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Abstract

The aim of the present paper is the stochastic modeling and statistical inference of a
component which deteriorates over time, for prediction purpose. The deterioration is due
to defects which appear one by one and next independently propagate over time. The
motivation comes from an application to passive components within electric power plants,
where (measurable) �aw indications �rst initiate (one at a time) and next grow over time.
The available data come from inspections at discrete times, where only the largest �aw
indication is measured together with the total number of indications on each component.
Though detected, too small indications cannot be measured, leading to censored obser-
vations. Taking into account this partial information coming from the �eld, a speci�c
stochastic model is proposed, where the �aw indications initiate according to a Poisson
process and next propagate according to competing independent gamma processes. A
parametric estimation procedure is developed, tested on simulated data and then applied
to the industrial case. The �tted model is next used to make some prediction over the fu-
ture deterioration of each component and over its residual operating time until a speci�ed
critical degradation level is reached.

Keywords. Competing risks; Composite likelihood; Gamma process; Poisson process;
Reliability theory; Residual life

1 Introduction and motivating example

1.1 Introduction

Competing risks are largely used in survival or reliability analysis when several causes of death
or failure are in competition. In a reliability study, the competing risk model can be seen
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as a series system, which fails whenever one of its component fails. To be more speci�c, let
X1, . . . , Xk be the respective lifetimes of a k−component system with competing risks. The
lifetime of the system then isX = min{X1, . . . , Xk} and the index C such thatX = XC is known
as the failure cause. The failure cause is generally observed together with the system lifetime,
or it may be partially observed, with C ∈ C ⊂ {1, . . . , k}. The later case is known as a masked
cause of failure. In order to prevent identi�ability issues that may occur when lifetimes Xj's are
dependent, the lifetimes often are considered as independent. Also, the number of competing
causes is generally �xed, see Crowder [8] for an overview on classical competing risks models and
their application. In presence of dependency (see [21] for an example where the dependence is
due to the sharing of a common frailty random variable by the competing risks), it is generally
the cause speci�c hazard rates that are estimated. The number of competing causes may also
sometimes be random, see [2] for an example in biostatistics. It seems however that the case
of a random number of competing causes with non identically distributed component lifetimes
has not been much addressed in the previous survival or reliability analysis literature.

In this paper, we are interested in a system subject to several competing deterioration
sources (defects), which appear one at a time and next independently propagate. These de-
fects could be for instance pits due to corrosion [13], fatigue cracks [10], or any measurable
indications of deterioration which initiate over time and next propagate. In the present ap-
plicative context, these defects correspond to �aw indications, which are not further speci�ed,
due to con�dentiality issues. However we use this vocabulary in the remaining of the paper,
and we will speak of "�aw indication" or "indication" for short. The competing deterioration
sources (the �aw indications) initiate at random times T1 < T2 < · · · , which are the points
of a counting process

(
Nt =

∑∞
i=1 1{Ti≤t}

)
t≥0

. Once initiated at time Tj, the j�th indication

propagates according to a non decreasing process Z(j) = (Z
(j)
t )t≥0, which is set equal to zero on

[0, Tj). The system is considered to be out of order as soon as the value of one among all the
initiated �aw indications has reached a critical threshold, known in advance. This leads to a
competition between the Nt indications present at time t. Then we call competing degradation
process the bivariate process (Nt, Zt)t≥0 where Zt = max{Z(1)

t , . . . , Z
(Nt)
t }. This denomination

comes from the fact that the crossing time of the degradation level ` by (Zt)t≥0 is nothing but

the minimum of the crossing times of processes Z(1), . . . , Z(Nt) for the same level. This connec-
tion between multiple degradation processes and competing risks has been used to derive new
lifetime models. In [20] some examples are provided by using Brownian Maximum Processes
or gamma processes for the degradation process, whereas in [11] the authors use degradation

processes of type Z
(j)
t = g(t;Aj) where g is a known function and Ai a random vector.

Though the propagation is assumed to be similar for each of the �aw indications, their
initiation times are di�erent, leading to non identically distributed Z(j)'s and consequently, to
a competition between a random number of non identical degradation processes. A similar
approach has been proposed in Kuniewski et al. [13], in order to evaluate damages caused by
corrosion of industrial systems in the oil industry. Their model combines a non homogeneous
spatial Poisson process for the initiation process (Nt)t≥0 with a homogeneous gamma process
for the propagation of the defect. The parameters of both Poisson and gamma processes
are assumed to be known, up to a proportionality constant for the Poisson process. The
paper develops a Bayesian method for estimating the proportionality constant and predictive
indicators, based on partial information data including imperfect defects detection. In [3],
Caballé et al. propose a condition-based maintenance of a system subject to fatal shocks and
to deterioration due to pitting corrosion, with a similar model as [13] for the latter. In the
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same way, Cha and Castro envision sudden failures in competition with soft failures due to
a similar deterioration model in [6], where they study some positive dependence properties
between the competing failure times and some condition-based maintenance policy. A very
close deterioration model is also used in [4, 25] (among others).

The paper is organized as follows. First, we introduce in the next sub-section the industrial
example which motivated the study. The probabilistic model is described in Section 2, where
the conditional probability density function of Zt given Nt is calculated, together with addi-
tional prognostic indicators of interest for the application. All the calculations are relegated to
Appendices A�C. In Section 3, a parametric estimation procedure is proposed, which accounts
for the incomplete information data coming from the �eld, as described in the next sub-section.
Section 4 is devoted to numerical developments, including a validation of the estimation method
through a Monte Carlo study as well as the application to the real data set. Some concluding
remarks are given in the last section.

1.2 Motivating industrial application

EDF, the world's biggest electricity generator, performs in-service inspections of the passive
components within its electric power plants in order to ensure that their degradation is lower
than a critical level and guarantee the safety and the availability of the installations. These
examinations are regular but non periodic, and their times di�er from one component to the
other. They allow to collect successive degradation measurements for each component, from
which the point is to predict the degradation propagation and estimate the residual operation
time upon which the critical degradation level (denoted by `) is reached.

By an examination, the measurement process does not always give a perfect image of the
degradation. Indeed, because of technical limitations, too small �aw indications are detected
but their size cannot be measured. Moreover, if several competing �aw indications have initiated
on one component, the measurement process can count the number of existing �aw indications
but only the size of the largest one can be measured. For a better understanding of the available
information, let us now be more speci�c on the examination procedure, which is made through
two non-destructive ultrasonic testing processes with di�erent objectives and performances:

• The �rst process aims at detecting �aw indications: it gives a binary response "presence"
or "absence" of �aw indications, together with the number of initiated indications.

• The second one is conceived to measure �aw indications. The measurement �rst requires
the detection of an indication by this second process, which is less sensitive than the
�rst one and only detects �aw indications whose measurement exceeds a known �xed
threshold. Also, due to the use of two di�erent technologies for this second process,
there are several (always known) thresholds under which the �aw indication cannot be
measured. Finally, when several �aw indications are observable, only the largest one is
measured by the second testing process.

We assume that all �aw indications are detected by the �rst testing process and that the
second testing process gives the exact measurement of the largest indication when observable.
The available data concern 228 components that are supposed to be independent and identical.
The commissioning date is known for each component as well as its inspection times. Each
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previously described two-step examination provides one of the possible following information
about the degradation level:

• No �aw indication is detected on the component: no indication is initiated at the inspec-
tion time.

• At least one �aw indication is detected by the �rst testing process at the inspection time
but no �aw indication is detected by the second testing process: the number of initiated
indications is known and the measurement of the largest �aw is lower than a deterministic
known value (left censoring).

• The second testing process detects and measures �aw indications: the number of initi-
ated indications is known, as well as the measurement of the largest indication on the
component (which is therefore higher than a known value).

In order to make accurate degradation predictions, it is essential to take into account this
partial information coming from the �eld. It is important to mention that no other source of
information is available to predict the evolution of the indications with time. In particular, the
underlying physical phenomena are complex and no representative mechanical model exists: a
structural reliability approach [14] is thus not feasible. The measurements from the inspections
are the only available material and a statistical analysis of these data is the unique way to
assess the residual lifetime of the components.

