS

3.1 Description of parts of PDMP

From a general point of view, Piecewise Determin-
istic Markov Processes have been introduced by
Davis (Davis (1984)). A PDMP is a hybrid process
(It, Xt),>- The first part I, is discrete, with values
in a discrete state space F. The second part X; rep-
resents a continuous variable which takes range in a
Borel subset B C R¢.

In our context, the following variables are the con-
stitutive parts of our PDMP:

o X; = (Xyy,...,X,) where the signification of
X ¢ differs according to whether the correspond-
ing component is up or down. If it is up, X is
the predicted time for its future failure (X;; > 7).
If it is down, X ; is its last time of failure (X;; <

£).

o [, = (I4,...,1,;) is failure indicators: for 1 <
J < n, if the component corresponding to X,
has never failed before ¢ then [;; = 1, else [;; =

0. Thus at time ¢, K; = >, I;, represents the



number of components that have never been re-
placed on [0, t].

e S, represents the number of available spare parts
at time ?.

e D, = (Dyy4,...,D,,,) represent the predicted
times for spare parts arrivals.

e [, is the number of components at time ¢ await-
ing for a deferred PR.

e (U, is the cumulated discounted cost at time ¢.
The process (Zt) >0 (Yi, 1) >0
((Xt7jt) 7St7Dt7Lt7Ct7t)t20 is a PDMP whose
discrete part is ([;,S;, L;) and continuous part is
(Xy, Dy, Cyyt). The part (X, D;,Cy) is constant
between two jumps of the process (7). As a
consequence, if (7}) p>o represents the jump times of
(Zt) 50> We have:

Y, =Y forT, <t <Tj4. (1)
We also set (Zy),>o = (Y, Tk ) ;>0 to stand for the
underlying Markov chain of the PDMP (Z;),.

We add a superscript (i) to all the previous nota-
tions and, CM and PM strategies are modelled with

(th(l)) and (Zt(2)> , respectively.
>0 >0
We do not provide here the details of the transitions
of (Zf“) ,i ={1,2}, due to the reduced size of the
>
paper. =0

3.2 The Net Present Value

The NPV stands for the difference between the cumu-
lated discounted costs of both CM and PM strategies.
The NPV is defined as follows:

NPV (H)= NPV (|0, H])
:NPV([O7<_7—D+NPV(K_7—7H]>

= NPV ([¢ -7, H]) 1{K4,7>0}

= (CV ([~ 7. H]) = C*N([¢ =7 HD) 1~}
(2)

where CW ([¢ —7,H]) and C® ([¢ — 7, H]) are
dependent through the state of components and stock
attime (¢ — 7).

The quantities of interest are E[NPV (H)],
P(NPV (H) <u) whereu € R. These quan-
tities depend on all events which occur during
[0, H] on both strategies. They can be written as

Elo((z0.22) h
{ ( MR sk <N 0ska <N e

N I(fl ) (resp. N 1({214 ) stands for the number of jumps
of ZW (resp. Z®) on [0, H] (resp. [( — 7, H)).

4 NUMERICAL ASSESSMENT OF THE NET
PRESENT VALUE

4.1 Monte Carlo method

Sample paths of each Markov chain (Z,i”) 0=
k>0

{1,2}, are sequentially simulated and a sample of
NPV (H) is derived using Equation (2). Next, the
expected NPV (H) and the cumulated distribution
function (c.d.f.) of NPV (H) are estimated by em-
pirical mean and empirical c.d.f., respectively.

Confidence intervals for these estimations are given
by the central limit theorem. Quasi Monte Carlo
methods are now introduced.

4.2  Quasi Monte Carlo method

As told in the introduction, the QMC method esti-
mates the quantities of interest for the NPV as an inte-
gral of a function. In Subsection 3.2, we have seen that
all quantities of interest can be written as a function of

Ny = }} '+ N }(qz) random variables. Then, Ny also
is a random variable. However, the dimension of the
LDS must be known in advance and therefore it can
not be a random variable. To overcome this, M € N*
is chosen such that P (M > Ny) > 1 — ¢, with € very
small and a LDS with dimension M is built. Just as
for the MC method, sample paths of Markov chain
modelling each maintenance strategy are sequentially
simulated using the M -dimensional LDS. A sample
of NPV (H) is then derived.

