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ABSTRACT
Model-checking is increasingly popular in the early phases
of the software development process. To establish the cor-
rectness of a software design one must usually verify both
structural and behavioral (or temporal) properties. Unfor-
tunately, most specification languages, and accompanying
model-checkers, excel only in analyzing either one or the other
kind. This limits their ability to verify dynamic systems with
rich configurations: systems whose state space is character-
ized by rich structural properties, but whose evolution is also
expected to satisfy certain temporal properties.

To address this problem, we first propose Electrum, an
extension of the Alloy specification language with temporal
logic operators, where both rich configurations and expressive
temporal properties can easily be defined. Two alternative
model-checking techniques are then proposed, one bounded
and the other unbounded, to verify systems expressed in
this language, namely to verify that every desirable temporal
property holds for every possible configuration.
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1. INTRODUCTION
Software specification and verification is crucial at early

development phases, since it allows the developer to reason
about the system and its properties, and timely detect design
errors. Although a variety of frameworks has been proposed
to aid the developer in this task, the most successful ones
are lightweight, in the sense that they provide a simple yet
expressive and flexible formal language – allowing the user
to specify different classes of systems and properties at dif-
ferent abstraction levels – and are accompanied by tools that
automate their analysis – providing quick feedback regarding
the correctness of the specification. In fact, such frameworks
have already reached a level of maturity that enables their
application in complex real world scenarios [2626].

Two classes of properties are particularly important to con-
sider: structural (or static) properties, typically expressed
in some variant of first-order logic, that address the well-
formedness of the system state, and behavioral (or dynamic)
properties, typically expressed in a temporal logic, that ad-
dress the evolution of the system state. Although not neces-
sarily in equal measure, most interesting systems will require
the specification and analysis of properties from both classes.
The analysis of distributed computing algorithms is a paradig-
matic class, whose behavioral properties are expected to be
checked for arbitrary network topologies, within a range
specified by particular structural properties. We denote such
components of the system state, that are initially arbitrary,
but remain unchanged as the system evolves, as configura-
tions. Another relevant class is that of software product
lines (SPLs), where each valid software product of a family,
specified by simple structural properties, amounts to a dif-
ferent configuration, each of which should be checked for the
behavioral properties.

Dynamic systems with rich configurations are the focus of
this work, and concretely, this class of systems exhibits the
following requirements:

R1 A clear distinction between the specification of the
system configuration and the system evolution;

R2 Configurations constrained by rich structural properties
(like inheritance, complex relationships between entities,
or reachability properties);

R3 A declarative specification of the system evolution (the
possible actions affecting the state), possibly under



different idioms;

R4 The need to verify (temporal) safety and liveness prop-
erties about the specified system.

Thus, to be suitable to address this kind of problems, a
specification language should be sufficiently rich and flexible
to support the definition of both structural and behavioral
properties, while still promoting the separation of concerns.
Moreover, it should be accompanied by effective tool sup-
port, to allow the automatic model-checking of the desired
temporal properties for every valid configuration.

1.1 Motivating Examples
To further clarify the class of problems we intend to address,

this section presents two motivating examples where all the
above characteristics are manifest.

Hotel room locking system.
This example regards the specification of a hotel room

locking system that uses disposable electronic keys [1818], that
relies on recodable locks that either unlock the door for the
currently coded key, or for its successor, at which point the
lock is recoded, rendering the previous key obsolete. The
front desk issues new keys for the appropriate room when
guests check-in. The front desk and the locking systems are
stand-alone (no communication between them): the system
works properly because keys are generated using the same
pseudo-random generator, with the initial seed of each room
lock being synchronized with the front desk a priori.

To abstract away the details, keys are interpreted as a
totally ordered set (e.g., a set of natural numbers), and each
room is assigned a (disjoint) subset of such keys a priori :
given the currently coded key, the next valid one is the small-
est among its successors in this subset. The available rooms,
keys, and possible guests, together with a valid assignment of
keys to the rooms, constitutes a configuration of this system.
These remain constant as the system evolves, contrasting
with the dynamic components of the system (e.g., the keys
currently coded in each lock) (R1R1). Moreover, a valid config-
uration is not arbitrary, but characterized by a precise set of
constraints (R2R2). The dynamic components evolve as guests
check in and out, or enter a room with a fresh key, updating
the currently coded key of that room lock. These actions
can easily be specified in a declarative manner, for example
relying on pre- and post-conditions (R3R3).

A safety property that is expected to hold (R4R4) is that
guests cannot enter rooms in which they are not currently
registered. This property does not hold in some configura-
tions, as depicted in Fig. 11. Each state depicts the rooms
(square elements), guests (rounded corners) and the front
desk (the lower faceted rectangle). Bold typeface values are
part of the system configuration; the others change as the
system evolves, with the values that are modified at each
step underlined. Although this particular configuration leads
to a counter-example, the problem may go unnoticed if one
is required to perform the analysis for a specific (user-picked)
configuration (e.g., where R1 was assigned K1 and K2 and
R2 the remaining keys).

Distributed spanning tree algorithm.
This example concerns a simple distributed spanning tree

algorithm, that runs on an arbitrary (but connected) network
topology, building on the one proposed in [2828]. Here, a

distinguished root node (possibly elected beforehand) starts
by assigning itself level 0. Nodes with assigned levels (i.e.,
already in the spanning tree) broadcast their level to the
neighbors. When a node not yet in the spanning tree receives
one such message, it sets its level to one plus the level of
the sender, and records it as its parent node. The details of
message passing are abstracted away by allowing the system
to evolve by selecting an arbitrary node to act, among those
not in the spanning tree but with neighbors already so, and
arbitrarily choosing one of the latter as parent.

Here, a configuration consists of a set of nodes, a root node
among them, and a possible network topology, which may
take the shape of an arbitrary undirected connected graph,
while the dynamic aspects encompass the level and parent
structures of the tree being computed (R1R1). The specification
of a valid topology requires a reachability constraint (R2R2).
In general, the same topology may lead to several different
spanning trees, and this non-determinism can be captured
by declarative operations, where the selection of the process
to act, as well as its parent, is arbitrary within the stated
constraints (R3R3). Both a safety and a liveness properties
are expected to hold for every network topology, i.e., system
configuration (R4R4): the algorithm never introduces a cycle
in the parent structure, and a spanning tree of the whole
network is eventually computed, respectively.