The object of the present study is to compute predictive indicators such as the yearly
expected number of initiated �aw indications, the expected annual growth of one �aw indication,
quantiles of the residual operating time given some observations at a given time. Another
applicative object is the study of the in�uence of the number of initiated �aw indications
on the residual operating time, in order to know whether it is worth or not to gather this
information from the �eld. A last point of interest from an industrial point of view is to know
whether it is worth taking into account censoring. To be more speci�c, a �rst possibility for
estimating the model parameters naturally is to take into account the censoring nature of the
data. A second possibility is to use the so-called imputation method deployed within survival
analysis studies. In this method, the censoring level of any censored data is considered to
be the data itself. Here, considering a largest �aw indication which is known to be smaller
than a censoring level C, the imputation method consists in considering that the size of the
largest �aw indication is exactly equal to C. (And this is done for all the censored data). Of
course, this imputation method leads to an over-estimation of the real sizes of the (largest)
�aw indications and hence introduces some bias in the estimated parameters. However, it may
be of interest in an industrial context because it leads to simpler estimation procedures. More
important, the method has the good property of being conservative, in the sense that the results
over-estimate the degradation propagation and hence provide pessimistic prognostic indicators.
(Such a method is particularly adapted as soon as safety is concerned). The point here is
to know whether the imputation method provides very di�erent results from an estimation
procedure taking into account the censoring nature of the data and hence whether it is worth
taking into account censoring. The answer to this question requires the development of the two
di�erent estimation procedures, for comparison purpose.



Partially observed competing degradation processes 5

2 Competing degradation model and prognostic indicators

2.1 Competing stochastic degradation processes

We here specify the stochastic model for the initiation and development of �aw indications on
one single component. We �rst set Nt to be the random number of indications already initiated
at time t. The points of the counting process (Nt)t≥0 stand for the initiating times of the �aw
indications on the component and are denoted by T1, T2, . . . , with 0 < T1 < T2 < · · · (almost

surely). In case Nt ≥ 1, we set Z
(j)
t to be the (random) measurement of the j-th �aw indication

at time t, with 1 ≤ j ≤ Nt. The measurement of the largest �aw indication at time t hence is:

Zt =

{
max

1≤j≤Nt

(
Z

(j)
t

)
if Nt ≥ 1,

0 elsewhere.

If 0 ≤ t1 < · · · < tm are the inspection times of the component (di�erent from one
component to another and non informative), data for one component are (nj, zj)1≤j≤m with
nj = Ntj (ω) and zj = Ztj (ω) for an experiment ω. These data correspond to partial observa-
tion

(
Ntj , Ztj

)
1≤j≤m of the competing degradation process (Nt, Zt)t≥0.

In order to account several possible levels of censoring at time t, we set Ct to be the known
deterministic censoring level at time t. We also introduce a censoring indicator:

Dt =

{
0 if Zt ≤ Ct,
1 otherwise.

The data now are of the form (nj, uj, dj)1≤j≤m with nj = Ntj (ω), uj = Utj (ω), dj = Dtj (ω),

and correspond to one observation of
(
Ntj , Utj , Dtj

)
1≤j≤m with

Ut =


Zt if Zt > Ct,
Ct if Zt ≤ Ct and Nt > 0,
0 otherwise.

An example of censored trajectory is provided in Figure 1 for the competing degradation
process. The censoring level is assumed to be constant for sake of clarity. Four �aw indications
initiate at time T1 (blue), T2 (red), T3 (green) and T4 (black), respectively. At the beginning, the
largest indication (namely Zt) is the blue one, next the red one and �nally the green one. This
is depicted through black/white dots, where black dots means that Zt is below the censoring
level (so that Ut = Ct) and white dots refers to an observable Zt beyond the censoring level (so
that Ut = Zt). The observable counting process (Nt)t≥0 is simultaneously increased by one at
each initiation time Ti, i = 1, . . . , 4.

Assumptions. We assume that the degradation processes are identical for all the components
and that they are independent between components. The independence is justi�ed by the fact
that the components are in di�erent production units throughout France so that they do not
interfere one with the other. We also assume that once initiated, the processes de�ning the
propagation of all �aw indications present on one component are independent and identically
distributed (i.i.d.). Indeed there are only few �aw indications at the same time on a component
(otherwise the component is changed) and the size of a component is �large� (thus limiting some
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Figure 1: An example of trajectory for the competing degradation process

potential mechanical interactions between �aw indications), so that it seems mostly natural to
assume that the development of the di�erent �aw indications are similar and independent
one from the other. Note that this i.i.d. assumption is pretty classical when dealing with
similar problems, see for instance [3], [4], [5], [13], [19] or [25] among lots of others. For each
component, the number of �aw indications is assumed to follow a Poisson process (Nt)t≥0,
where Nt is Poisson distributed with parameter Λ(t) and distribution denoted by P(Λ(t)), see
[18] for more details on Poisson processes. In the sequel, we either suppose that this process
is homogeneous (HP) with Λ(t) = λt, or non homogeneous (NHP) with Λ(t) = αtβ (power-
law process), where λ, α, β > 0. The rate of this Poisson process is denoted by λ(t), with
λ(t) = λ for the HP process and λ(t) = Λ′(t) = αβtβ−1 for the NHP process. When a �aw
indication appears, we assume that its measurement increases according to a gamma process
with parameters (A(t), b), e.g. see [1, 12, 22, 26] for more details on the use of gamma processes
for modeling deterioration. Here again, we envision the homogeneous case (HG) with A(t) = at
and the non homogeneous case (NHG) with A(t) = ηtγ, where a, η, γ > 0.

To speci�cally de�ne the measurements of the various indications present on a component
at time t, we introduce a sequence

(
X(j)

)
j∈N∗ of independent gamma processes, all with param-

eters (A(t), b). For each j ∈ N∗ and each t ≥ 0, the random variable X
(j)
t is gamma distributed

with probability density function (p.d.f.) fA(t),b(x) = bA(t)xA(t)−1e−bx1R+ (x) /γ (A(t)), cumu-
lative distribution function (c.d.f.) denoted by FA(t),b and survival function denoted by F̄A(t),b

where F̄A(t),b = 1 − FA(t),b. With the previous notations, we have E
(
X

(j)
t

)
= A(t)/b and

var
(
X

(j)
t

)
= A(t)/b2.

For each 1 ≤ j ≤ Nt, the di�erence t − Tj corresponds to the elapsed time at time t since

the initiation of the j-th indication. We then set Z
(j)
t = X

(j)
t−Tj to be the measurement of the

j-th �aw indication at time t. If j > Nt, the j-th indication has not yet been initiated at time t
and we put Z

(j)
t = 0. Setting (t− Tj)+ = max (t− Tj, 0) and remembering that X

(j)
0 = 0, this
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can be summed up into
Z

(j)
t = X

(j)

(t−Tj)+ for all j ∈ N∗.

As only the largest �aw indication can be measured by an examination, without censoring,
a measure at time t hence is an observation of

Zt = max
j∈N∗

(
Z

(j)
t

)
=

{
max

1≤j≤Nt

(
X

(j)
t−Tj

)
if Nt ≥ 1,

0 otherwise.

We now derive some probabilistic results, to be used later on for inference purpose and
computation of the predictive indicators.

2.2 Probabilistic results

Let us �rst remark that the maximum among the Z
(j)
t 's will generally not correspond to the

same trajectory over time. A direct consequence is that the distribution of an increment Zt−Zt0
(with t0 < t) is not an easy thing to write down. Also, the process (Zt)t≥0 does not have inde-
pendent increments. The obtaining of probabilistic results hence requires some care, especially
for the derivation of the conditional distribution of (Zt, Nt) given (Zt0 , Nt0) given in Proposi-
tion 2.

We �rst provide the conditional distribution of Zt when the number of �aw indications is
known at time t.

Proposition 1 Given that Nt = 0, then Zt is conditionally almost surely null (namely P(Zt =
0|Nt = 0) = 1). Otherwise, for each n ≥ 1, the conditional distribution of Zt given that Nt = n
has the following cumulative distribution function (c.d.f.)

FZt|Nt(z|n) =

{∫ t
0
FA(y),b (z)λ (t− y) dy

Λ (t)

}n

, (1)

and its probability distribution function (p.d.f.) with respect to the Lebesgue measure is given
by

fZt|Nt (z|n) =
n

(Λ (t))n

{∫ t

0

fA(y),b (z)λ (t− y) dy

}{∫ t

0

FA(y),b (z)λ (t− y) dy

}n−1

(2)

for all z ≥ 0.

Proof. See Appendix A. �

The joint distribution of (Zt, Nt) is easy to derive as the product of the conditional distribution
of Zt given Nt cross the distribution of Nt (see also Equation (B.3) in Appendix B). It admits
the following density function

f(Nt,Zt) (n, z) =

{
e−Λ(t) if n = 0,

e−Λ(t)

(n−1)!

{∫ t
0
fA(y),b (z)λ (t− y) dy

}{∫ t
0
FA(y),b (z)λ (t− y) dy

}n−1

if n > 0

(3)
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with respect to

δ0 (dn)× δ0 (dz) +
+∞∑
k=1

δk (dn)× dz.

We now provide conditional distribution results of the competing degradation process at a
time t > 0 given its value at a previous time t0 ∈ [0, t).

