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Abstract. Visual rigid localisation algorithms can be described by their
model/sensor input couple, where model and input can either be 2-D
or 3-D sets of points. While Perspective-N-Point (PnP) solvers directly
solve the 3-D/2-D case, to the best of our knowledge there is no locali-
sation method to directly solve the 2-D/3-D case. This work proposes to
handle the 2-D/3-D case by expressing it as two successive PnP prob-
lems which can be dealt with using classical solvers. Results suggest the
overall method has comparable or better precision and robustness than
state of the art PnP solvers. The approach is demonstrated on an object
localisation application.
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1 Introduction

Visual rigid localisation methods, hereafter shortened to localisation methods,
compare a scene’s known model to a sensor input and compute the motion
between the scene frame and the sensor frame. The model and input are made
of 2-D or 3-D points.

Depending on the type of points, 2-D or 3-D, used as model/input, localisa-
tion methods can be arranged in four families. In the following, the four families
are presented and illustrated through representative works. Table 1 sums up the
families and associated works.

In the 2-D/2-D case, the model and input points are 2-D projections of
unknown 3-D reference points. The classical approaches are based on finding the
fundamental matrix [7], in the uncalibrated case, or the essential matrix [10], in
the calibrated case. However, these methods lack precision and they may have
mathematical flaws which introduce degenerate cases [1].

The 3-D/3-D methods use two different sets of 3-D points, with different
frames, as model and input. Such localisation problem can be solved, for example,
with the Iterative Closest Point (ICP) approach [9]. In the ICP method, the pose
of a set of 3-D points to another is determined iteratively by matching closest
points. These approaches are computationally intensive and building a model
with 3-D points can prove challenging, even with 3-D sensors.



According to [11], combining 3-D and 2-D data yields greater robustness and
precision than those of the two previous families, so the rest of this work focuses
on mixed families.

In the 3-D/2-D case, the model is composed of 3-D reference points and the
2-D input points are projections of the reference points on a camera image plane.
This localisation family requires solving the Perspective-N-Point (PnP) problem.
Various solutions to this problem will be presented in the next section.

The 2-D/3-D case has gained importance with the advent of cheap RGB-D
cameras providing 3-D input. In this case, the model is made of 2-D projections
of unknown 3-D reference points, and the input is a set of 3-D points in the
camera frame. The principal benefit of such approach is that a single image is
sufficient to build the model. The main obstacle stems from the fact that no 3-D
frame is initially associated to the scene, thus it is not possible to find a motion
between the scene frame and camera frame. To the best of our knowledge, there
is no localisation algorithm available to directly solve this case.

This paper proposes a localisation algorithm for the 2-D/3-D case, with a
calibrated or uncalibrated sensor. The problem is expressed as two successive
PnP problems and solved with classical PnP solvers. The proposed solution
robustness and precision are compared with 3-D/2-D localisation methods based
on state of the art PnP solvers.

Next section presents the state of the art in PnP solvers. Section 3 introduces
the proposed localisation method. An experimental setup is described in Section
4 to compare our approach with classical methods based on PnP solvers. Section
5 presents and discusses the results. Finally, Section 6 concludes this article and
opens on future work.

Table 1. Works illustrating the use of the four families of localisation techniques and
their hypothesis.

Work Model Input Calibrated

[7] 2-D 2-D Yes

[10] 2-D 2-D No

[9] 3-D 3-D No

[8] 3-D 2-D Yes/No

Our 2-D 3-D Yes

2 Related Work

When a set of 3-D reference points, expressed in a reference frame, and their
2-D projections on a camera image plane are available, with known calibration,
a PnP solver allows retrieving the motion between the reference frame and the
camera frames. Solvers can be separated into iterative and non-iterative methods.
This work focuses on non-iterative methods as they are faster and thus more
appropriate for real-time applications [8].



Nevertheless, this comparison considers one popular iterative method devel-
oped by Lu et al. [6] which computes iteratively the rotation and translation
using SVD.

In their work [4], Li et al. introduce the RPnP solver. They propose to divide
the 3-D reference points into 3-points subsets, express the problem for each
subset as a polynomial and then create a cost function from the sum of squares of
these polynomials. The solution correspond to the optimum of this cost function.