Figure 22 depicts a possible execution trace of the algorithm
for a specific configuration with four nodes (P1 to P4), root
node P2 (bold circle), and network topology depicted with
dashed lines. The changing elements of the specification,
namely the level and parent of each node, are represented
in the lower-half of the respective circle and by solid arrows
leaving from them, respectively. Again, the values updated
in each step are underlined.

Elevator system SPL.
This example models an elevator system SPL inspired by

the one proposed in [2727] and extended in [77]. The model
consists of an elevator and a set of floors; at each floor there
is a button that calls the elevator, and inside it there is a but-
ton for each of the floors. The base system answers button
calls giving priority to the current direction: it only changes
direction when there are no more calls for the succeeding
floors. This behavior is however modified as additional fea-
tures are selected. For instance, a parking feature moves the
elevator to the first floor when there are no button calls; an
idle feature forces the elevator to open the door when there
are no button calls; an executive floor feature prioritizes calls
to one of the floors over the others. Multiple interfering
features, under some restrictions, may be selected.

Here each configuration represents a valid product from
the SPL, that is, a selection of features, while the dynamic
component models the evolution of the system taking into
consideration those features (R1R1). The selection of these
features is restricted by a feature diagram that defines simple
dependencies/conflicts between the features, which can be
encoded as structural properties (R2R2). For instance, since
the idle and the parking features have conflicting behavior
their choice could be forced to be exclusive. The operations
must be sufficiently expressive to encode the behavior of the
system taking into consideration the selected features (R3R3).

There are several safety and liveness properties that should
be checked about this specification (R4R4). For instance, the
most basic liveness property states that a pressed button
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Figure 1: Execution trace for the hotel room locking system leading to a counter-example.

P2

∅

P3

∅

P1

∅

P4

∅

Act(P2) Act(P1) Act(P4) Act(P3)

P2

0

P3

∅

P1

∅

P4

∅

P2

0

P3

∅

P1

1

P4

∅

P2

0

P3

∅

P1

1

P4

2

P2

0

P3

2

P1

1

P4

2

Figure 2: Execution trace for the spanning tree algorithm.

will eventually be answered. These must be checked over
every possible feature combination. While some of these
are expected to always hold, some fail under certain feature
configurations. For instance, the above property will fail
with the executive floor feature, as calls to those floors will
be prioritized.

1.2 Contributions
Unfortunately, most formal specification languages (and

accompanying model-checkers) are not designed nor opti-
mized to analyze problems such as these. For example, most
standard model-checkers only perform well with fixed config-
urations, while languages more geared towards the analysis
of structural properties, usually without native support for
some sort of temporal logic, require the user to verify behav-
ioral properties through ad hoc mechanisms.

This paper aims precisely to fill this niche, and proposes a
language and model-checker tailored for the lightweight anal-
ysis of dynamic systems with rich configurations. Concretely,
we propose:

• A formal specification language, inspired by Alloy [1818]
and TLA+ [2020] (two of the most popular specification
languages nowadays), that simplifies the specification of
systems exhibiting all the requirements defined above;

• Two model-checking techniques, one bounded and the
other unbounded, to verify systems expressed in such
language, namely to verify that every desirable tempo-
ral property holds for every possible configuration.

The remainder of the paper is organized as follows. Sec-
tion 22 explores related languages and techniques, and justifies
why they fall short when analyzing this class of problems.
Section 33 presents the proposed language, its semantics, and
the proposed model-checking techniques. Their performance
is then evaluated in Section 44. Finally, Section 55 draws
conclusions and points directions for future work.

2. RELATED WORK
There are numerous approaches to the specification and

model-checking of systems. Here we focus on those whose
level of expressiveness and tool support come close to that
needed to handle systems with rich configurations, i.e., that
address some of the four requirements defined in Section 11.

Alloy [1818, 1717, 1919, 55] is a lightweight formal specification
language with an object-oriented flavor, which, paired with
its Analyzer, that provides support for automatic bounded
verification, has been increasingly adopted by software en-
gineering practitioners. The underlying formalism of Alloy
is relational logic, first-order logic enhanced with transitive
closure operations, that render the definition of structural
properties extremely simple. Thus, Alloy is naturally well-
suited to handle the R2R2 requirement.

However, Alloy is inherently static, thus the verification
of behavioral properties usually relies on well-known idioms
that have emerged due to the language flexibility. Such ad
hoc specification is error-prone and verbose, and forces devel-
opers to be concerned with particularities of the idiom rather
than with the properties that they actually wish to verify
(see for instance [3131, 2222]), and as a consequence regular Alloy
is not well-suited to address R4R4. To overcome this limitation,
considerable research has been dedicated to enhance Alloy
with dynamic behavior [1212, 55, 2424, 3030, 88]. The main drawback
of these approaches is that they compromise the flexibility
that the Alloy users are accustomed to, introducing syntactic
extensions that force them to adhere to specific idioms, and
consequently breaking the R3R3 requirement. That is the case,
for instance, of DynAlloy [1212], an Alloy variant that resorts
to dynamic logic to specify behavior. Liveness properties,
which comprise a large class of behavioral properties, are
also not expressible in DynAlloy [1313], and thus R4R4 is not
effectively addressed. Although expressible in regular Alloy
(via said idioms), verifying such properties with the Ana-
lyzer requires some insightfulness and care from the user, to
avoid the spurious counter-examples that usually occur with
naive encodings of bounded model-checking techniques [3030,



88]. The technique from [2424] enhances Alloy with imperative
constructs, again undermining R3R3. In contrast, the tech-
nique proposed in [55] extends the relational logic of Alloy
with CTL temporal logic. Unfortunately, the system actions
must be specified with a fixed idiom with an imperative-
flavor, and thus falls short on the R3R3 requirement. Moreover,
it disregards the rich structural properties introduced by the
signature type system from regular Alloy, undermining its
ability to address R2R2. Finally, even though all these works at-
tempt to enhance Alloy with dynamic properties, besides [2424]
that distinguishes between static and variable fields, none
properly address R1R1, since they do not distinguish between
the system configuration and the dynamic components that
evolve over time.