Proposition 2 For t0 ∈ [0, t) and z ≥ 0 we have

P (Zt ≤ z|Zt0 = 0) = e
−(Λ(t)−Λ(t0))+

∫ t
t0
FA(t−v),b(z)λ(v)dv

= e
−
∫ t
t0
F̄A(t−v),b(z)λ(v)dv

. (4)

For t0 ∈ (0, t), 0 < z0 ≤ z and n ≥ n0 ≥ 1, we have

P (Zt ≤ z,Nt = n|Zt0 = z0, Nt0 = n0)

= e−(Λ(t)−Λ(t0)) ×
∫ t0

0
FA(t−u)−A(t0−u),b (z − z0) fA(t0−u),b (z0)λ (u) du∫ t0

0
fA(t0−y),b (z0)λ (y) dy

×

(∫ t0
0

(∫ z0
0
FA(t−u)−A(t0−u),b (z − x) fA(t0−u),b (x) dx

)
λ (u) du∫ t0

0
FA(t0−y),b (z0)λ (y) dy

)n0−1

×

(∫ t
t0
FA(t−v),b(z)λ (v) dv

)n−n0

(n− n0)!
. (5)

Proof. See Appendix B. �

Note that a similar expression to (4) is provided by Equation (18) in [13] in the speci�c case
of a homogeneous gamma process with t0 = 0.

Writing

P (Zt ≤ z|Zt0 = z0, Nt0 = n0) =
+∞∑
n=n0

P (Zt ≤ z,Nt = n|Zt0 = z0, Nt0 = n0) ,

one immediately gets the following corollary.

Corollary 1 For 0 < t0 < t, 0 < z0 ≤ z and n0 ≥ 1, we have

P (Zt ≤ z|Zt0 = z0, Nt0 = n0)

= e
−
∫ t
t0
F̄A(t−v),b(z)λ (v) dv ×

∫ t0
0
FA(t−u)−A(t0−u),b (z − z0) fA(t0−u),b (z0)λ (u) du∫ t0

0
fA(t0−y),b (z0)λ (y) dy

×

(∫ t0
0

(∫ z0
0
FA(t−u)−A(t0−u),b (z − x) fA(t0−u),b (x) dx

)
λ (u) du∫ t0

0
FA(t0−y),b (z0)λ (y) dy

)n0−1

.
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If necessary, one could also derive from the previous results the conditional distribution of
Zt given Zt0 (and next the distribution of an increment Zt − Zt0) by writing

P (Zt ≤ z|Zt0 = z0) =
∞∑

n0=1

P(Zt ≤ z|Zt0 = z0, Nt0 = n0)
P(Zt0 = z0, Nt0 = n0)

P(Zt0 = z0)

for all z0 > 0 and using the joint distribution of (Zt0 , Nt0) provided by Equation (B.3) in
Appendix B. This is not used in the following and consequently not made explicit here.

2.3 Prognostic indicators

The initiation time U of the �rst �aw indication veri�es P(U > t) = P(N(t) = 0) = e−Λ(t) =
e−αt

β
. It is therefore distributed according to a Weibull distribution with scale parameter

α−1/β and shape parameter β. Mean, variance and quantiles of the distribution of U are given
in Table 1.

Table 1: Main characteristics of the initiation time of the �rst �aw indication

Mean Variance Quantile of order ε

µc = α−1/βγ (1 + 1/β) σc
2 = α−2/βγ (1 + 2/β)− µc2 qc,ε = α−1/β (− log (1− ε))1/β

In our model, the propagation of a �aw indication follows a gamma process with param-
eters (A(t), b) and the expected propagation between times s and t (for 0 < s < t < ∞) is
(A(t)−A(s))/b. For a homogeneous gamma process with parameters (a, b), the yearly expected
propagation is 365 a/b since the time unit is the day.

Remembering that ` stands for the critical degradation level of the system, we set τ` to be
the crossing time of level `, with

τ` = inf{t ≥ 0 : Zt > `}.

Given t0 ≥ 0 and an observation (Zt0 , Nt0) = (z0, n0) at time t0 with z0 ∈ [0, `) (so that
τ` > t0), the residual life of a component at time t0 is identically distributed as the conditional
distribution of τ` − t0 given (Zt0 , Nt0) = (z0, n0). Given ε in (0, 1), a prognostic indicator of

major interest for the industrial application is the quantile t
(`,t0,z0,n0)
ε of order ε of the residual

life at time t0 given that Zt0 = z0 and Nt0 = n0. For z0 = 0, we necessarily have n0 = 0 so that

we write t
(`,t0,0)
ε instead of t

(`,t0,0,0)
ε .

The quantile t
(`,t0,z0,n0)
ε veri�es

P
(
τ` − t0 < t(`,t0,z0,n0)

ε |Zt0 = z0, Nt0 = n0

)
= ε,

or equivalently

P
(
Z
t
(`,t0,z0,n0)
ε +t0

≤ `|Zt0 = z0, Nt0 = n0

)
= 1− ε,

using the fact that {τ` ≥ t} = {Zt ≤ `}. Based on Equation (4) or Corollary 1 according to
whether z0 = 0 or z0 > 0, respectively, it is now easy to write down the equation ful�lled by the
quantile t

(`,t0,z0,n0)
ε . As will be seen later on, the model that we �nally retain for the application

is the combination of the NHP process with the HG process (denoted by NHP�HG model) so

that the equation ful�lled by the quantile t
(`,t0,z0,n0)
ε is given only under this assumption.
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Proposition 3 Assume that (Nt, Zt)t≥0 follows the NHP�HG model. For z0 = 0 the quantile

t
(`,t0,0)
ε is obtained by solving∫ t

(`,t0,0)
ε

0

F̄ay,b (`)
(
t(t0,0)
ε + t0 − y

)β−1
dy = − log (1− ε)

αβ
. (6)

For z0 ∈ (0, `) the quantile t
(`,t0,z0,n0)
ε is obtained by solving

log
{
F
a t

(`,t0,z0,n0)
ε ,b

(`− z0)
}
− αβ

∫ t
(`,t0,z0,n0)
ε

0

(u+ t0)β−1F̄
a
(
t
(`,t0,z0,n0)
ε −u

)
,b

(`) du

+ (n0 − 1)× log

{∫ t0

0

uβ−1

(∫ z0

0

F
a t

(`,t0,z0,n0)
ε ,b

(`− x) fa(t0−u),b (x) dx

)
du

}
= log (1− ε) + (n0 − 1) log

{∫ t0

0

Fa(t0−y),b (z0) yβ−1dy

}
. (7)

Proof. See Appendix C. �

3 Estimation procedure

3.1 Estimation principle

Remember that our data are independent observations of random vectors
(
Ntj , Ztj

)
1≤j≤m, pos-

sibly censored, where the number of inspections m and the inspection times tj are di�erent
from one component to another. As the increments of (Nt, Zt)t≥0 are not independent, it is a
real challenge to obtain the joint distribution of

(
Ntj , Ztj

)
1≤j≤m. It is however possible to write

down a recursive formula, which unfortunately is of no real help for the computation of the
joint distribution, due to its complexity. The usual maximum likelihood method cannot hence
be used. Using the joint density function of (Ntj , Ztj) provided by (3), it is possible to write
down a composite likelihood function (whose formal de�nition has been introduced by Lindsay
[15]) based on the product of the likelihood of each observation with

L
(
θ| (nj, zj)1≤j≤m

)
=

∏
1≤j≤m

f(Ntj ,Ztj ) (nj, zj; θ) ,

where θ stands for the set of parameters to be estimated. In that case, the optimization is
made with respect to all parameters in one single step (with �ve parameters for the NHP-NHG
model for instance). This method has been tested on simulated data. However, the results
were not very stable and the following two-step procedure has been preferred for its numerical
robustness.

Let us recall that the parameters to be estimated are:

• Parameter(s) of the Poisson process: θP = λ (HP) or θP = (α, β) (NHP),

• Parameters of the gamma process: θG = (a, b) (HG) or θG = (η, γ, b) (NHG).
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As a �rst step, we classically estimate the parameter θP of the Poisson process by the usual
maximum likelihood method, based on the uncensored observation of

(
Ntj

)
1≤j≤mand on the

joint distribution of
(
Ntj

)
1≤j≤m. The estimator is denoted by θ̂P .

As a second step, the parameters of the gamma processes are next estimated, plugging the
estimator of the Poisson parameter into some composite likelihood function (see [7] and [23]),
based on the conditional distribution of the Ztj 's given Ntj 's. More speci�cally, we consider the
following composite likelihood:

L
(
θG| (zj)1≤j≤m , (nj)1≤j≤m ; θ̂P

)
=

∏
1≤j≤m
s.t. nj≥1

fZtj |Ntj

(
zj|nj; θG, θ̂P

)
,

where fZtj |Ntj

(
zj|nj; θG, θ̂P

)
is the conditional p.d.f. of Ztj given that Ntj = nj with respect

to Lebesgue measure for nj ≥ 1 (see Proposition 1), and where θP is replaced by θ̂P .