Zheng et al. suggest a more precise method dubbed OPnP [14]. In this
method, the rotation is expressed as a non-unit quaternion, thus relaxing the
optimization problem constraints. The whole problem can then be solved with a
Grobner basis solver. The main benefit is that it is a global optimization which
can handle any singular case and will find all possible solutions. The main draw-
back being that when various solutions are available, it is not possible to tell
which is the correct one. It is interesting to note that in their results, when var-
ious solutions are available, the authors select the solution closest to the ground
truth in a L2 norm sense. This is not possible for an actual problem.

Finally, the authors of [3] show that a Direct Least Square (DLS) approach
can be applied. They propose to use a Cayley-Gibbs-Rodriguez parametrization
for the rotation. Relaxing scale constraints, it is possible to express the scale and
translation as a function of the rotation. It is then possible to find the rotation
with a least square approach and, from it, compute the translation and scale.

The aforementioned methods work well in the 3-D/2-D case. However, they
are not applicable directly in the 2-D/3-D case. The next section shows how a
2-D/3-D problem can be formulated as two successive PnP problems and solved
with any of the previous solvers.

3 Localisation with a Structureless Model

In the 2-D/3-D case, no scene frame, nor 3-D points, are initially available in
the model, hence the term structureless model. The first step is to create a scene
frame S, once and for all, with a first 3-D input. Then, localisation is possible
for subsequent inputs.

Consider a set of 2-D points in the image plane of a perspective camera C1.
Then, a depth camera C2 provides a set of corresponding 3-D points, for example
by matching natural features from C1 and C2, with coordinates expressed in C2.
The goal here is to find the SC2 motion. However, as explained earlier, there is
no frame S associated to the scene, so localisation is not possible.

In order to make localisation possible, the 3-D points from C2 are used to
arbitrarily define S. By construction, the SC2 motion is known. Then, the 3-D
points from C2 are expressed in frame S. Thereupon, the scene has an associated
frame and 3-D points expressed in it. With corresponding 2-D points from C1,
it is now possible to use a PnP solver to determine the SC1 motion once and for
all.

When a new set of 3-D points is available from a new depth camera C3,
one finds the corresponding 2-D points in C1’s image plane. These 3-D/2-D



Fig. 1. Illustration of the proposed localisation method. Though various points are
necessary for motion computation, for clarity a single 3-D point XS and its projection
u1 are considered. The point u1, on C1’s image plane, form the model. The input is
made of X2, the point XS expressed in C2, and X3, the point XS expressed in C3.
First, a frame S is created from X2. Then, the motion SC1 is estimated using u1 and
X2. Finally, the motion C3C1 is computed using u1 and X3. With SC1 and C3C1, one
can retrieve the desired motion SC3

correspondences allow solving a PnP problem to obtain the C3C1 motion. Since
the SC1 motion is known, computing the SC3 motion is straightforward. The
whole process is illustrated in Figure 1.

From a computational point of view, the process can be split in three steps.
First, offline modelling, where 2-D points from the first image plane are computed
and added to the model. As only 2-D data is required to build the model, it
can be built from any camera or from the Internet, provided calibration data
is available. Second, online modelling, where a camera input allows defining a
scene frame and computing the SC1 motion. Third, online localisation, where a
new camera input allows computing the motion between the scene and this new
camera. In the following, each step is described in more detail.

3.1 Offline modeling

The starting data is a set u1 of 2-D points. In the pinhole camera model, u1
verifies the projective relationship,

u1 = KP1XS , (1)

where K is C1’s intrinsic parameters matrix, P1 is the SC1 motion and XS is the
set of 3-D points corresponding to u1, expressed in the S frame. In this equation,
K is known but P1 and XS are unknown, they will be determined in the next
step.



3.2 Online modeling

A new depth camera C2 provides a set X2 of 3-D points expressed in C2, associ-
ated to 2-D points u1 learned in the previous step. A scene frame is arbitrarily
defined at the barycentre of X2 and for simplicity the SC2 rotation is set to
identity. With P2 being the SC2 motion,

XS = (P2)−1X2, (2)

This equation allows computing XS , the 3-D points in the scene frame, from X2.
Then any PnP method allows solving Equation 1 to get P1. The matrix P1 is
saved in the model and represents the SC1 motion.