In contrast, temporal model-checkers are developed pre-
cisely to address the R4R4 requirement. Among the most suc-
cessful formalisms is the temporal logic of actions (TLA) [2020],
a variant of temporal logic that introduces the notion of
action to model the evolution of the system. Actions are
essentially predicates that relate two consecutive states, spec-
ifying the acceptable steps that allow the system to evolve.
Thus, the TLA+ specification language, built over this logic,
naturally handles R3R3, and has proven to be well suited to
specify systems with rich temporal properties. Moreover,
TLA+ is accompanied by a set of effective tools, including
TLC, a model-checker that has proven effective on the ver-
ification of complex TLA+ systems. However, in order to
be manageable by TLC, some additional restrictions are
imposed over the TLA+ language, namely over the action
predicates, reducing its compliance with the R3R3 requirement.

Unlike most model-checkers, TLA+ does support the speci-
fication of first-order logic properties, addressing R2R2 to some
extent. However, unlike Alloy [1111], it lacks a type system
with inheritance, that greatly simplifies the specification of
complex entities and their relationships. Moreover, due to
the nature of the model-checking procedure, rich structural
properties may severely hinder the performance of TLC since
the first step of the procedure involves calculating every
possible initial state. While TLA+ does provide a simple
mechanism to separate the system configuration from its
evolution (by allowing the distinction between variable and
constant parameters), TLC requires constant parameters
to be fixed a priori by the user, limiting its ability to au-
tomatically explore all possible configurations and thus to
fully address R1R1. To circumvent this problem, configura-
tions must be encoded in regular variable parameters and
then (artificially) constrained in the specification to remain
constant throughout the system evolution.

Thus, although both Alloy and TLA+ exhibit powerful but
simple languages associated with effective and automated
tools, they excel in the verification of different classes of
systems, and none addresses all four requirements identified
above11. The number of available model-checking languages
and tools is too large to allow for an exhaustive comparison
here, but in general they are not better than Alloy or TLA+

at dealing with dynamic systems with rich configurations.
Most, like SPIN or the various SMV variants, do not even
support first-order logic, making it very cumbersome to
specify complex structural properties. This related work

1An in-depth comparison of TLA+ and Alloy, using the hotel
room locking system as running example, can be consulted
in [2121]. The specification of the running examples of this
paper in both those languages can also be found at [1515].

focuses on Alloy and TLA+ because we believe they are
quite close to excel at handling such systems, and, in fact,
the language here proposed combines their best aspects.

An alternative perspective to the problem of model-chec-
king multiple configurations arises from the area of SPLs,
a set of software products that share common base func-
tionalities. The variability between the products is defined
through the selection of features; acceptable feature combi-
nations (i.e., products) are defined through feature diagrams
that impose simple dependencies and conflicts between them.
Model-checking an SPL involves checking the properties for
every acceptable product. Under our perspective, each of
these products represents a configuration of the system, re-
stricted by the (rather basic) structural properties entailed
by the feature diagram, that are to be checked for the tem-
poral properties. Several techniques are able to model-check
SPLs. Most, however, are not accompanied by high-level
specification languages that allow both the modeling of the
SPL and the feature diagram. One such language, with sup-
port for model-checking, is fSMV [2727, 77], an extension to
SMV. It follows a compositional approach, in the sense that
each feature is implemented through modifications to the
base system. FeatureAlloy, an extension to Alloy following
a similar approach, has also been proposed [11]. In contrast,
in annotative approaches the SPL is represented by a single
system whose behavior is defined by guards over the selected
features. One such language is fPromela [66], an extension to
the Promela language of SPIN. These approaches suffer from
the expressiveness problems of the languages they extend
that have already been exposed previously in this section.

3. THE ELECTRUM FRAMEWORK
Considering the presented state-of-the-art, this work pro-

poses an extension of the Alloy specification language with
temporal logic operators – denoted Electrum – and associated
model-checking tools, that address all four characteristics
identified in Section 11.

3.1 Language
This section describes the proposed Electrum language

and its formal semantics in several steps, starting with an
informal overview in Section 3.1.13.1.1. To ease the presentation
of the semantics, Section 3.1.23.1.2 introduces an abstract syntax
for a representative subset of Electrum, whose semantics is
expressed in terms of a translation to a first-order temporal
logic. For the sake of readability, this logic is described in
Section 3.1.33.1.3, before the translation itself in Section 3.1.43.1.4.

3.1.1 Overview
This section introduces Electrum, whose concrete syntax is

presented in Fig. 33. The language is inspired both by Alloy,
for its structural concepts, and by TLA+, for its ability to
freely define actions as predicates with primed variables. The
specification of the examples in Electrum, as well as their
Alloy and TLA+ versions, can be found here [1515].

Likewise Alloy, structure in Electrum is introduced through
the declaration of signatures which specify sets of uninter-
preted atoms. Hierarchical signatures can be introduced
by extension, in which case the sub-signatures must be dis-
joint, or through inclusion, in which case sub-signatures may
overlap with each other. Abstract signatures are comprised
only of the atoms of their sub-signatures. Finally, signatures
may be attached with multiplicities that restrict the num-



ber of atoms that they may contain. Signature declarations
may also introduce fields with arbitrary, finite arity, that
represent relations between the various signatures. These
constructs are essentially those provided by the standard
Alloy language.

Contrary to Alloy, however, both signatures and fields
may be additionally tagged as variable, meaning that their
valuation may evolve in time. In contrast, non-variable
signatures and fields are assumed to be static, meaning that
their valuation remains fixed throughout the evolution of the
system. Thus, Electrum provides a clear distinction between
the configuration of the system (static constructs) and its
evolution (variable constructs) (R1R1).

Additional restrictions are introduced through the defini-
tion of paragraphs: facts (axioms) impose restrictions on the
specifications and assertions denote properties that are to be
checked over the specification. Predicates and functions are
essentially reusable formulas and expressions, respectively.
Signatures may also be annotated with local facts, that apply
to every atom of the signature in every instant of time.