Observations for which nj = 0 do not contain any information on θG because Ntj = 0 implies
that Ztj = 0. That is why only data such that nj ≥ 1 are involved in the likelihood function.

In practice, N independent components are observed. Adding exponent (i) to both processes
and observations related to the i-th component, the log-composite-likelihood can be written as

`
(
θG|z,n, t; θ̂P

)
=

N∑
i=1

∑
1≤j≤m(i)

s.t. n
(i)
j ≥1

log

{
fZ

t
(i)
j

|N
t
(i)
j

(
z

(i)
j |n

(i)
j ; θG, θ̂P

)}

where z =
(
z

(i)
j

)
1≤j≤m(i)

1≤i≤N
, n =

(
n

(i)
j

)
1≤j≤m(i)

1≤i≤N
and t =

(
t
(i)
j

)
1≤j≤m(i)

1≤i≤N
.

If in addition we take into account censoring, we get:

`
(
θG|u,n, t,d; θ̂P

)
(8)

=
N∑
i=1

∑
1≤j≤m(i)

s.t. n
(i)
j ≥1

d
(i)
j log

{
fZ

t
(i)
j

|N
t
(i)
j

(
u

(i)
j |n

(i)
j ; θG, θ̂P

)}
+
(

1− d(i)
j

)
log

{
FZ

t
(i)
j

|N
t
(i)
j

(
u

(i)
j |n

(i)
j ; θG, θ̂P

)}

with u
(i)
j = z

(i)
j if d

(i)
j = 1 and u

(i)
j = c

(i)
j otherwise, and d =

(
d

(i)
j

)
1≤j≤m(i)

1≤i≤N
.

3.2 Fitting the Poisson process

Parameter θP of the Poisson process can be estimated from data (n, t) by maximizing the
log-likelihood function:

` (θP |t,n) =
N∑
i=1

log
[
P
(
∩m(i)

j=1

{
N
t
(i)
j

= n
(i)
j

})]
.
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Using the independent increments of (Nt)t≥0, we easily get:

log
[
P
(
∩mj=1

{
Ntj = nj

})]
∝ −Λ (tm) +

m−1∑
j=0

(nj+1 − nj) log (Λ (tj+1)− Λ (tj))

for all 0 = t0 < t1 < · · · < tm and 0 = n0 ≤ n1 ≤ · · · ≤ nm, where ∝ means "is equal to" up to
an additive constant independent of the parameter of interest (here θP ).

The log-likelihood can then be written as

` (θP |t,n) ∝ −
N∑
i=1

Λ
(
t
(i)

m(i)

)
+

N∑
i=1

m(i)−1∑
j=0

(
n

(i)
j+1 − n

(i)
j

)
log
(

Λ
(
t
(i)
j+1

)
− Λ

(
t
(i)
j

))
,

where we set t
(i)
0 = n

(i)
0 = 0, for all 1 ≤ i ≤ N .

In case of a non homogeneous Poisson process, we have Λ (t) = αtβ and θP = (α, β). Fixing
β and solving ∂L

∂α
(α, β|t,n) = 0 leads to

α(β) =

∑N
i=1 n

(i)

m(i)∑N
i=1

(
t
(i)
m

)β . (9)

We replace α by α(β) in the log-likelihood function, and then we look for the maximizer β̂ of

` (β|t,n) ≡ ` (α(β), β|t,n) (10)

∝ −

(
N∑
i=1

n
(i)

m(i)

)
log

(
N∑
i=1

(
t
(i)

m(i)

)β)
+

N∑
i=1

m(i)−1∑
j=0

(
n

(i)
j+1 − n

(i)
j

)
log

((
t
(i)
j+1

)β
−
(
t
(i)
j

)β)
.

Using a numerical optimization method, we �rst obtain β̂; then we set α̂ = α(β̂).

3.3 Fitting the gamma process

The parameter θG of the gamma process is estimated from (u,n, t,d) by maximizing the log-
composite-likelihood function given by (8). Setting λ̂(t) = λ(t; θ̂P ) and plugging formulae (1)
and (2) into (8), we obtain

`
(
θG|u,n, t,d; θ̂P

)
∝

N∑
i=1

∑
1≤j≤m(i)

s.t. n
(i)
j ≥1

[
d

(i)
j log

(∫ t
(i)
j

0

fA(y),b

(
u

(i)
j

)
λ̂
(
t
(i)
j − y

)
dy

)

+
(
n

(i)
j − d

(i)
j

)
log

(∫ t
(i)
j

0

FA(y),b

(
u

(i)
j

)
λ̂
(
t
(i)
j − y

)
dy

)]
. (11)

In case of a homogeneous gamma process, A(y) is replaced by ay in (11). Parameters (a, b)

are estimated by (â, b̂) which maximize `
(
a, b|u,n, t,d; θ̂P

)
. In case of a non homogeneous

gamma process, A(y) is replaced by ηyγ in (11). Parameters (η, γ, b) are estimated by
(
η̂, γ̂, b̂

)
which maximizes `

(
η, γ, b|u,n, t,d; θ̂P

)
.
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3.4 Estimating the prognostic indicators

Prognostic indicators of Section 2.3 are estimated by substituting the unknown parameters of
both the initiation and degradation process by their estimated values. For instance, the esti-
mator t̂

(`,t0,z0,n0)
ε (resp. t̂

(`,t0,0)
ε ) of t

(`,t0,z0,n0)
ε (resp. t

(`,t0,0)
ε ) is obtained by solving (7) (resp. (6))

replacing parameters (a, b, α, β) by (â, b̂, α̂, β̂).

4 Numerical study

4.1 Monte Carlo simulations

This section is devoted to a simulation study which beyond checking the validity of our esti-
mation method aims at quantifying the in�uence of the censoring process on the estimators
behaviour. The next section deals with the application to the EDF data. As already mentioned,
EDF data are well �tted by combining the NHP process with the HG process. That is why the
present section is limited to this speci�c NHP�HG model although the estimation method has
also been validated by a similar Monte Carlo study for the three other models.

In the EDF data, we have at our disposal 228 time data sets, which each corresponds to the
sequence of observation times for one component. In all the simulation study, the observation
times of one component are chosen among these 228 time data sets up to a �xed multiplicative
constant. This rescaling of the time data through a multiplicative constant allows us to prevent
from numerical instability and over�ow. The same rescaling is used for the application to EDF
data in the next sub-section. Several possibilities are considered for the number N of observed
components, with the following choice of time data sets: for N = 228, we simply take all the
available 228 (rescaled) time data sets; for N = 4× 228 = 912, each of the 228 time data sets
is used four times; for N = 25, 50 and 100, the N time data sets are chosen randomly among
the 228 available data sets, by sampling without replacement. Once the observation times are
given for each component, the degradation samples are generated according to the NHP�HG
model. In order to be as close as possible from the EDF data, the simulated data are next
censored with a �xed censoring level c (which means that any indication measurement with size
below c is left censored by c). In each of the following examples, the censoring level c is chosen
such that the proportion of censored data is around 9%, which is similar to the EDF data.
This procedure provides us with a simulated censored data set based on the observation of N
components, which is next used to derive an estimation of each parameter. This procedure is
independently repeated 500 times, and con�dence intervals (CI) are �nally constructed from
empirical quantiles based on these 500 estimations. All the computations of this section have
been carried out with MATLAB [16] on a dual core laptop computer. The optimization is made
with the function fmincon through an interior-point algorithm and the BFGS method (please
see MATLAB documentation on the fmincon function for more details and references).

As announced in the introduction, two di�erent estimation methods are tested, �rst through
the imputation method (namely considering censoring levels as observed measurements) and
next taking into account the censoring.

A �rst set of parameters is considered for both methods: parameters of the NHP process
with cumulative intensity Λ(t) = αtβ are equal to (α, β) = (1, 1.5). Parameters of the HG
process are equal to (a, b) = (1, 2). The censoring level is c = 0.2.
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Estimation without taking into account censoring (imputation method). We use

the log-composite-likelihood function (11) with all d
(i)
j 's equal to 1. Results are provided in

Table 2. As for the parameters (α, β) of the NHP process, we observe that they are well
estimated, both from a bias and standard deviation point of view. Whatever the sample size is,
the con�dence intervals always contain the true values of the parameters. This good behaviour
is consistent with the fact that the imputation method does not a�ect the number of indications
at observation times and consequently does not a�ect the estimation procedure of the Poisson
process parameters.
The results concerning the HG process are not convincing. Indeed, even if empirical means
are not too far from their true values, we can see that there is some bias on the estimates of
parameters a and b. As a matter of fact, con�dence intervals are either very large (for small N)
or do not even contain the true values of the parameters (for large N). Though the bias can
be seen to be less important on the mean rates per unit time of both mean (a/b) and variance
(a/b2) than on parameters a and b, it is clear that the imputation method leads to an over-
estimation of the sizes of the �aw indications. It consequently does not seem to be appropriate
for the present study and it is not considered any more in the following. Note however that for
all parameters, standard deviations are divided by two when the sample size is multiplied by
four, which is an indicator of a "root�of�N" convergence rate with an asymptotic bias.