As presented in the introduction and following
Krykova (2003), we use here a digital net: the Sobol
sequence. In Figure 2, a sample of 64 realizations of
random uniform distribution on [0, 1]* and 64 points
of Sobol sequence in dimension 2 are compared. This
figure illustrates the better uniformity of a Sobol se-
quence than a uniform random sample, for which
many areas are left unexplored.

QMC method is known to lose its effectiveness
when the dimension of the LDS becomes large. Here,
the dimension of LDS can become large when the
number of components increases. To overcome this
limit, we propose to use the Array Quasi Monte Carlo
method.

4.3 Array Quasi Monte Carlo method

As said in the introduction, the Array Quasi Monte
Carlo (AQMC) method consists in simulating several
copies of a Markov chain in parallel using elements of
LDS and reordering copies at each step ascending or-
der. Unlike the QMC method where an element of the
LDS is used to simulate one path of the Markov chain,
the AQMC method uses one element of the LDS to as-
sess one step of the path. The dimension of the LDS
is not linked to the number of jumps of the Markov
chain but is equal to the number of uniform random
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Figure 2: Comparison of random uniform variable (left) and Sobol sequence (right)

variables required to simulate one transition of the
Markov chain. The AQMC method hence allows to
reduce significantly the dimension of the LDS when
compared to the QMC method. Moreover, the dimen-
sion of the LDS is not random any more like for the
QMC method but it is deterministic.

In order to assess the NPV (H), the AQMC
method simulates N copies of the Markov chain in
parallel for each maintenance strategy and reorders
them at each step. Remember that both maintenance
strategies are dependent through their common his-
tory up to ¢ — 7. Thus, during the sorting step of
copies of each Markov chain, it is primordial to keep
the dependence between copies which have the same
history. Here, two LDS are considered. The first LDS
assesses the first times of future failure for all compo-
nents at the initial time. This permits to have a good
repartition for the initial copies of Markov chains.
The second LDS is used to evaluate the transitions of
Markov chains. A sample of NPV (H) is then calcu-
lated using a sample path of Markov chains.

Unlike the MC method where confidence intervals
of the estimations can be constructed using the central
limit theorem, Quasi Monte Carlo methods are deter-
ministic and they do not provide the error of the esti-
mations. However, through the Koksma-Hlawka the-
orem (Lemieux 2009), an upper bound of the error
of estimation by Quasi Monte Carlo methods can be
assessed. In practice, this upper bound is difficult to
calculate and overestimates the error. Other methods
which allow to construct confidence intervals of the
estimations are now presented.

4.4 Randomized (Array) Quasi Monte Carlo
methods

As told in the introduction, randomized Quasi Monte
Carlo methods use randomized LDS. A randomized
version of LDS is a random sequence which has the
two following properties (Lemieux (2009)):

1. each randomized point is uniformly distributed
on [0,1]%,d > 1,

2. the regularity of the points is preserved (in the
sense of low discrepancy).

Thus, randomized Quasi Monte Carlo methods
have advantages over both Monte Carlo method (con-
fidence intervals) and Quasi Monte Carlo methods
(better regularity than a random sample). Several ran-
domization methods presented in Lemieux (2009) are
available. In this paper, the random shift method is
used.

To assess N PV (H) with randomized Quasi Monte
Carlo methods, the randomized LDS replaces deter-
ministic LDS in each deterministic methods. Thus,
in the Randomized Quasi Monte Carlo (RQMC)
method, a M-dimension randomized LDS is consid-
ered and in the Randomized Array Quasi Monte Carlo
(RAQMC) method, two LDSs are considered. In the
Array Randomized Quasi Monte Carlo (ARQMC)
method, presented in (L’Ecuyer et al. (2008)), two
LDS also are considered and several copies are simu-
lated in parallel and reordered at each step. In the AR-
QMC method, the LDS for assessing one transition of
Markov chains is randomized at each step while in the
RAQMC method it is randomized only once at the be-
ginning.