3.3 Online localisation

Now that P1 is known, it is possible to localise a new depth camera C3, from
which a set of points X3 is acquired. Let’s suppose the correspondences be-
tween u1 and X3 are known, then adapting Equation 2 to this new camera and
combining it with Equation 1 gives the localisation formula,

u1 = KP1(P3)−1X3, (3)

where P3 is the SC3 motion, the u1 are known from the offline model, K is
known a priori, P1 is known from the online modelling step and the X3 are a set
of input points expressed in C3 frame. Again, any PnP method allows computing
P1(P3)−1. Then, P3 can be directly obtained.

Note that only K, the intrinsic parameters of C1, are needed. Calibration
data from cameras C2 and C3 are not necessary.

3.4 Uncalibrated Case

When K is not available, for example when the image is taken from the internet
with no EXIF data available, the intrinsic parameters must be determined on
the fly. This is done at the online modelling step. Instead of using a PnP solver to
recover P1, an auto-calibration method is used to compute T1 = KP1. Then, T is
decomposed into K and P1 and the online localisation step can be done normally.
In order to compute T1, the most general approach is the Direct Linear Transform
(DLT) [2] which uses a least-square approach to approximate the coefficients of
T1. However, under some hypothesis other methods can be used. For example, if
the optical center position can be approximated from the images dimensions in
pixels, then Tsai’s method provides an efficient solver. Finally, there is a direct
relationship which allows recovering exactly K and P1 from T1 The precision
loss due to the approximation of T1 is evaluated below.

This approach allows using as model a simple image, calibrated or uncali-
brated. It enables to use the billions of images available online to build a partial
or full model of almost any textured object.



4 Experimental Setup

To assess the robustness and precision of the proposed localisation method, four
simulation experiments are set-up. Two of them estimate the robustness against
noise and the precision when the number of corresponding points (u1,X2) and
(u1,X3) vary. The third experiment compares the precision of the uncalibrated
solution with the precision of the calibrated one.

In order to simulate data as close as possible to real ones, the 3-D reference
points should be realistically projected on camera’s image planes. To ensure this,
the general idea is to define a cuboid in space from which the 3-D points will
be picked. Then, cameras are created at random poses such that they see the
whole cuboid. Finally, points are randomly picked in the cuboid and projected
with noise onto the camera image planes.

The first step is the computation of the minimum distance z, between the
camera and the cuboid’s center so that the cuboid is engulfed in the camera’s
field of view. A maximum distance Z, is chosen arbitrarily while keeping it low
enough to avoid the planar case due to distance. To ensure random pose, while
keeping the camera oriented to the cuboid, a random point A is picked inside
the cuboid and a random point B between the spheres of diameter z and Z
centred on the cuboid center. To obtain the camera frame, an orthonormal basis
is created from BA. This process is done for each required camera, three in
this case. Finally, n points are randomly created inside the cuboid and projected
on each camera plane with a certain amount of zero-mean Gaussian noise. The
points and their projections constitute the simulation data.

In these experiments, the cuboid is a cube of side 2 and Z = 10. To be
consistent with previous work’s experiments [14], in the first experiment n is set
to 6 while the noise standard deviation σ varies between 0.5 and 5. In the second
experiment, σ = 2 and n varies between 4 and 15. Each experiment is run 1000
times and the results show the mean error over all runs.

In the real world case, the test object is chosen with an arbitrary shape. The
object is modelled from a single image taken with a calibrated RGB camera. This
image is described with sift features [5]. The SiftGPU library [13] is used in order
to speed up the computation. The matching is done by brute force on gpu and
only mutual matches are considered. A Xtion Pro live sensor is used to acquire
RGB-D images of the object under different points of view. No calibration data
are needed for this sensor. Again, sift features are extracted from the images.
All points having a NaN depth are filtered out and the remaining ones are
matched against the object’s model. The first RGB-D view is used for the online
modelling step, this step needs to be done only once. All subsequent views can
be used for online localisation, they allow computing the object-camera pose.
For online modelling and online localisation, transforms are computed using the
EPnP algorithm [8], as it is readily available in OpenCV, and refining the result
with an iterative Levenberg-Marquardt. Processing one frame on a consumer
grade laptop takes a mean time of 200ms.