Table 2: Monte Carlo estimations for the NHP-HG model based on 500 simulated censored
samples of size N (censoring level c = 0.2), without considering censoring (imputation method).

N a b a/b a/b2 α β

value 1 2 0.5 0.25 1 1.5

25 1.37 2.57 0.53 0.22 1.00 1.50
50 1.37 2.58 0.53 0.21 1.00 1.50

mean 100 1.34 2.54 0.53 0.21 1.00 1.50
228 1.31 2.49 0.52 0.21 1.00 1.50
912 1.28 2.44 0.52 0.22 1.00 1.50

25 0.39 0.62 0.03 0.05 0.12 0.05
50 0.30 0.47 0.02 0.03 0.09 0.04

stand. err. 100 0.21 0.35 0.02 0.03 0.07 0.03
228 0.14 0.23 0.01 0.02 0.05 0.02
912 0.11 0.18 0.01 0.03 0.02 0.01

25 [0.81, 2.13] [1.67, 3.84] [0.47, 0.58] [0.15, 0.30] [0.81, 1.18] [1.43, 1.59]
50 [0.94, 1.93] [1.86, 3.45] [0.49, 0.57] [0.16, 0.27] [0.86, 1.15] [1.44, 1.57]

90% CI 100 [1.03, 1.70] [2.03, 3.15] [0.50, 0.55] [0.17, 0.25] [0.90, 1.11] [1.46, 1.55]
228 [1.09, 1.55] [2.12, 2.89] [0.50, 0.54] [0.18, 0.24] [0.93, 1.08] [1.47, 1.53]
912 [1.17, 1.40] [2.28, 2.65] [0.51, 0.53] [0.20, 0.23] [0.97, 1.04] [1.48, 1.51]

25 [0.76, 2.22] [1.53, 3.91] [0.47, 0.59] [0.14, 0.33] [0.78, 1.26] [1.41, 1.60]
50 [0.89, 2.07] [1.81, 3.69] [0.48, 0.58] [0.15, 0.28] [0.83, 1.17] [1.43, 1.58]

95% CI 100 [0.99, 1.76] [1.94, 3.27] [0.49, 0.56] [0.16, 0.26] [0.87, 1.14] [1.45, 1.56]
228 [1.06, 1.60] [2.08, 2.97] [0.50, 0.55] [0.18, 0.25] [0.91, 1.09] [1.46, 1.54]
912 [1.15, 1.42] [2.23, 2.67] [0.51, 0.54] [0.20, 0.23] [0.96, 1.04] [1.48, 1.52]

Estimation taking into account censoring. We �rst provide results in Table 3 for the
same parameter sets as for the previous imputation method. The quality of the estimation
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results is now good for both processes (NHP and HG). The previous bias on the HG process
parameters almost disappears and, contrary to the results of Table 2, it decreases as the sample
size increases. Con�dence intervals are well centered on the true parameters values. Standard
deviations are still divided by two as the sample size is multiplied by four, which means that
the "root�of�N" convergence rate remains valid. Two other parameter sets are next considered
in Tables 4 and 5 for N ∈ {25, 50, 100, 228}. The results mostly share the same good quality as
for the �rst parameter set. The computation times are a little longer however: considering the
estimation of one parameter set for N = 228 components, it takes about 70 central processing
unit (c.p.u.) time for the �rst parameter set, 95 c.p.u. for the second one and 220 c.p.u. for
the third one. This is due to the optimization step for the HG parameters which takes more
time, apparently because of a �atter objective function to maximize.

Table 3: Monte Carlo estimations for the NHP-HG model based on 500 simulated censored
samples of size N considering censoring (censoring level c = 0.2).

N a b a/b a/b2 α β

value 1 2 0.5 0.25 1 1.5

25 1.14 2.22 0.51 0.24 1.00 1.50
50 1.08 2.13 0.51 0.24 1.00 1.50

mean 100 1.03 2.04 0.50 0.25 1.01 1.50
228 1.03 2.04 0.50 0.25 1.00 1.50
912 0.99 1.99 0.50 0.25 1.00 1.50

25 0.37 0.59 0.04 0.05 0.13 0.06
50 0.23 0.38 0.02 0.04 0.09 0.04

stand. err. 100 0.15 0.25 0.02 0.03 0.07 0.03
228 0.12 0.20 0.01 0.04 0.04 0.02
912 0.09 0.15 0.01 0.03 0.02 0.01

25 [0.65, 1.87] [1.44, 3.39] [0.44, 0.57] [0.16, 0.33] [0.80, 1.22] [1.41, 1.59]
50 [0.76, 1.49] [1.59, 2.83] [0.47, 0.55] [0.19, 0.30] [0.87, 1.16] [1.44, 1.57]

90% CI 100 [0.79, 1.29] [1.66, 2.50] [0.47, 0.53] [0.21, 0.29] [0.91, 1.11] [1.45, 1.54]
228 [0.88, 1.20] [1.80, 2.33] [0.48, 0.52] [0.22, 0.28] [0.93, 1.08] [1.47, 1.53]
912 [0.92, 1.07] [1.86, 2.14] [0.49, 0.51] [0.24, 0.27] [0.97, 1.04] [1.48, 1.51]

25 [0.57, 2.05] [1.27, 3.61] [0.43, 0.58] [0.15, 0.37] [0.76, 1.27] [1.40, 1.61]
50 [0.70, 1.61] [1.52, 2.93] [0.46, 0.55] [0.18, 0.32] [0.82, 1.19] [1.43, 1.58]

95% CI 100 [0.76, 1.37] [1.61, 2.64] [0.47, 0.54] [0.20, 0.30] [0.88, 1.14] [1.45, 1.55]
228 [0.85, 1.25] [1.75, 2.41] [0.48, 0.52] [0.22, 0.28] [0.92, 1.09] [1.47, 1.54]
912 [0.90, 1.10] [1.83, 2.17] [0.49, 0.51] [0.23, 0.27] [0.96, 1.05] [1.48, 1.52]

As a conclusion to this simulation study, it is clearly preferable to take censoring into
consideration and doing so, the estimation procedure seems to provide reliable results (which
can be more or less long to obtain according to the parameters).

4.2 Application to EDF data

EDF data concern N = 228 components. For con�dentiality reasons the unit of the �aw indi-
cation measure is not speci�ed. Each component has been inspected several times. The total
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Table 4: Monte Carlo estimations for the NHP-HG model based on 500 simulated censored
samples of size N considering censoring (censoring level c = 6).

N a b a/b a/b2 α β

value 2 2 1 0.5 2 1

25 2.35 2.31 1.01 0.48 2.01 1.00
mean 50 2.22 2.19 1.01 0.49 2.00 1.00

100 2.13 2.11 1.00 0.49 2.01 1.00
228 2.03 2.02 1.00 0.50 2.00 1.00

25 0.86 0.75 0.06 0.14 0.24 0.05
stand. err. 50 0.66 0.58 0.05 0.14 0.18 0.04

100 0.47 0.41 0.04 0.13 0.12 0.02
228 0.29 0.25 0.03 0.09 0.08 0.02

25 [1.13, 3.97] [1.21, 3.67] [0.90, 1.10] [0.29, 0.76] [1.62, 2.41] [0.92, 1.08]
90% CI 50 [1.33, 3.55] [1.42, 3.37] [0.94, 1.07] [0.31, 0.67] [1.72, 2.29] [0.95, 1.06]

100 [1.48, 2.93] [1.56, 2.83] [0.95, 1.06] [0.37, 0.62] [1.83, 2.22] [0.96, 1.04]
228 [1.60, 2.51] [1.65, 2.45] [0.96, 1.04] [0.42, 0.59] [1.88, 2.12] [0.97, 1.03]

25 [1.05, 4.00] [1.16, 3.75] [0.88, 1.13] [0.28, 0.80] [1.56, 2.49] [0.90, 1.11]
95% CI 50 [1.29, 3.79] [1.34, 3.62] [0.92, 1.09] [0.29, 0.71] [1.67, 2.33] [0.94, 1.07]

100 [1.40, 3.20] [1.49, 2.97] [0.94, 1.07] [0.35, 0.64] [1.79, 2.26] [0.96, 1.05]
228 [1.55, 2.64] [1.60, 2.55] [0.96, 1.04] [0.40, 0.61] [1.86, 2.14] [0.97, 1.03]

Table 5: Monte Carlo estimations for the NHP-HG model based on 500 simulated censored
samples of size N considering censoring (censoring level c = 7.5).

