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Abstract

This paper considers Pressure Oscillation (PO) experiments for which we find

the minimum experiment time that guarantees user-imposed parameter vari-

ance upper bounds and honours actuator limits. The parameters permeability

and porosity are estimated with a classical least-squares estimation method for

which an expression of the covariance matrix of the estimates is calculated.

This expression is used to tackle the optimization problem. We study the Dy-

namic Darcy Cell experiment set-up [1] and focus on data generation using

square wave actuator signals, which, as we shall prove, deliver shorter experi-

ment times than sinusoidal ones. Parameter identification is achieved using ei-

ther inlet pressure/outlet pressure measurements [1] or actuator position/outlet

pressure measurements, where the latter is a novel approach. The solution to

the optimization problem reveals that for both measurement methods an opti-

mal excitation frequency, an optimal inlet volume, and an optimal outlet volume

exist. We find that under the same parameter variance bounds and actuator
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constraints, actuator position/outlet pressure measurements result in required

experiment times that are a factor fourteen smaller compared to inlet pres-

sure/outlet pressure measurements. This result is analysed in detail and we find

that the dominant effect driving this difference originates from an identifiability

problem when using inlet-outlet pressure measurements for joint estimation of

permeability and porosity. We illustrate our results with numerical simulations,

and show excellent agreement with theoretical expectations.

Keywords: Experiment Design, Variance Constraints, Estimation, Porous

Media

1. Introduction1

Two key parameters influencing fluid flow in a porous medium are permeabil-2

ity (i.e. inverse resistance) and porosity (i.e. storage capacity). These parame-3

ters are important to characterise fluid flow in underground water resources [2],4

contaminated water disposal in underground storages [3], and subsurface hydro-5

carbon reservoirs [4]. Indeed, permeability and porosity estimates are used to6

initialise reservoir simulations, optimise the number of wells and their locations,7

and drilling and completion procedures.8

At the core scale, estimation of both parameters locally may be carried out by9

performing an experiment on a cylindrically-shaped core sample of the porous10

medium, using either steady-state (SS), unsteady-state (USS), or pressure oscil-11

lation (PO) measurements. In an SS experiment a constant pressure difference12

is applied across the axis of the core sample and subsequently the flow rate is13

measured after the SS condition has been established. Permeability is then es-14

timated based on the relationship between the flow rate and the pressure drop.15

In an USS experiment an impulse or step pressure change is applied at the up-16

stream side of the sample while the pressure change is recorded downstream.17

The observed response is then analysed either graphically or numerically to18

estimate either permeability or porosity. Similarly, in a PO experiment, the19

recorded downstream pressure response is analyzed for parameter estimation -20
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the difference being that an oscillatory pressure signal is applied upstream. The21

attenuation and phase shift between the up- and downstream signals are then22

translated into parameter estimates [5, 1]. The oscillatory signal is usually a23

single sinusoid with a frequency and amplitude specified by the experimenter.24

The amplitude of the upstream signal is however bounded by the limits of the25

actuator. In cases where a rather high actuator frequency is necessary to take26

into account geometrical and physical properties of the sample, [6] suggested the27

use of input signals with complex shapes including the required high frequencies.28

The consensus in the literature is that a PO experiment has several advanta-29

geous properties not shared by its SS and USS counterparts, e.g., less experiment30

time, less stress on the core sample, and the possibility of simultaneously esti-31

mating permeability and porosity [7, 3]. The effectiveness of PO experiments32

for the estimation of permeability has been demonstrated in different set-ups33

[1, 4, 8, 9, 6]. Despite its advantageous properties, however, it is observed that34

measurements can result in large uncertainties in the estimates, particularly for35

porosity [7, 3, 4]. Porosity estimates with an uncertainty exceeding an order of36

magnitude, or that have negative values, have been reported [3, 7]. (Negative37

values can however be easily circumvented by using log-transformed parame-38

ters). One cause is measurement noise, but in this paper we show that other39

ones also play an important role.40

Furthermore, it is important to be able to reduce the experiment time with-41

out loss of accuracy. In such a case, more core samples can be analysed in a given42

time, which consequently reduces the experiment costs. Analogously, given a43

maximum experiment time, it is important to get the best possible estimates.44

Clearly, the challenge of estimating permeability and porosity with high ac-45

curacy remains, especially in evaluating the production potential of tight forma-46

tions in unconventional hydrocarbon reservoirs [4] or the sealing characteristics47