All these paragraphs are comprised of logical formulas that
borrow their expressiveness from Alloy (supporting universal
and existential quantifications, as well as transitive closure
operations) and from TLA+ (supporting classical temporal
operators22 as well as primed expressions), and thus allow
both the specification of rich structural properties (R2R2), the
definition of actions in a flexible manner (R3R3).

Verification commands (to be model-checked) are inte-
grated in the specification file (again, inspired by Alloy),
allowing the verification of rich temporal properties (R4R4).
Check commands are passed an assertion and scopes for
the (static and variable) signatures and instruct the model-
checker to try to prove the assertion, while run commands
instruct the model-checker to yield an example instance of the
specification if there is one (this way, it also shows whether
the specification is indeed consistent). The scopes bound
the maximum number of elements that a top-level signature
will at least contain and are described in more detail in Sec-
tion 3.2.13.2.1. Remark that the model-checking techniques are
expected to explore every valid valuation of signatures and
fields up to the given bound33. It should be noticed that, for
a variable signature, the scope bounds the total number of
its instances over the complete life of the modeled system44.

Figure 44 presents the hotel room locking system specified
in Electrum. Rooms, guests and keys are introduced by static
signatures, meaning that their valuation remains fixed along
the system evolution. There is also a singleton signature FD
representing the front desk. There is only one static field
keys, that represents the set of keys assigned to each room;
this distribution is constrained to be a partition by fact
DisjointKeys. Every other field, denoting the key currently
coded for a room, and the registry of occupants and assigned
keys at the front desk, is variable. Actions are declared as
regular predicates that refer to the post-state by priming

2The keyword after was chosen to stand for the X (read:
“next”) temporal operator because, in Alloy, next is a pred-
icate from a commonly used standard library for ordering,
and we wanted to preserve upward compatibility with Alloy.
3This contrasts with TLC configuration files which assign
concrete valuations to the constant parameters.
4As time may be unbounded, this is a way to retain decid-
ability while remaining faithful to the successful bounded
verification practice of Alloy.

spec ····= module qualName [ [ name,+ ] ] import∗ paragraph∗

import ····= open qualName [ [ qualName,+ ] ] [ as name ]
paragraph ····= sigDecl | factDecl | funDecl | predDecl
| assertDecl | checkCmd

sigDecl ····= [ var ] [ abstract ] [ mult ] sig name,+

[ sigExt ] { varDecl,∗ } [ block ]
sigExt ····= extends qualName | in qualName [ + qualName ]∗

mult ····= lone | some | one
decl ····= [ disj ] name,+ : [ disj ] expr
varDecl ····= [ var ] decl
factDecl ····= fact [ name ] block
assertDecl ····= assert [ name ] block
funDecl ····= fun name [ [ decl,∗ ] ] : expr { expr }
predDecl ····= pred name [ [ decl,∗ ] ] block
expr ····= const | qualName | @name | this | unOp expr
| expr binOp expr | expr arrowOp expr | expr [ expr,∗ ]
| expr [ ! | not ] compareOp expr
| expr ( => | implies ) expr else expr

| quant decl,+ blockOrBar | ( expr ) | block
| { decl,+ blockOrBar } | expr’

const ····= none | univ | iden
unOp ····= ! | not | no | mult | set | ∼ | * | ^
| eventually | always | after

binOp ····= || | or | && | and | <=> | iff | => | implies
| & | + | - | ++ | <: | :> | . | until | release

arrowOp ····= [ mult | set ] → [ mult | set ]
compareOp ····= in | =
letDecl ····= name = expr
block ····= { expr∗ }
blockOrBar ····= block | | expr
quant ····= all | no | mult
checkCmd ····= check qualName [ scope ]

scope ····= for number [ but typescope,+ ] | for typescope,+

typescope ····= [ exactly ] number qualName
qualName ····= [ this/ ] ( name/ )∗ name

Figure 3: Concrete syntax of the Electrum language (addi-
tions w.r.t. the Alloy syntax are underlined).

variable expressions. Finally, the fact traces restricts the
acceptable states of the system: a state is either the initial
one or obtained from the application of the actions. Over
this specification, the assertion NoBadEntry verifies whether
there are unwanted room entries. This assertion is referred
by the check command immediately below that instructs
the model-checker to test the assertion for a scope of at
most 3 elements per signature (it also defines the scope for
time instants if the analysis is performed by the bounded
model-checker, as will be described in Section 3.23.2).

The flexibility of the language allows the adoption of varied
specification idioms that could be cumbersome in more rigid
specification languages. For instance, in the event idiom,
actions are embodied by model elements rather than by
predicates. This allows the developer to define a hierarchy
of actions, allowing the sharing of parameters (e.g., in the
room locking system, every action has a guest parameter)
and of constraints (e.g., in the front desk actions, the frame
condition on the room coded keys is shared), resulting in
simpler and more manageable specifications.

Figure 55 depicts an excerpt of the hotel room locking
system specified with the event idiom in Electrum, where
each action is embodied by a variable signature: the presence
of an event atom in an instant denotes the occurrence of
that action. This excerpt is an alternative to the check-in
action predicate specified in Fig. 44. When defining these
event signatures, one must be aware of the bounded nature of
the universe in order to not restrict the application of actions.
Here, the multiplicity one of the abstract Event signature,
from which the concrete events inherit, forces the existence



open util/ordering[Key] as ko

sig Key {}

sig Room {
keys: set Key,
var currentKey: one keys }

fact DisjointKeySets {
keys in Room lone → Key }

one sig FD {
var lastKey: Room → lone Key,
var occupant: Room → Guest }

sig Guest {
var gKeys: Key }

fun nextKey[k: Key, ks: set Key]: set Key {
min[k.nexts & ks] }

pred checkin[g: Guest, r: Room, k: Key] {
g.gKeys’ = g.gKeys + k
no FD.occupant[r]
FD.occupant’ = FD.occupant + r → g
FD.lastKey’ = FD.lastKey ++ r → k
k = nextKey[FD.lastKey[r], r.keys]
all gg: Guest - g | gg.gKeys’ = gg.gKeys
all r: Room | r.currentKey’ = r.currentKey }

. . .