N a b a/b a/b2 α β

value 2 1 2 2 3 0.75

25 2.30 1.13 2.02 1.93 3.00 0.75
mean 50 2.15 1.07 2.01 1.95 3.01 0.75

100 2.08 1.03 2.01 1.97 3.00 0.75
228 2.03 1.01 2.00 2.01 3.01 0.75

25 0.75 0.3 0.10 0.51 0.30 0.04
stand. err. 50 0.49 0.21 0.07 0.35 0.22 0.03

100 0.35 0.15 0.05 0.25 0.16 0.02
228 0.24 0.11 0.06 0.38 0.10 0.01

25 [1.25, 3.89] [0.66, 1.76] [1.86, 2.20] [1.21, 2.94] [2.50, 3.55] [0.69, 0.82]
90% CI 50 [1.43, 3.09] [0.75, 1.46] [1.89, 2.12] [1.43, 2.60] [2.63, 3.35] [0.70, 0.80]

100 [1.58, 2.69] [0.82, 1.29] [1.92, 2.10] [1.60, 2.39] [2.74, 3.26] [0.71, 0.78]
228 [1.70, 2.44] [0.86, 1.19] [1.95, 2.06] [1.69, 2.28] [2.83, 3.19] [0.73, 0.77]

25 [1.16, 3.96] [0.62, 1.82] [1.81, 2.23] [1.17, 3.04] [2.41, 3.61] [0.68, 0.83]
95% CI 50 [1.32, 3.26] [0.69, 1.55] [1.86, 2.15] [1.35, 2.74] [2.59, 3.43] [0.70, 0.81]

100 [1.49, 2.82] [0.77, 1.36] [1.91, 2.11] [1.53, 2.51] [2.71, 3.30] [0.71, 0.79]
228 [1.63, 2.52] [0.84, 1.23] [1.94, 2.07] [1.67, 2.33] [2.80, 3.22] [0.72, 0.78]



Partially observed competing degradation processes 17

number of inspection times is 1,695. Our approach requires both numerical integration and
numerical optimization for the computation and optimization of the log-composite-likelihood
function provided by (11). To validate the estimation results, the MATLAB program used in the
previous simulation study is used together with another one written in R [17]. The two pro-
grams provide very similar results. In addition, con�dence intervals are computed via standard
bootstrap method, using 1,000 sets of 228 trajectories uniformly drawn (with replacement) from
the 228 trajectories of our data set. For each bootstrap sample, estimates are provided for the
parameters. Empirical mean, standard deviation and both 90% and 95% con�dence intervals
are next derived for each parameter, based on the 1,000 estimation results. The 90% (resp.
95%) con�dence interval corresponds to [q0.05, q0.95] (resp. [q0.025, q0.975]), where qα is the em-
pirical α−quantile based on the 1,000 estimation results. As often, this method is quite time
consuming. Note that, based on the strong evidence provided by the previous Monte Carlo
study for taking into account censoring, all the results of this section are computed under this
basis.

Choosing between HP or NHP for the initiation process. Estimation results concern-
ing the Poisson process (HP and NHP) are given in Table 6 (top) together with nonparametric
bootstrap results. Note that whatever the model is, the estimates are within the bootstrapped
con�dence interval. For each model, Table 6 (bottom) next gives the yearly estimated average
number of new indications. For the HP process, it is equal to λ̂ × 365 whereas for the NHP

process it is equal to α̂ ×
{

(365 k)β̂ − (365 (k − 1))β̂
}
for the k-th year (remember that the

time unit is the day). In Table 6 (top), we can see that the 90% and 95% bootstrap con�dences
intervals for β do not contain the value 1, advocating for the selection of the NHP for the
initiation process. Also, EDF experts consider that the rate of initiation of new indications
should be increasing over time, leading here again to the choice of the NHP based on Table 6
(bottom).

Table 6: Estimation and bootstrap results based on 1,000 bootstrapped samples of size 228 for
the parameters of the Poisson process (top: rows 3 to 7) and estimated yearly average number
of new indications for one component (bottom: rows 8 to 12)

Model HP NHP

Parameter λ (×10−4) α (×10−9) β

Estimation 1.56 1.22 2.28
Mean 1.57 2.24 2.28
St. dev. 0.17 2.60 0.13
90% conf. int. [1.31, 1.85] [0.18, 7.56] [2.08, 2.49]
95% conf. int. [1.28, 1.91] [0.12, 9.13] [2.05, 2.54]

Year 1 8.47× 10−4 Year 6 1.71× 10−2

Yearly average Year 2 3.27× 10−3 Year 8 2.55× 10−2

number of new 5.71× 10−2 Year 3 6.26× 10−3 Year 10 3.45× 10−2

indications Year 4 9.62× 10−3 Year 12 4.44× 10−2

Year 5 1.33× 10−2 Year 15 5.92× 10−2

Choosing between HG and NHG for the propagation process. Estimation results
are given in Table 7 (left) for the parameters of both HG and NHG degradation processes,
considering both HP and NHP initiation processes. Table 7 (right) provides the annual mean
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growth of one �aw indication considering the four models. As we can see, whatever the initiation
process is (HP or NHP), in case of a NHG propagation process (with A(t) = ηtγ), the parameter
γ is very small (γ < 10−8) resulting in a strongly non-linear growth for one �aw indication,
which essentially expands during the �rst year and next remains mostly constant. Based on
EDF specialists considerations, we hence suggest to retain the homogeneous version of the
gamma process (combined with an NHP process). However, this point might require further
investigation. For example, a similar bootstrap method as for the initiation process model (HP
vs. NHP) might be used, providing a bootstrap con�dence interval for the unknown parameter
γ. This would allow to test the null hypothesis γ = 1 (meaning that the gamma process
is homogeneous). Unfortunately, we have faced the problem of huge calculation times and
numerical instabilities. Thus, this approach could not be achieved.

Table 7: Estimation results for the propagation process on EDF data and the di�erent models
(left: columns 2 to 4), and the corresponding estimated expected annual growth for one �aw
indication (right: columns 5 and 6)

Model
Estimates of the parameters
of the gamma process

Expected annual growth
of one �aw indication

HP�HG â b̂ 1.12
2.44× 10−4 0.08

NHP�HG â b̂ 1.97
8.63× 10−4 0.16

HP�NHG η̂ γ̂ b̂ Year 1 11.61
0.47 9.22× 10−9 0.04 Year 2 7.43× 10−8

NHP�NHG η̂ γ̂ b̂ Year 1 10.93
0.36 2.24× 10−10 0.03 Year 2 1.70× 10−9

Estimation results for the selected NHP�HG model. Estimation results concerning the
selected NHP�HG model are available in Table 8. The parameters are re�estimated using non-
parametric bootstrap, which allows to obtain con�dence intervals as well as standard deviations
for the di�erent parameters. Estimation results for the parameter b of the homogeneous gamma
process are rather stable as well as for the parameter β of the initiation process. The results
are less stable for the parameters α (initiation process) and a (homogeneous gamma process).

Table 8: Estimation (second line) and bootstrap (third line) results on EDF data based on
1, 000 bootstrapped samples of size 228 for the NHP�HG model parameters

α̂ (×10−9) β̂ â (×10−4) b̂ â/b̂ (×10−3) â/b̂2 (×10−2)
Estimates 1.22 2.28 8.63 0.16 5.48 3.48
Mean 2.24 2.28 11.28 0.20 5.49 3.37
St. dev. 2.60 0.13 12.36 0.20 0.42 1.05
[q0.05, q0.95] [0.18, 7.56] [2.08, 2.49] [5.15, 19.55] [0.10, 0.33] [4.83, 6.20] [1.73, 4.99]
[q0.025, q0.975] [0.12, 9.13] [2.05, 2.54] [4.80, 26.72] [0.10, 0.44] [4.69, 6.31] [1.35, 5.48]
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Additional prognostic indicator evaluation. All the computations of this paragraph have
been carried out with MATLAB. The estimation results concerning the initiation time of the �rst
�aw indication are given in Table 9. As we saw in Section 2.3, the initiation time is Weibull
distributed. The estimated mean is close to 19 years with a standard deviation estimated to 9
years. From the bootstrap study, the results seem to be reliable.

Table 9: Mean and standard deviation (St. dev.) of the initiation time of the �rst �aw
indication on the EDF data and inference results based on 103 bootstrapped samples of size
228

Mean (years) Standard deviation (years)
Estimation 19.61 9.11

Mean [St. dev.] [q0.025, q0.975] Mean [St. dev.] [q0.025, q0.975]
Bootstrap 19.65 [0.83] [18.16, 21.40] 9.18 [0.64] [8.05,10.53]

The yearly propagation of one �aw indication is next provided in Table 10, which is about
2 units in average, as con�rmed by the bootstrap results. Note that the yearly propagation of
one �aw indication based on the process (Zt)t≥0 is necessarily larger since it corresponds to the
largest indication.