of the cap rock in underground storage [3].48

49

Motivated by the above problems we raise the question whether we can, for50

a PO experiment, design the applied upstream pressure signal and utilise the51
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degrees of freedom (DOF) in the experiment set-up in order to increase parame-52

ter accuracies. The dependence of the accuracy of the estimates on the selected53

driving frequency has been first pointed out in [10], although no investigation54

into this topic was pursued. From this question, we define the following op-55

timization problem: find the minimal experiment time required to guarantee56

user-imposed variance constraints on the estimates by utilising DOF in the ex-57

periment set-up as well as designing the to-be-applied upstream pressure signal,58

ensuring that this signal has an amplitude that honours the actuator limits.59

Note that the solution can also be used to maximise the accuracy of the esti-60

mates for a given experiment length. To address this optimization problem we61

use techniques from Experiment Design.62

63

Experiment Design addresses the long-standing issue of the lack of accurate64

parameter estimates inferred from collected data, particularly at the catchment65

scale. This issue is widely recognised; see for instance [11, 12, 13, 14, 15] and66

the nice review of [16]. Some of the earliest works [17, 18, 19] in Experiment67

Design (although not recognised under this name at that time) showed that68

concepts such as parameter correlation, identifiability, observability, and exper-69

iment length strongly affect the quality of the parameter estimates (i.e. their70

variances). These works and those of [20, 21] were some of the first to quan-71

titatively evaluate parameter uncertainty within a Bayesian framework. They72

provided measures to find the best possible calibration data for computer mod-73

els, using a-posteriori data, i.e. data from an experiment that had already taken74

place. Other works [14, 22] analysed the role of tracer observations that influ-75

ence parameter identifiability, and identifiability of unknown pollution sources.76

The works [23, 24, 25] were the first to consider optimal experiment design for77

groundwater hydrology prior to the actual inference experiment; they mainly78

searched for optimal pumping and observation wells, keeping the pumping rates79

constant, such that the experiment cost could be minimized subject to maxi-80

mizing the overall accuracy in the parameters (using a D-optimality criterion).81

More recently, a Bayesian methodology [26] was developed to find the optimal82
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investigation strategy, or sampling pattern, prior to the actual experimental83

campaign.84

We will take a non-Bayesian approach from linear systems theory [27] and85

apply it to the core-scale PO experiment introduced above. The method is86

different to the Bayesian methods in the sense that an optimal spectrum of87

the input signal is calculated prior to the actual experiment, whereas in the88

above methods the spectra of the inputs are not design variables. This optimal89

spectrum reveals e.g. the time scales that are important for accurate parameter90

estimation. We also consider variance constraints on the individual parameters,91

which is particularly important to use for systems that have low sensitivities for92

some parameters (in which case the D-optimality criterion, as used by e.g. [24],93

can be ill-chosen).94

In this paper, we tackle the experiment design problem as follows. We95

perform parameter estimation using ordinary least squares using the measured96

noise-corrupted downstream pressure signal [28, 29]. This signal is deduced from97

the governing equations and boundary conditions, and depends on the applied98

upstream signal. One benefit of this method is that it can deal in a rather99

easy manner with (coloured) measurement noise; see [28] for details. A second100

benefit is that a frequency-domain expression of the covariance matrix of the es-101

timates can be formulated. This expression, which we introduce in Section 3, is102

a function of the power spectrum of the applied signal and the DOF of the exper-103

iment set-up. Consequently, we can formulate the above optimization problem104

(of minimising the experiment time subject to parameter variance constraints105

and actuator bounds by designing the optimal input signal and DOF of the106

set-up) mathematically. We shall limit ourselves to sinusoidal and square-wave107

actuator signals. The latter is easy to generate by rapidly switching between108

two actuator levels, which can be done with current vibration exciters [1]. Other109

reasons for this choice are explained in Section 5.110

111

We apply our method to the Dynamic Darcy Cell experiment set-up, as de-112

tailed in [1], but we stress that our methodology can be applied to many other113
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set-ups as well. The DOF in the Dynamic Darcy Cell set-up are the inlet volume114

and outlet volume. We introduce the Dynamic Darcy Cell in Section 2 and show115

how to apply sinusoidal and square wave signals to the set-up. Two types of116

measurements are then introduced: inlet pressure/outlet pressure measurements117

(Direct Method) and actuator position/outlet pressure measurements (Indirect118

Method). The former is one of the current ways to estimate parameters [1], in119

particular using sinusoidal signals. The latter has, to the authors’ knowledge,120

not been investigated before. For both cases, we focus on square wave input121

signals, for which we prove that shorter experiment lengths than for sinusoidal122

ones can be obtained. We explain the data collection and estimation procedure123

in Section 3, and give an expression for the covariance matrix of the parameter124

estimates. In Sections 4 and 5 we use this expression to compute the opti-125

mal sinusoidal and square wave signals and DOF that minimize the experiment126

time for the estimation of permeability and porosity for the Direct and Indirect127