For all the experiments, the precision of the proposed methods are compared
with the state of the art PnP solvers : RPnP, OPnP, DLS and LHM. For the two



calibrated experiments, our approach is based on solving two PnP problems, both
are solved using the RPnP solver, as it is the only non-iterative method providing
a single solution. Indeed, OPnP and DLS can provide various solutions with no
way to discriminate the correct one. For more insight into the working of our
method two results are provided: the online modelling error SOM1 and the online
localisation error SOM2. For the two uncalibrated experiments, our approach is
based on solving an uncalibrated problem, with Tsai’s autocalibration method
[12] method and a PnP problem using the RPnP solver, as for the calibrated
case.

5 Results and Discussion

5.1 Calibrated Case

The results in Figure 3 and 2 show that SOM1, the modelling error, follows
the behaviour of RPnP, the underlying PnP solver. Globally, the error decreases
with the number of points available and increases with the noise. Regarding
SOM2, the online localisation error, its translation error closely follows RPnP
performances. However, when increasing the number of points or the noise, the
rotation error is lower than the ones of the other solvers.

One could expect our method to perform at best as well as the underlying
PnP solver, which is the case for the translation error. However, the rotation
error is significantly lower than the one of the underlying PnP method and lower
than the ones of state of the art solvers. This could be explained empirically by
the fact that our method uses more data than a single PnP solver: a scene-
camera transform, a set of 3-D points and a set of 2-D points, are required for
the calculus. Moreover, it seems reasonable to think that when a PnP solver is
applied to the result of a previous PnP solver, the result is further refined. Finally,
the fact that the frame associated to the scene is the 3-D points barycentre may
provide some normalisation to the points coordinates, thus reducing numerical
approximations.

5.2 Uncalibrated Case

In the first uncalibrated experiment (Figure 4), the rotation and translation er-
rors remain low, lower than the PnP solver’s for σ < 3.5. Then, for σ > 3.5, it
quickly grows and at σ = 3.75 it is higher than the error of any other method.
It keeps raising as noise increases. In the second uncalibrated experiment (Fig-
ure 5), the errors are high with less than twenty points. With twenty points and
more, the error quickly diminish to an error lower to the state of the art PnP
solver’s.

Note that none of these methods use a noise reduction approach, like RANSAC
for example. However, the autocalibration method computes a new camera in-
trinsic parameter from noisy points, i.e. which takes into account the noise. The
autocalibration process can be understood as finding the image-to-camera pose



Fig. 2. Mean rotation and translation errors for six points and a noise with standard
deviation varying between 0.5 and 5 pixels.

Fig. 3. Mean rotation and translation errors for a noise with standard deviation of two
pixels and a number of points going from 4 to 15.

that minimize reprojection error. So the resulting camera suffers from less noise.
This can explain why USOM2 has lower error than the other methods. And
this points to the fact that autocalibration can be used to diminish noise influ-
ence. However, these results also put forward the limits of such methods. Indeed,
when there are not enough points (n < 20) or too much noise (σ > 3.5), the
autocalibration approach can’t find a noise reducing solution.

5.3 Modelling with a Calibrated Camera

To illustrate the proposed method in a concrete object localisation case, we
proceed to an experiment on regular objects with a calibrated camera. Figure 6
(a) (b) are the two images needed to build and complete the model. Figure 6
(c) (d) show localisation examples. Note in Figure 6 (b) that the object frame
which is set up at this online modelling stage is not necessarily aligned with the
object shape. Nevertheless, it allows estimating the object motion as long as the
current image matches the offline modelling image.



Fig. 4. Mean rotation and translation errors for fifty points and a noise with standard
deviation varying between 0.5 and 5 pixels.

Fig. 5. Mean rotation and translation errors for a noise with standard deviation of two
pixels and a number of points going from 10 to 100.

6 Conclusion

This paper tackles the localisation problem when the model is made of 2-D
points and the input of 3-D points. Though finding a direct solution seems
hard, this work shows that it is possible to express the problem as two PnP
problems which can be solved with classical PnP solvers. The benefits of this
approach are twofold, the model can be built from calibrated still images only and
the overall precision is comparable or better than state of the art PnP solvers.
Future work includes bridging the gap between image categorisation and object
localisation. Image categorisation learning is done on images, if the same images
allow localisation, then it is possible to use advanced categorisation algorithm
to recognise objects and then localise them with the presented method.
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