pred init {
no Guest.gKeys
no FD.occupant
all r: Room | FD.lastKey[r] = r.currentKey }

fact traces {
init
always | some g: Guest, r: Room, k: Key |
entry[g, r, k] or checkin[g, r, k] or checkout[g] }

assert NoBadEntry {
always | all r: Room, g: Guest, k: Key |
entry[g, r, k] and some FD.occupant[r] =>
g in FD.occupant[r] }

check NoBadEntry for 3
but 5 Time // Time scope only for bounded verification

Figure 4: Hotel room locking system under Electrum.

of exactly one event at each instant, although the concrete
event signature to which it belongs may vary in time (this
also simplifies the fact traces, that will only be required to
enforce the init constraint). Parameters of the actions are
embodied by the event-signature fields: since all the actions
in the hotel room locking system have a guest parameter,
this field is defined at the top-level event signature. Another
abstract signature FDEvent represents every action that occurs
at the front desk, enforcing the frame condition on the door
locks’ coded keys. The concrete event signatures then define
the specific constraints that restrict their occurrence at each
instant. Note how, in the check-in action presented in Fig. 55,
the constraint is identical to the one defined in the predicate
idiom in Fig. 44 (modulo the frame condition), and thus
no additional burden was imposed on the developer. The
remaining operations would be defined in a similar manner.

Figure 66 depicts an excerpt of a possible specification of the
elevator SPL in Electrum to illustrate its potential to handle
systems with variability (the actions are omitted). Here,
features are simply declared as static signatures, a product
being simply a subset of those features. Conflicts between
features are enforced through constraints over products. The

one var abstract sig Event {
g: Guest }

var abstract sig FDEvent extends Event { } {
currentKey’ = currentKey }

var sig Checkin extends FDEvent {
r: Room,
k: Key } {
g.gKeys’ = g.gKeys + k
no FD.occupant[r]
FD.occupant’ = FD.occupant + r → g
FD.lastKey’ = FD.lastKey ++ r → k
k = nextKey[FD.lastKey[r], r.keys]
all gg: Guest - g | gg.gKeys’ = gg.gKeys }

Figure 5: Excerpt of the hotel room locking system under
Electrum in the event idiom.

abstract sig Feature {}
one sig FIdle, FExecutive, FPark extends Feature {}

sig Product in Feature {} {
FIdle + FPark not in this }

sig Floor {} {
one b: LandingButton | b.floor = this
one b: LiftButton | b.floor = this }

abstract sig Button { floor: one Floor }
sig LandingButton, LiftButton extends Button {}

var one sig Current in Floor {}
var lone sig Open, Up {}
var sig Pressed in Button {}

. . .

pred prop {
always { all f: Floor | floor.f&LiftButton in Pressed =>

eventually { current = f && some Open } } }

check { FIdle = Product => prop } for 6 but 10 Time

Figure 6: Excerpt of the of the elevator SPL under Electrum.

floors and the respective buttons – one landing and one
elevator button per floor – are also static and defined by
structural constraints. The remaining signatures depict the
variable components of the model. At each instant, one floor
marks the current position of the elevator; “lone” variable
signatures act as temporal Boolean variables, that denote
whether the elevator is open and moving in the upward
direction; finally, a set of buttons is selected as pressed at
each moment. Properties can then be checked for arbitrary or
particular products, e.g., the check command in the excerpt
checks whether calls from elevator buttons are eventually
answered for products that only implement the idle feature.

3.1.2 Electrum Kernel
Following the approach of [1818, App. C], we simplify the

presentation of the semantics of our framework by consid-
ering a stripped-down language, dubbed Electrum Kernel,
focusing only on formulas and relational terms. The abstract
syntax of Electrum Kernel is shown in Fig. 77. For constraints
and relational expressions, the translation from Electrum
is relatively straightforward and follows that of Alloy ker-
nel (specifically, in formulas, the dual logical operators and
connectives may be defined in the obvious way).

In Electrum Kernel, the main concept is that of relation.
We assume the existence of a setR of variable relations, which



formula ····= not formula | after formula
| always formula | eventually formula
| formula until formula | formula and formula
| term in term | all decl | formula

term ····= x ∈ V ar | r ∈ R | ^term | ∼term
| term & term | term × term | term . term

| term’ | { decl+ | formula }
decl ····= x : term

Figure 7: Electrum Kernel abstract syntax.

are declared with their arity. Signatures and fields declared
in Electrum are translated into Electrum Kernel relations
(unary relations in the case of signatures). We also assume
the existence of a set Var of first-order variables. Additional
information expressed in signature and field declarations in
Electrum (multiplicities, the fact that some signatures and
fields are static, signature hierarchy and local facts) must be
specified by formulas in Electrum Kernel (in our prototypes,
more efficient encodings are implemented).

In order to illustrate the translation from Electrum to
Electrum Kernel, let us consider the following example:

abstract sig A { r: some A }
var sig B,C extends A {}

In the corresponding Electrum Kernel specification, three
unary relations and one binary relation are declared.

Relations: A(1), B(1), C(1), r(2)

The fact that A is not a variable signature is expressed
by the formula always A’ = A. The fact that B and C ex-
tend A, which is abstract, can be expressed by the formula
always (A = B + C and no B & C).

Now, the typing and the multiplicity constraint related to
the field r are expressed as follows:

always r in A → A

always all a: A | some a.r

Local facts are surrounded by an always operator after
translation, forcing them to hold in every instant of time.

3.1.3 FOLTL
The semantics of Electrum Kernel is expressed via a trans-

lation into First-Order Linear Temporal Logic (FOLTL) [1616,
33]. Here we briefly describe its syntax and semantics.

Definition 1. Given mutually-disjoint sets V and P of
(resp.) variables and predicates (with their arity), the syntax
of FOLTL formulas is given as follows55:

ϕ ····= P (x1, . . . , xk) | x1
.
= x2

| ¬ϕ | ϕ ∧ ϕ | ∀x.ϕ | Xϕ | Gϕ | Fϕ | ϕU ϕ

with xi ∈ V and P ∈ P (of course, P (x1, . . . , xk) is a formula
only if the arity of P is k).

Derived constructs (∃, ∨, ⇒) can be defined in the obvious
way. Xϕ (read “next ϕ”) means that ϕ is true in the next
instant, Gϕ (read “always ϕ”) means that ϕ will always be
true, Fϕ (read “eventually ϕ”) means that ϕ will eventually
be true and ϕUψ (read “ϕ until ψ”) means that ϕ is true and
remains true until ψ becomes true. The “release”’ operator
can be derived from ϕU ψ in the usual way.