Methods. In the absence of a physical set-up, we illustrate the experiment de-128

sign results by simulating the noise-corrupted physical system and applying the129

optimal square wave signal in Section 6. Lastly, we draw conclusions in Section130

7.131

2. The Dynamic Darcy Cell132

To investigate the estimation problem the Dynamic Darcy Cell in [1] is con-

sidered. Detailed and schematic layouts of this set-up are depicted in Figs. 1 and

2. The porous core sample is mounted vertically in a core holder under a specific

confined pressure pinit, with the inlet at the bottom (upstream side) and outlet

at the top (downstream side). The sample with length L and cross-sectional

area A is sealed at the top from the environment. The spatial coordinate axis x

is oriented towards the outlet and is perpendicular to the cross-sectional plane.

The bottom of the sample is located at x = 0. A vibration exciter with equi-

librium position x = −Li, also called the actuator, is moved according to the

user-defined oscillatory signal r(t). This signal is assumed to be continuous in
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time until Section 3, where instead discrete-time signals for estimation of the

parameters are used. The actuator position r as a function of time t is either a

sinusoid, i.e.,

r(t) = Cγ sin(ωext), (1)

or a square wave,

r(t) =
4

π
Cγ

∞∑
m=1

sin([2m− 1]ωct)

2m− 1
. (2)

In these expressions, ωex and ωc in respectively (1), (2) represent the excitation

frequency of the sinusoid and cycle frequency (slowest mode) of the square wave.

Furthermore, Cγ is the amplitude of the actuator signal defined by

Cγ = γLi, 0 < γ ≤ γm. (3)

Obviously, the actuator amplitude can not exceed the length Li as can be seen133

from Fig. 2, so the user-chosen factor γ has a geometric constraint γ ≤ γm = 1.134

However, the actuator amplitude may not necessarily be limited by the geometry135

of the setup but by its own movement restrictions, yielding a γm that is smaller136

than unity.137

The square wave signal can be generated in practice by switching abruptly

between +Cγ and −Cγ . The actuator induces an upstream (inlet) pressure

signal at position x = 0, i.e.,

pi(t) = p(x = 0, t), (4)

within the inlet volume Vi that is connected to the sample. This signal is

measured by pressure transducer 1 (see Fig. 1) and assumed to be corrupted

by sensor noise. At the sample outlet, which is connected to the end volume Ve,

the output (downstream) pressure

pe(t) = ynf (t) (5)

is measured by pressure transducer 2 at x = L, see Fig. 1. Here, ynf (t) =138

pe(t) = p(x = L, t) is the noise-free pressure response of the core sample. The139
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Figure 1: The Dynamic Darcy Cell. The core sample is mounted vertically in the holder.

The actuator induces a pressure signal at inlet, measured by pressure transducer 1. The wave

propagates through the porous core and is measured at the outlet by pressure transducer 2.

Courtesy of [1].

input and output are continuous time signals. In Section 3 we will use sampled140

input and output data for parameter estimation. The measurements taken by141

this pressure transducer are also corrupted by sensor noise. We shall return to142

this point when we explain the estimation method in Section 3. The inlet and143

outlet volumes Vi and Ve can be set by the experimenter and are part of the144

DOF of the experiment set-up. (The set-up can for instance be designed to have145

easily-adaptable inlet and outlet volumes). Prior to the experiment the core,146

the inlet and outlet volume are filled with a gas (e.g., air) at pressure pinit.147

2.1. System of Coupled Equations in the Time Domain148

In the set-up we consider a porous cylindrical core that is homogeneous149

and isotropic with constant porosity φ and permeability k, and assume that the150

compressibility of the medium is small compared to the compressibility of the gas151

and therefore considered constant. Usually, both φ and k have to be identified.152

The core is defined in Table 1. Gravity forces and pressure dependencies of the153

viscosity µ are neglected and isothermal conditions are assumed.154

We now derive the dynamics within the experiment set-up. We shall consider155
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Vi Ve