Letbe § = E[h (NPV (H))], h a function. To esti-
mate ¢ with randomized Quasi Monte Carlo methods,

~

a sample of estimations {él, ...,0 J} is obtained us-

ing J independent randomizations of LDS with deter-
ministic methods. Then, the estimation of # is given

by
J A
> 6
j=1

Confidence interval of 6 is given by using the cen-
tral limit theorem on the .J independent estimations
of #. Thus Randomized Quasi Monte Carlo methods
depend on two parameters: the number of elements of
LDS and the number of independent randomizations.

0_:

~ =

5 NUMERICAL RESULTS ON A FICTITIOUS
CASE STUDY

5.1 Numerical parameters

To assess E[NPV (H)| and P(NPV (H) <0), the
following parameters are considered:



e Operation horizon time H = 60;

e Supply time 7 = 1;

e Predicted time to preventive maintenance actions
¢ =43;

e Probability distribution of components time to
failure: Weibull distribution W (48;2.6) with
c.df.

Z T

F)= (1= @) 1

2.6
and F(¢) =1 —e (8) ~0.5282
E [X] ~ 42.6341 and Var (X) ~ 310.2542

e Continuous discount rate o« = 0.075;

e Corrective replacement cost ¢, = 200 €;

e Preventive replacement cost ¢, = 190 €;

e Cost of downtime C},,; = 58400 € per year;

e Purchasing price of one spare part c4 = 500 €.

Here, the parameter ( is fixed in order to illustrate
the QMC methods.

5.2 Comparison indicators of methods

The different methods are compared through the fol-
lowing indicators.

Relative error

Let us denote by ¢ = E[h(NPV (H))] where
6 is either E[NPV (H]) or P(NPV (H) <0).
0 = +3°N h(npv;(H)) represents an empirical
estimation of 6 by deterministic methods where
(npv; (H)), ;< is a sample of NPV (H). The rel-
ative error is defined by:

~

0—0

Tl

For the random methods (MC, RQMC, RAQMC and
ARQMC), the mean of the relative error on J inde-
pendent simulations of MC method or J independent

éjfo‘
0

randomizations of LDS is evaluated. Let ¢; =

where 0; = £ "N b (npuv! (H)) is an empirical es-
timation of # obtained in the j** simulation of MC
method or randomization of LDS. Then, the mean of
the relative error is:

In the numerical assessment, we set:

® c.,p and £,y the relative error and the mean of
relative error on the expected N PV (H ), respec-
tively;

® Sprobe ANd Epropg: the relative error and the mean
of relative error on the probability for the N PV
to be negative at time H, respectively.

Variance reduction factor

In addition to the mean of relative error, random meth-
ods are also compared through their variance. The
variance of different randomized Quasi Monte Carlo
methods is compared with the variance of MC method
through the variance reduction factor. For J indepen-
dent simulations or randomizations, the variance is
defined by

1K 1 A
Var (j ;%) = jVar (01>

Then, the variance reduction factor, denoted by VRF,
is given by

Varr@Mc G 23-121 éj ) VarreMe <é1>
VarMc (% Z;.Izl «9}) VarMc <91>
where rQMC can be RQMC, RAQMC or ARQMC. In

the numerical assessment, J = 2° = 512 independent
simulations or randomizations are considered.

VRF =

Remark 1 The reference values are obtained with
MC method using 10° independent simulations.

5.3  Four components

Table 1: Comparison of deterministic methods - 4 components

Methods  CPU time(s) Eexp Eproba
B QMC 0.65 1.79 x 1073 4.43 x10~°
N = 32768 AQMC 1.22 225x 1072 219 x 104
— QMC 11.73 5x 10 % 1.04x10°°

Table 2: Comparison of random methods - 4 components

Methods CPU time(s) Eexp Eproba
MC 0.67 0.029 0.0017
_ RQMC 0.95 0.016 0.0011
N=32768  paomC 15 0.0176 0.0011
ARQMC 1.72 0.018 0.0012
MC 12.12 0.0085 4.66 x 10~ %
RQMC 13.52 0.0031 2.11 x 10~%
N = 524288
RAQMC 31.88 0.0041 2.74x 10~%
ARQMC 40.4 0.0046  2.68 x 10~*