5The symbol
.
= stands for equality in FOLTL in order to

avoid notation clashes.

FOLTL is provided with both unbounded and bounded
semantics. For the unbounded semantics, time is interpreted
over the set N of non-negative integers. Each first-order
variable is interpreted over the domain D.

Definition 2. A model for FOLTL is a pair M = (D, ρ)
where: (1) the set D is the domain of first-order variables
and (2) ρ maps each predicate P ∈ P at each instant i ∈ N
to a relation ρ(P, i) ⊆ Dk, where k is the arity of P .

The satisfaction of a formula by a model is then defined
as follows.

Definition 3. Given a model M, a formula ϕ, an instant
i ∈ N, and an environment σ, mapping each free variable
x to an element in the domain D, the satisfaction relation
M, σ, i |= ϕ is defined inductively as follows.

M, σ, i |= x
.
= y if σ(x) = σ(y)

M, σ, i |= P (x1, . . . , xn) if (σ(x1), . . . , σ(xn)) ∈ ρ(P, i)
M, σ, i |= ¬ϕ if M, σ, i 6|= ϕ
M, σ, i |= ϕ ∨ ψ if M, σ, i |= ϕ or M, σ, i |= ψ
M, σ, i |= ∀x.ϕ if for all a ∈ D,M, σ[x 7→ a], i |= ϕ
M, σ, i |= Xϕ if M, σ, i+ 1 |= ϕ
M, σ, i |= Gϕ if for each j ≥ i,M, σ, j |= ϕ
M, σ, i |= Fϕ if there is j ≥ i s.t. M, σ, j |= ϕ
M, σ, i |= ϕU ψ if there exists j ≥ i s.t. M, σ, j |= ψ,

and for all i ≤ k < j,M, σ, k |= ϕ.

A formula ϕ without free variables is satisfiable if and only
if there exists a model M such that M, ∅, 0 |= ϕ, which is
simply denoted by M |= ϕ.

The bounded semantics of FOLTL can be derived from the
unbounded one following the standard technique described
in [22]. In (bounded) models of size k (denoting traces with k
states), ρ is partial function, with domain {0 . . . k − 1}. If
such trace has a loop to time 0 ≤ l < k − 1, i.e., the value
of ρ(s, k − 1) is equal to the value of ρ(s, l) for all s, then
the semantics is the same as in the unbounded case, after
unrolling the model to be defined over N. If the trace has
no loop, then the semantics has to be slightly adjusted, as
such traces cannot be considered valid models of (invariant)
formulas of type Gϕ (as there could be a state after k−1 that
violates ϕ), and only of formulas of type Fϕ (as discussed
in [22], G and F are no longer duals in a bounded semantics,
hence the inclusion of both in the language kernel).

Note that we do not follow the temporal semantics from
TLA+, which makes formulas invariant under stuttering
(for compositionality purposes), but use instead the classic
semantics of temporal logic, which allows to specify behaviors
that may not be invariant under stuttering.

3.1.4 From Electrum Kernel to FOLTL
The essence of the interpretation of Electrum Kernel into

FOLTL boils down to removing relational terms so that
we end up with formulas only. This is a standard approach
when embedding the relational logic of Alloy into FOL [1414, 99].
Thus, the main operation consists in removing all membership
and inclusion statements present in Electrum Kernel formulas
and replacing them with corresponding FOLTL subformulas.
Hence the semantic map (denoted J−K) relies on a function
[− ∈ −] which, given a pair of a tuple of variables and a
term, yields a formula stating that the former is a member
of the latter. For the sake of readability, tuples are written



Jnot fK = ¬JfK
Jafter fK = XJfK

Jalways fK = GJfK
Jeventually fK = FJfK

Jf1 until f2K = Jf1K U Jf2K
Jf1 and f2K = Jf1K ∧ Jf2K

Jt1 in t2K = ∀~x.[~x ∈ t1]⇒ [~x ∈ t2]

where ~x are fresh variables;

Jall x : t | fK = ∀x.[x ∈ t]⇒ JfK
[x ∈ y] = x

.
= y

[~x ∈ r] = r(~x)

[〈x1, x2〉 ∈ ^t] = there are y1, . . . , yn such that

y1
.
= x1 ∧ yn

.
= x2 ∧

∧
i<n

[〈yi, yi+1〉 ∈ t]

[〈x1, x2〉 ∈ ∼ t] = [〈x2, x1〉 ∈ t]
[~x ∈ t1 & t2] = [~x ∈ t1] ∧ [~x ∈ t2]

[~x ∈ t1 × t2] = [~y ∈ t1] ∧ [~z ∈ t2]

with ~x = ~y~z

[~x ∈ t1.t2] = ∃u.[~yu ∈ t1] ∧ [u~z ∈ t2]

where ~x = ~y~z, and u is a fresh variable,

[~x ∈ t′] = X[~x ∈ t]

[~x ∈ {~y : ~t | f}] =
( ∧

16i6|~x|

[xi ∈ ti]
)
∧ Jf{~y ← ~x}K

where f{~y ← ~x} is the usual substitution.

Figure 8: From Electrum Kernel to FOLTL (cf.. Def. 44).

as vectors, their concatenation is denoted by juxtaposition
and | · | stands for their length.

Definition 4. The formal semantics of Electrum Kernel
formulas into FOLTL formulas is defined by structural in-
duction according to Fig. 88.

3.2 Verification
While Electrum supports the definition of both rich speci-

fications and properties to be checked over them, it is only
useful if accompanied by effective model-checking techniques.
Fitting the dual nature of the problem at hand, two distinct
approaches to the model-checking of Electrum specifications
were explored: one bounded and another unbounded. Before
detailing these, we first describe the commands provided by
Electrum for formal analysis.

3.2.1 Commands and scopes
As presented in Section 3.1.13.1.1, an Electrum specification

integrates execution commands for the model-checker. The
difference between both verification approaches lies in the way
time is handled. In the bounded approach, time is internally
handled as a signature and is thus bounded the same way
as others, and in the other time is left unbounded. The
maximum number of time instants considered by the bounded
approach is also defined in the scope of the commands (which
is simply ignored by the unbounded approach).