Table 10: Yearly mean growth of one �aw indication for EDF data using the NHP�HG model
and associated bootstrap results based on 1, 000 samples of size 228

Estimation 2.00
Mean [St. dev.] [q0.05,q0.95] [q0.025,q0.975]

Bootstrap 2.01 [0.15] [1.76,2.26] [1.71,2.30]

We �nish this section with estimation results for the quantile of the residual life τ90 − t0
given (Zt0 , Nt0) = (z0, n0) for the critical level ` = 90. First, Figure 2 depicts the estimated

quantile curve ε 7→ t̂
(90,t0,z0,n0)
ε of the residual life as a function of ε (the time scale is given in

years) for three di�erent values of (`, t0, z0, n0). We can see that, for each value of (t0, z0, n0),
the ε�quantile increases with ε. Looking at the boundary values for ε (0+ and 1−), we can also
see that the ε�quantile quickly increases (towards ∞) when ε approaches to 1− and quickly
decreases (towards 0) when ε goes to 0+. These observations are consistent with what might
have been expected. Second, we consider components for which no �aw indication has appeared
at the end of the observation period (denoted by t0), that is components for which z0 = 0, and

thus n0 = 0, at time t0 > 0. Corresponding quantiles t
(90,0,0)
ε are given for several values of ε

(ε ∈ {0.9, 0.95}) in Table 11. The mean and standard deviation values are calculated using the
non-parametric bootstrap method. Figure 3 plots similar quantiles with respect to t0 for ε equal
to 0.75, 0.9 and 0.95. Table 12 �nally provides estimated ε�quantiles of the residual life τ90− t0
given various values of (z0, n0) at time t0 = 25 and ε ∈ {0.75, 0.9, 0.95}. Looking at Figure 3
and Table 12, we can see that, as expected and for a given ε, the ε�quantile is decreasing with
respect of t0, z0 and n0. Also, we can conclude from these results that the residual life of a
component is clearly in�uenced by the observed number of initiated �aw indications, which
consequently should continue to be collected.
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Figure 2: Estimated ε�quantile t̂
(90,t0,z0,n0)
ε of the residual life τ90− t0 (in years) with respect of

ε ∈ (0, 1) for three di�erent values of (t0, z0, n0)

Table 11: Estimation of t
(90,0,0)
ε , the quantiles of order ε of the hitting time of level ` = 90 for

z0 = 0 at t0 = 0 and inference results based on 103 bootstrapped samples of size 228

ε 0.9 0.95

Data 75.65 79.87

Mean [St. dev.] [q0.05, q0.95] Mean [St. dev.] [q0.05, q0.95]
Bootstrap 75.89 [4.57] [69.66, 83.66] 80.09 [5.25] [73.41, 88.58]

Table 12: Estimated ε�quantiles of the residual life τ90 − t0 given various values of (z0, n0) at
time t0 = 25 and ε ∈ {0.75, 0.9, 0.95}

t0 z0 n0 t
(`,t0,z0,n0)
0.75 t

(`,t0,z0,n0)
0.90 t

(`,t0,z0,n0)
0.95 t0 z0 n0 t

(`,t0,z0,n0)
0.75 t

(`,t0,z0,n0)
0.90 t

(`,t0,z0,n0)
0.95

25 20 2 36.681 41.480 44.283 25 40 2 29.611 34.494 37.473
25 20 4 32.264 36.660 39.225 25 40 4 26.562 30.974 33.580
25 20 6 29.381 33.580 35.981 25 40 6 24.380 28.716 31.008
25 20 8 27.052 31.402 33.652 25 40 8 22.631 26.859 29.214
25 20 10 25.119 29.683 31.904 25 40 10 21.046 25.395 27.647
25 30 2 33.404 38.362 41.142 25 50 2 25.141 29.981 32.880
25 30 4 29.622 34.023 36.558 25 50 4 22.954 27.470 30.054
25 30 6 27.070 31.311 33.637 25 50 6 21.252 25.560 28.051
25 30 8 25.093 29.258 31.571 25 50 8 19.749 24.076 26.345
25 30 10 23.341 27.655 29.876 25 50 10 18.374 22.781 25.125
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Figure 3: Estimated ε�quantiles of the residual life τ90− t0 (in years) given z0 = n0 = 0 at time
t0 > 0 with respect of t0 for ε ∈ {0.75, 0.9, 0.95}

5 Concluding remarks

We proposed a stochastic model for the competing degradation process (Nt, Zt)t≥0 describing
initiation and propagation of degradation on a passive component of an electric power plant.
This model associates a Poisson process together with a gamma process, where both processes
may be homogeneous or not. This leads to four di�erent models, which have been �tted to
EDF data. The �nal retained model is based on a bootstrap con�dence interval for the shape
parameter of the non homogeneous Poisson process and on EDF experts considerations for the
gamma process. It is a combination of a NHP process for the initiation of the �aw indications
and a HG process for describing the growth of the indications.

The Monte Carlo simulation study shows that the sample size of the EDF data is su�cient
to guarantee the quality of estimation results. The study also shows that taking into account
censoring is necessary to avoid some bias on the estimates of the gamma process parameters.
This bias disappears when accounting for censoring.

The 95% con�dence intervals obtained on the EDF data may appear as rather large for
some parameters such as a or α. However, looking at the con�dence intervals for the indicators
of interest (mean and standard deviation of the initiation time of the �rst �aw indication,
yearly mean growth of one �aw indication, ε�quantiles of the residual life) provided in Tables
9, 10 and 11, we can see that they are not so large. The estimated indicators hence appear as
accurate enough for helping the decision process (e.g. deciding whether the component should
be replaced or not). The in�uence of the number of initiated �aw indications on a component
residual life is also made clear by the study. It is hence of a major importance to go on collecting
these data from the �eld, and to take this degradation indicator into account for prognostic
purpose.

From a statistical point of view, studying the asymptotic behavior of our parametric esti-
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mators and selecting one model are challenging objectives. The later point requires to use some
information criteria like AIC (see [24]) or BIC (see [9]), previously developed in the composite
likelihood approach as de�ned by Lindsay [15]. The use of these criteria would require the
preliminary adaptation of our estimation method, which is based on a two-step procedure plus
a composite likelihood method (see [9] for some recent results concerning BIC selection model
criteria for composite likelihood approach).

Another challenging statistical issue would be to integrate measurement errors in our model,
with two possible levels of errors. The �rst level deals with the number of initiated �aw
indications, where typically, too small indications may be unrevealed by the testing processes.
The second level is linked to the sizing process, which may be perturbed by measurement errors.

Finally, the possibility to include a time in�uence on the degradation dynamic could be
considered by including a time e�ect on the degradation rate. For instance one could consider
a similar model where the i�th degradation process has a shape parameter depending on its
initiation time Ti: a = exp(θTi) where θ ∈ (0,+∞). Note however that this model requires
further investigation since the Ti's are generally interval censored.
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Appendix A Conditional distribution of Zt given Nt = n

The case n = 0 is clear so that only the case n ≥ 1 is considered.
For n ≥ 1 and z ≥ 0, we have

P (Zt ≤ z|Nt = n) = P
(

max
0≤i≤n

X
(i)
t−Ti ≤ z|Nt = n

)
= P

(
n⋂
i=1

{
X

(i)
t−Ti ≤ z

}
|Nt = n

)
.

Given that Nt = n, the random vector (T1, . . . , Tn) is known to be identically distributed as the
order statistics

(
Y (1), . . . , Y (n)

)
obtained from n i.i.d. copies Y1, . . . , Yn of a random variable

Y with p.d.f.

fY (y) =
λ (y)

Λ (t)
1[0,t] (y) , (A.1)

see for instance [18, Problem 2.32 p. 95].
Based on the independence between the X(i)'s and Nt, we obtain

P (Zt ≤ z|Nt = n) = P

(
n⋂
i=1

{
X

(i)

t−Y (i) ≤ z
})

= P

(
n⋂
i=1

{
X

(i)
t−Yi ≤ z

})
,

using that the probability of
n⋂
i=1

{
X

(i)

t−Y (i) ≤ z
}
does not depend on the order of the Y (i)'s for

the last equality. Conditioning by the Yi's and remembering that FA(u),b is the common c.d.f.

of the X
(i)
u 's (and using the independence between the X(i)'s and the Yi's), we now have

P (Zt ≤ z|Nt = n) = E

(
n∏
k=1

FA(t−Yi),b (z)

)
=
{
E
[
FA(t−Y ),b (z)

]}n
=

{∫ t
0
FA(y),b (z)λ (t− y) dy

Λ (t)

}n

based on the i.i.d. property of the Yi's for the second line and on the fact that the common
p.d.f. of the Yi's is provided by (A.1) for the last line.
The derivation of the p.d.f. with respect to Lebesgue measure of the conditional distribution
of Zt given Nt = n is now clear, which achieves this proof.