The reference values for E[NPV (60)] and
P(NPV (60) <0) are:

firey = 44.4508 and I Cyse (flrey) = [44.4329,44.4687]

Prey = 0.87279 and ICyse; (Pres) = [0.87277,0.87282]
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Table 3: Variance reduction factor - 4 components

Table 4: Comparison of deterministic methods - 10 components

N = 32768 N = 524288
exp proba exrp proba
RQMC 0.311 0.433 0.176 0.235
RAQMC 0.351 0.464 0.323 0.344
ARQMC 0.363 0.511 0.319 0.337

ICys9% (-) represents a 95% confidence interval for
the estimation. Figure 3 represents the evolution of
relative errors and CPU time as a function of the
number of points of the LDS for quasi Monte Carlo
methods. For MC method, the mean of relative error,
the 95% inter-quantile interval (I(Q)g5%) for J inde-
pendent relative errors and the mean of CPU times
are plotted. MC, QMC and AQMC have a good esti-
mation of both indicators (fi,.r,Pres) and their rela-
tive errors converge towards 0. We can also see that
for most values of NV, the relative errors of determin-
istic methods are below the mean of relative errors
of MC method. This reflects that on average, deter-
ministic methods have a better estimation than MC
method. Table 1 represents values of deterministic
methods for N = 2% = 32768 and N = 29 = 524288.
We can see that QMC method has relative errors and
CPU time smaller than AQMC method. Thus, QMC
method appears as the best deterministic method for
the evaluation of NPV (60) with four components.
Table 2 compares the mean of relative errors and
mean of CPU time for random methods for N = 2'°
and N = 2'°. We can see that different randomized
quasi Monte Carlo methods are more accurate than
MC method and have a variance smaller than the MC
one (V RF < 1, see Table 3). Nevertheless, RAQMC
and ARQMC have a long CPU time due to the sorting
step of the Markov chains.

5.4 Ten components

The following reference values and confidence inter-
vals are considered:

fires = 467.048 and I Cysq, (fires) = [466.999, 467.098]
Pres = 0.47242 and ICys9 (Pres) = [0.47239,0.47246]

Methods  CPU time(s) Eexp Eproba
B QMC 5.08 5.56 x 1073 4.71 x 1073
N=65536  jomc 6.86 2.85 x 104 1.56 x 103
- QMC 11 T3x10°° 383 x10°7
N=262144 " JomMC 2049 845x 104 4.56 x 10~

Table 5: Comparison of random methods - 4 components

Methods CPU time(s) Eexp Eproba

MC 411 0.0053 0.0035

_ RQMC 5.37 0.0033 0.0024

N=65536  paigmc 11.61 0.0034 0.0025

ARQMC 12.4 0.0036 0.0026
MC 18.04 257x10°° 1.64x10 °

_ RQMC - - -

N = 262144 RAQMC 62.97 1.43x 1073 1.15x 1073
ARQMC 67.36 1.45x 1073  1.23x 103

As in the case of four components, Figure 4 rep-
resents the evolution of the relative errors and the
CPU time for the deterministic methods; the mean of
relative errors and of CPU time and the 95% inter-
quantile interval (/(Qg5%) of relative errors for the MC
method. We can see that all methods converge when
N increases. Table 4 shows that for N = 21 = 65536
and N = 28 = 262144 the AQMC method is more ac-
curate but has a higher CPU time than QMC method.
However, the results of AQMC methods with N = 216
are obtained more quickly and are more accurate than
the QMC ones with N = 2!, As Tables 2 and 3, Ta-
bles 5 and 6 show that randomized quasi Monte Carlo
methods are more accurate and more stable than MC
method. Note that the RQMC method is limited by
memory problem to N = 2'® (on a standard laptop)
whereas RAQMC and ARQMC methods can be used
with higher N.