Then, given an Electrum model and a scope, every sig-
nature or field is instantiated depending on the bound of
signatures. The model and the “run” (or “check”) command
give rise to a formula ϕM and a formula ϕr (or ϕc), re-
spectively. Finally, if the command is a “run”, the formula
ϕM ∧ ϕr is checked for satisfiability ; otherwise we check
whether ϕM ⇒ ϕc is valid. In the following, we detail how
these verification problems translate in practice.

3.2.2 Bounded model-checking
The bounded semantics of FOLTL described in Section 3.1.33.1.3

can be directly encoded into Alloy itself, as described in [88],
by explicitly introducing a time signature with a total or-
der imposed over it to represent the trace; potential loops
are represented by a relation from the last time atom to a
previous one. Our bounded model-checker is implemented
using this alternative encoding, and deployed as a new ver-
sion of the Alloy Analyzer, to minimize the adoption time
by Alloy practitioners. This Analyzer not only generates a
single counter-example (depicted visually), but allows the
user to iterate over all possible counter-examples (within the
specified bounds) that broke the specified properties, thus
providing the user with a wider perception of what may be
the problems of the specification. Note that this bounded
model-checking procedure is iterative, checking the proper-
ties for increasing trace sizes up to the specified scope on
time, stopping along the way if a counter-example is found.

3.2.3 Unbounded model-checking
This technique is implemented in a prototype called the

Electrum Analyzer. It relies on a direct embedding into the
nuXmv tool66 which implements various algorithms perform-
ing unbounded model-checking [44] (we currently rely on the
so-called “k-liveness” algorithm). Its free-software predeces-
sor, NuSMV, can also be used but it is far less efficient on
the examples we have studied so far. The principle of the
translation proceeds as described before, chaining a transla-
tion from Electrum to Electrum Kernel, then to FOLTL and
finally to LTL. Compared to the semantics presented in this
paper, several simple optimizations are also implemented
(smarter optimizations are left for future work).

Now, nuXmv expects a description of a transition system
and a formula to check on the latter, whereas an Electrum
model is essentially a formula specifying a set of transition
systems (that satisfy it). Hence the generated SMV model
does not contain an explicit transition system: (i) signatures
and fields give rise to “frozen” or plain variables depending
on their status (static or variable); (ii) various formulas re-
lated to the typing and inclusion of signatures and fields are
combined to form an “invariant” section in the file. This is
important as it allows to constrain and reduce the size of
the state space. A possible improvement would be to infer a
(non-deterministic) transition system and add a correspond-
ing SMV “assign” section, restricting the state space further.
Then, a so-called SMV “LTL specification” is produced that
represents the formula to be verified77.

Finally, it should be remarked that the present approach
allows to perform verification on an unbounded time horizon,
but it does not allow to perform scenario exploration, namely

6Available at https://nuxmv.fbk.euhttps://nuxmv.fbk.eu.
7This formula is in practice dualized (w.r.t. the description
in Section 3.2.13.2.1) as nuXmv expects specifications expressed
as validity problems rather than as satisfiability ones.

https://nuxmv.fbk.eu


iterate over counter-examples, the same way the bounded
approach does. Therefore, regardless of practical performance
results, both approaches are complementary.

4. EVALUATION
This section presents the empirical evaluation of our lan-

guage and the proposed model-checking techniques. Con-
cretely, we aim to assess how the performance of the proposed
bounded and unbounded checking techniques compare with
each other and with other existing, similar approaches.

To answer these questions, a detailed evaluation of the
proposed techniques under the examples from Section 1.11.1
is presented, as well as a summary of the results for an
additional specification with rich configurations.

Regarding the hotel room locking system, two versions are
considered: Hotel (1) checks the desired safety property
and thus leads to counter-examples, and Hotel (2) checks
the same property, but with an additional constraint that
prohibits any other action to occur between a guest checking
in and entering a room, and, as a result, is correct. Recall
nonetheless that the counter-example in Hotel (1) does not
occur with every configuration. In these examples, the size
of the model n denotes the number of keys, rooms and guests
available in the universe. For the spanning tree algorithm, we
consider the following verification goals: Span (1) checks the
liveness property without enforcing fairness, thus producing
counter-examples; Span (2) checks for the liveness property
but with fairness enforced, and thus is correct; and Span
(3) checks for the safety property and does not generate
counter-examples. Here, model size n denotes the number of
processes and tree levels in the universe. For the SPL example
we consider two check commands: Elevator (1) tests the
liveness property for products implementing only the idle
feature, which holds; Elevator (2) tests the property for
arbitrary products which does not hold. Here n denotes the
exact number of floors.

Additionally we explore another distributed algorithm over
arbitrary topologies that is packaged with the Alloy Ana-
lyzer, whose specification was quite simplified with Electrum.
Concretely, we consider a distributed algorithm for the elec-
tion of a leader in a network with ring topology, inspired
by the specification presented in [1818]. This specification is
checked for two temporal properties: that at least one leader
is eventually elected (a liveness property) and that at most
one leader is elected (a safety property). Different versions
of the specification were considered: Ring (1) checks the
specification for liveness without fairness enforced, Ring (2)
checks for liveness with fairness, and Ring (3) checks for
safety, which holds.

As has already been stated in Section 22, the two existing
techniques that we believe are best suited to model-check
specifications with rich configurations are Alloy and TLA+.
Since our bounded technique actually relies on Alloy, we will
focus on comparing the performance of our two techniques
with that of TLA+/TLC.

All tests were run multiple times using Alloy 4.2 with the
MiniSat solver and nuXmv 1.0.1, on a 1,8 GHz Intel Core i5
with 4 GB memory running OS X 10.10. TLC 2.05 was used
for the TLA+ tests. Note that, for the unbounded approach,
we pre-process Electrum files to replace every command by
all possible combinations of the said command with exact
scopes. Then we generate as many corresponding SMV files,
and run nuXmv in parallel on all CPU cores using GNU

parallel [2929], starting with the smallest scopes and stopping
immediately if a property is refuted.