Appendix B Proof of Proposition 2

First we consider the case z0 = 0 (or equivalently: n0 = 0). Let us �rst observe that given
Nt0 = 0, the random variable Nt is conditionally Poisson distributed with parameter

Λ̃(t) = (Λ(t)− Λ(t0))+ =

∫ t

t0

λ̃(u) du,

λ̃(t) = λ(t)1[t0,∞)(t)
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whatever t < t0 or t ≥ t0. Now, let us set P̃(·) = P(·|Nt0 = 0). Under P̃, it is easy to check that
the counting process (Nt)t≥0 still has independent increments. Based on the previous remark,
(Nt)t≥0 hence is a Poisson process under P̃, with rate function λ̃(·). For t ≥ t0 and n ≥ 0, we
consequently have

P(Zt ≤ z|Nt0 = 0, Nt = n) = P̃(Zt ≤ z|Nt = n)

=

{∫ t
0
FA(y),b(z)λ̃(t− y)dy

Λ̃(t)

}n

where the second equality holds by Proposition 1. Then we derive

P(Zt ≤ z|Zt0 = 0) =
∑
n≥0

P(Zt ≤ z|Nt0 = 0, Nt = n)P(Nt = n)

=
∑
n≥0

{∫ t
0
FA(y),b(z)λ̃(t− y)dy

Λ̃(t)

}n

e−Λ̃(t) Λ̃ (t)n

n!

= e−(Λ(t)−Λ(t0))+
∫ t−t0
0 FA(y),b(z)λ(t−y)dy

= e
−
∫ t
t0
F̄A(t−v),b(z)λ(v)dv

.

Second we consider the case z0 > 0 (or equivalently: n0 > 0). Let (t, n, z) such that t0 < t,
n0 ≤ n and z0 ≤ z. We have:

P (Zt0 ≤ z0, Nt0 = n0, Zt ≤ z,Nt = n)

= P

(
n0⋂
i=1

{
X

(i)
t0−Ti ≤ z0

}
∩

n⋂
i=1

{
X

(i)
t−Ti ≤ z

}
∩ {Nt0 = n0} ∩ {Nt = n}

)

= P

(
n0⋂
i=1

{
X

(i)
t0−Ti ≤ z0, X

(i)
t−Ti ≤ z

}
∩

n⋂
i=n0+1

{
X

(i)
t−Ti ≤ z

}
∩ {Nt0 = n0} ∩ {Nt = n}

)

(using the convention that if n0 = n, the corresponding empty intersection is equal to Ω).
Conditioning by σ

(
(N)t≥0,

{
X(i) for 1 ≤ i ≤ n0

})
, we get

P (Zt0 ≤ z0, Nt0 = n0, Zt ≤ z,Nt = n)

= E

(
n0∏
i=1

1{
X

(i)
t0−Ti

≤z0,X(i)
t−Ti
≤z
} n∏
i=n0+1

FA(t−Ti),b (z)1{Nt0=n0}1{Nt=n}

)
.

Writing X
(i)
t−Ti = X

(i)
t0−Ti +

(
X

(i)
t−Ti −X

(i)
t0−Ti

)
and using the independent increments of X(i), we

obtain through conditioning by σ
(

(N)t≥0,
{
X

(i)
t0−Ti for 1 ≤ i ≤ n0

})
P (Zt0 ≤ z0, Nt0 = n0, Zt ≤ z,Nt = n)

= E

(
n0∏
i=1

1{
X

(i)
t0−Ti

≤z0
}FA(t−Ti)−A(t0−Ti),b

(
z −X(i)

t0−Ti

) n∏
i=n0+1

FA(t−Ti),b (z)1{Nt0=n0}1{Nt=n}

)

= E

(
n0∏
i=1

ϕ1 (Ti)
n∏

i=n0+1

ϕ2 (Ti)1{Nt0=n0}1{Nt=n}

)
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where

ϕ1 (u) = E
{
1{

X
(i)
t0−u

≤z0
}FA(t−u)−A(t0−u),b

(
z −X(i)

t0−u

)}
=

∫ z0

0

FA(t−u)−A(t0−u),b (z − x) fA(t0−u),b (x) dx,

ϕ2 (u) = FA(t−u),b (z) .

Given that {Nt0 = n0, Nt = n}, the random vector (T1, . . . , Tn0) is conditionally identically dis-
tributed as the order statistic

(
Y (1), . . . , Y (n0)

)
of the same i.i.d. Yi's as in (A.1) whereas the

random vector (Tn0+1, . . . , Tn) can be seen to be conditionally identically distributed as the
order statistic (V (n0+1), . . . , V (n)), where Vn0+1,. . . , Vn are i.i.d. copies of a random variable V
with p.d.f. provided by

fV (v) =
λ (v)

Λ (t)− Λ (t0)
1[t0,t] (v) . (B.1)

Also, the vectors (T1, . . . , Tn0) and (Tn0+1, . . . , Tn) are conditionally independent. This provides

P (Zt0 ≤ z0, Zt ≤ z|Nt0 = n0, Nt = n)

= E

(
n0∏
i=1

ϕ1 (Yi)
n∏

i=n0+1

ϕ2 (Vi)

)
= (E (ϕ1 (Y )))n0 (E (ϕ2 (V )))n−n0

=

{∫ t0

0

ϕ1 (y)
λ (y)

Λ (t0)
dy

}n0

×
{∫ t

t0

ϕ2 (v)
λ (v)

Λ (t)− Λ (t0)
dv

}n−n0

and based on the independent increments of the Poisson process (Nt)t≥0, we get

P (Zt0 ≤ z0, Nt0 = n0, Zt ≤ z,Nt = n)

= P (Zt0 ≤ z0, Zt ≤ z|Nt0 = n0, Nt = n)P (Nt0 = n0)P (Nt −Nt0 = n− n0)

=

{∫ t0

0

ϕ1 (y)λ (y) dy

}n0

×
{∫ t

t0

ϕ2 (v)λ (v) dv

}n−n0 e−Λ(t)

n0! (n− n0)!

after simpli�cation.

Substituting ϕ1 and ϕ2 by their expressions, we now have

P (Zt0 ≤ z0, Nt0 = n0, Zt ≤ z,Nt = n)

=

{∫ t0

0

(∫ z0

0

FA(t−u)−A(t0−u),b (z − x) fA(t0−u),b (x) dx

)
λ (u) du

}n0

×
{∫ t

t0

FA(t−v),b (z)λ (v) dv

}n−n0 e−Λ(t)

n0! (n− n0)!
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and

P (Zt0 ∈ dz0, Nt0 = n0, Zt ≤ z,Nt = n)

=

∫ t0

0

FA(t−u)−A(t0−u),b (z − z0) fA(t0−u),b (z0)λ (u) du

×
{∫ t0

0

(∫ z0

0

FA(t−u)−A(t0−u),b (z − x) fA(t0−u),b (x) dx

)
λ (u) du

}n0−1

×
{∫ t

t0

FA(t−v),b (z)λ (v) dv

}n−n0 e−Λ(t)

(n0 − 1)! (n− n0)!
dz0. (B.2)

Using Appendix A or (B.2), one easily gets

P (Zt0 ∈ dz0, Nt0 = n0)

=
e−Λ(t0)

(n0 − 1)!

(∫ t0

0

FA(t0−y),b (z0)λ (y) dy

)n0−1

×
(∫ t0

0

fA(t0−y),b (z0)λ (y) dy

)
dz0 (B.3)

from where we �nally derive Equation (5) by dividing (B.2) by (B.3).

Appendix C Proof of Proposition 3

First case: z0 = 0. Based on Equation (4), the quantile t
(`,t0,0)
ε veri�es

−
∫ t0+t

(`,t0,0)
ε

t0

F̄
a
(
t
(`,t0,0)
ε +t0−v

)
,b

(`)λ (v) dv = log (1− ε)

which may easily be written as (6).

Second case: z0 > 0. We write tε = t
(`,t0,z0,n0)
ε for sake of simplicity. Based on Corollary 1

and in case of a homogeneous gamma process, the quantile tε is the solution of

log {Fa tε,b (`− z0)} −
∫ tε

0

λ (t0 + u) F̄a(tε−u),b (`) du

+ (n0 − 1) log

{∫ t0

0

λ (u)

(∫ z0

0

Fa tε,b (`− x) fa(t0−u),b (x) dx

)
du

}
− (n0 − 1) log

{∫ t0

0

Fa(t0−y),b (z0)λ (y) dy

}
= log (1− ε) ,

which may easily be written as (7).