Table 6: Variance reduction factor - 10 components

N = 65536 N = 262144
VRFezp VRFp'roba VRFezp VRFp'r‘oba
RQMC 0.386 0.478 - -
RAQMC 0.396 0.559 0.307 0.515
ARQMC 0.420 0.582 0.309 0.542
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Figure 4: Relative error on fi,.¢ (left), p,.s (center) and computational time (right) - 10 components

6 CONCLUSION

Two quasi Monte Carlo methods are proposed for
the numerical assessment of complex PDMPs. In the
QMC method, the dimension of the LDS is linked to
the number of steps of the PDMPs and consequently,
to the number of components as well. This is re-
stricted to fleets with a few components because in
the opposite case, a memory problem happens. In the
AQMC method, the dimension of the LDS is equal
to the number of random variables required for one
single event. That significantly reduces the dimension
of the LDS. Looking at the specific results, Tables 1
and 2 (four components) show that with an equivalent
CPU time, the QMC method has a reduction factor
on the relative errors greater than 10 when compared
with the MC method. In Tables 4 and 5 (ten compo-
nents), the MC and QMC methods provide similar re-
sults while the AQMC method is more accurate: for
example, the relative error on the expected NPV of
the AQMC method is equal to 2.849 x 10~* in 6.863
CPU time while the MC method has a relative error
on the expected NPV equal to 2.569 x 1073 in 18.045
CPU time. For this example, the reduction factor on
the relative error is around 10 in favour of the mostly
thrice quicker AQMC method when compared to MC
method. Based on these results (and on others not
provided here), it seems that both QMC and AQMC
methods are promising alternatives to the more stan-
dard MC methods for the numerical assessment of
PDMPs. To be more specific, in our context, QMC
method will be the most effective for a fleet of less
than 10 components whereas the AQMC method will
be the most efficient for a fleet of more than 10 com-
ponents. The effectiveness of these methods should be
greatly appreciated within a preventive maintenance
optimization algorithm, which is our ultimate goal.
It is important to highlight that all developments that
have been presented in this paper can be generalized
to any other assessment of two maintenance strate-
gies. The case used in this communication is only

given for the illustrative purposes and we can imag-
ine that a black box MC simulator can be replaced by
a black box QMC simulator for any industrial issue.

REFERENCES

Brandejsky, A., B. De Saporta, & F. Dufour (2012). Nu-
merical method for expectations of piecewise Deter-
ministic Markov Processes. Communications in Ap-
plied Mathematics and Computational Science 7(1),
63-104.

Davis, M. H. A. (1984). Piecewise Deterministic Markov
Processes: A general class of non diffusion stochastic
models. Journal of the Royal Statistical Society. Series
B (Methodological) 46(3), 353—-388.

Eymard, R., S. Mercier, & A. Prignet (2008). An implicit
finite volume scheme for a scalar hyperbolic problem
with measure data related to piecewise Deterministic
Markov Processes. Journal of Computational and Ap-
plied Mathematics 222(2), 293-323.

Haddad, R. E., C. Lécot, P. L’Ecuyer, & N. Nassif (2010).
Quasi-Monte Carlo methods for Markov chains with
continuous multidimensional state space. Mathematics
and Computers in Simulation 81, 560-567.

John, B., H. Niga, & M. Gareth (2009). A dictionary of
economics (3rd ed.). Oxford : Oxford University Press.

Krykova, I. (2003, December). Evaluating of path-
dependent securities with low discrepancy methods.
Master’s thesis, Worcester polytechnic institute.

Lécot, C. & B. Tuffin (2004). Quasi Monte-Carlo meth-
ods for estimating transient measures of discrete time
Markov chains. In Monte Carlo and Quasi Monte Carlo
Methods 2002, pp. 329-343. Springer.

L’Ecuyer, P., C. Lécot, & B. Tuffin (2008). A Random-
ized Quasi-Monte Carlo simulation method for Markov
chains. Operations research 56(4), 958-975.

Lemieux, C. (2009). Monte Carlo and Quasi Monte-Carlo
Sampling. Mathematics and Statistics. Springer-Verlag
New York.

Zhang, H., F. Dufour, Y. Dutuit, & K. Gonzalez (2009).
Piecewise Deterministic Markov Processes and dy-
namic reliability. Journal of Risk and Reliability 222(4),
545-551.