4.1 Results
Figures 9a9a and 10a10a present the performance for the hotel

room locking system and the spanning tree algorithm for a
fixed size n = 4 and increasing trace length t for the bounded
scenario. Labels Hn and Sn stand for the Hotel (n) and
Span (n) scenarios respectively, and Bnd and Ubd stand for
the bounded and unbounded techniques.

In the unbounded technique the properties are checked
for arbitrary trace lengths, and thus their performance is de-
picted by a constant function in these graphs. Note also that
in the bounded scenario, each trace length aggregates the
time spent verifying the smaller traces, i.e., the time spent
to assess that a property holds for t = 4 includes checking
the property for lengths 1, 2 and 3. In the scenarios where
there are counter-examples to be found, the performance of
the bounded technique stabilizes at the t value where that
counter-example finally occurs (e.g., 5 for Hotel (1)). This
is due to the iterative nature of the technique: once a counter-
example is found, the procedure is stopped and not run for
larger t values. In contrast, when no counter-examples occur,
the technique must be run for every trace length value and
keeps increasing with t. The performance of the unbounded
approach is also better when there are counter-examples to
be found due to the parallelization of the procedure that
stops as soon as a counter-example is found. For the sce-
narios without counter-examples the procedure must check
the properties for every launched process. The bounded
technique outperforms the unbounded one for smaller trace
lengths, but their performance starts to converge as the t
value increases. This reinforces the common policy of relying
on bounded techniques to quickly discard trivial counter-
examples, and move on to unbounded techniques only when
the confidence level is high enough.

In contrast, Figs. 9b9b and 10b10b present the performance of
the model-checking techniques for increasing model size n
and fixed trace length t = 20 (for the bounded technique).
Again, for the bounded scenario the results aggregate the
time spent for trace lengths up to 20. At such t value, the
performance of the two model-checkers is almost similar for
the considered examples, although the bounded technique
still outperforms the unbounded one. For Hotel (1) and
Span (1), the performance of the bounded technique im-
proves at n = 3 and n = 2, respectively, because these are the
sizes where counter-examples first appear, and for smaller
sizes the properties must be checked for every trace length.

Table 11 summarizes the evaluation for the explored exam-
ples and reinforces the conclusions discussed above. It also
presents the number of valid configurations for each of the
scenarios. Note how the hotel room locking system already
has 18960 valid configurations for n = 4. The Alloy Analyzer
has a powerful symmetry breaking algorithm that infers an
equivalence class within the search space, highly reducing
the number of explored models. For example, in the same
example, the number of non-symmetric configurations is only
520. By performing the bounded model-checking of Electrum
via an embedding into Alloy we take advantage of this mecha-
nism, hence the quite positive results for this technique. This
also points for interesting possible optimizations of the un-
bounded model-checking technique, namely its parallelization
based on unique non-symmetric configurations.



(a) Fixed n = 4 and increasing t. (b) Fixed t = 20 and increasing n.

Figure 9: Performance tests for Hotel (1) and Hotel (2).

(a) Fixed n = 4 and increasing t. (b) Fixed t = 20 and increasing n.

Figure 10: Performance tests for Span (1), Span (2) and Span (3).

Spec. n #Cfg (sym) Type Holds Bnd (s) Ubd (s)

Hotel (1) 4 18960 (520) S × 0.2 47.5
Hotel (2) 4 18960 (520) S X 31.2 3844.2
Span (1) 4 216 (16) L × 0.0 14.5
Span (2) 4 216 (16) L X 35.1 803.9
Span (3) 4 216 (16) S X 36.4 125.8
Ring (1) 3 40 (9) L × 0.0 3.4
Ring (2) 3 40 (9) L X 2.0 156.9
Ring (3) 3 40 (9) S X 31.9 35.2

Elevator (1) 3 1 (1) L × 0.0 12.3
Elevator (2) 3 48 (48) L X 21.1 2246.8

Table 1: Summary of the performed tests (for t = 20 for the
bounded scenarios); S is for “safety”, L is for “liveness”.

For the comparison with TLC, we encoded the considered
examples in TLA+. In general, our model-checkers outper-
form TLC when there are counter-examples to be found.
For instance, for Hotel (1) with n = 4, TLC takes 545.2
seconds to generate a counter-example. In contrast, TLC
outperforms our unbounded technique when there are no
counter-examples. For instance, for Hotel (2) TLC takes
256.6 seconds to check that the specification is correct. Note
that our unbounded technique, unlike TLC which imposes
constraints on how actions can be specified, can handle ac-
tions specified in a very liberal declarative style. Nonetheless,
our experiments show that TLC is heavily affected by the
number of valid configurations (worsened by the fact that
it is not able to explore symmetry), since these affect the
number of initial states that must be explored. In fact, in the
hotel scenarios, for sizes higher than n = 4, TLC runs out of
memory when calculating the initial states. Our unbounded
model-checker is still able to terminate in such scenarios.

5. CONCLUSION
This work proposed a language, Electrum, mixing the best

aspects of both Alloy and TLA+, currently two of the most
popular formal specification languages, and that we believe
hits the sweet spot for the specification of dynamic systems
requiring rich declarative specifications (both of structural
aspects, namely configurations, and dynamics). Two model-
checking tools for this language were also developed, one
bounded and the other unbounded, that our preliminary
evaluation already showed to be competitive, performance
wise, with existing model-checkers, in particular TLC. The
bounded model-checker is useful at early analysis stages,
namely excelling at founding and iterating over counter-
examples, while the unbounded one, naturally slower, should
be used afterwards for further confirmation of the results.

In the future we intend to improve the Electrum frame-
work in two key aspects: first, building on previous work
on scenario exploration [2525, 1010, 2323], we intend to improve
the counter-example generation and iteration features, by
allowing the user to parameterize the tool to prioritize certain
aspects, for example, showing first counter-examples similar
to those found in previous versions of the specification; sec-
ond, we intend to improve the efficiency of the unbounded
model-checking technique in order to take advantage of sym-
metry breaking, namely explore a “hybrid” verification ap-
proach where a bounded analyzer would compute in advance
(bundles of) non-symmetric static configurations, to be used
to optimize the LTL specifications passed to each (parallel)
unbounded checking process.
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