𝑥

𝑝#(𝑡) 𝑝'(𝑡)

−𝐿# 0 𝐿 𝐿 + 𝐿'

𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚	𝐼 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚	𝐼𝐼 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚	𝐼𝐼𝐼

Figure 2: A sketch of the Dynamic Darcy Cell, rotated ninety degrees clock-wise. The cylin-

drical core sample is depicted in between the inlet volume Vi and outlet volume Ve. The

sample has a cross-sectional area A and length L. The signals pi(t) and pe(t) are measured

by pressure transducer 1 and 2 respectively, see Fig. 1. The actuator is visualised by the blue

disk that can oscillate around its equilibrium position x = −Li.

Quantity Value

Length L 0.0512 m

Cross-sectional area A π 0.03752/4 m2

Permeability k0 2.0× 10−13 m2

Porosity φ0 0.2

Fluid density ρ 1.225 kg m3

Dynamic Viscosity µ 1.84× 10−5 Pa s

Bulk modulus K 1.0× 105 Pa

Table 1: Parameters defining the Dynamic Darcy Cell and the core sample. These values define

a core sample used in an actual pressure oscillation experiment in ([1]). The parameters k0

and φ0 need to be estimated.
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the inlet volume, the porous medium, and outlet volume as three subsystems156

with their own dynamics, input and output, and boundary conditions. The157

subsystems are interconnected at the inlet (x = 0) and outlet (x = L) locations.158

We shall use the dynamics to derive the relationship between the inlet pressure159

to outlet pressure signals, and the actuator position to outlet pressure signals160

in Section 2.3.161

Subsystem I: The Inlet Volume162

The actuator is a piston that vibrates in the x-direction within a confined gas163

in the inlet volume Vi = ALi, where Li is the length of the inlet. The dynamics164

of the gas volume as a consequence of the moving piston is governed by the165

momentum and mass conservation laws, which for this particular configuration166

read167

∂w

∂t
+ w

∂w

∂x
+

1

ρ

∂p

∂x
= 0, (6)

∂ρ

∂t
+ w

∂ρ

∂x
+ ρ

∂w

∂x
= 0, (7)

where w = w(x, t) is the velocity profile of the gas in the x-direction (we use168

air as gas, see Table 1), ρ the density of the gas, and p = p(x, t) the pressure169

profile. We assume that the actuator has a small amplitude. In this case we170

may linearise (6)-(7) around the pressure pinit. The factor γm in (3) is thus171

either defined by limitations in the actuator movement or by the linearisation172

condition, whichever is most restrictive. Furthermore, we assume isothermal173

conditions and therefore replace ∂ρ
∂t with 1

K
∂p
∂t , where K = ρ∂p∂ρ the Bulk mod-174

ulus. Equations (6)-(7) then reduce to175

∂w

∂t
+

1

ρ

∂p

∂x
= 0, (8)

1

K

∂p

∂t
+
∂w

∂x
= 0, (9)

where we furthermore neglected the nonlinear terms w ∂w
∂x and w ∂ρ

∂x . Lastly, we176

take the derivative of (8) with respect to x and the derivative of (9) with respect177
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Figure 3: The network representation of the experimental setup. The dynamics inside the

subsystems I and III are contained in respectively the left and right blue-dotted squares,

whereas the dynamics in subsystem II is contained in the centre, red-dotted square.

to t and combine the two, resulting in178

∂2p

∂x2
=

ρ

K

∂2p

∂t2
, (10)

∂w

∂t
= −1

ρ

∂p

∂x
. (11)

The boundary conditions, i.e. inputs, of this subsystem are given by

w(x = −Li, t) =
∂r(t)

∂t
, w(x = 0, t) = wi(t), (12)

where r(t) is the movement of the actuator as a function of time, and wi(t) the

inlet gas speed. We neglect friction effects between the wall of the inlet volume

and the actuator. The outputs of this subsystem are

p(x = −Li, t) = pv(t), p(x = 0, t) = pi(t). (13)

This subsystem is shown in Fig. 3 in the left blue-dotted square, which reveals179

the coupling of all dynamics in the Laplace domain. Notice that it is connected180

to subsystem II through the output pi(t), being the inlet pressure, and the inlet181

gas speed wi(t). We now continue with the dynamics in the porous medium.182

Subsystem II: The Porous Medium183

For the second system, i.e. the porous medium, mass conservation and

Darcy’s law show that the pressure change in the core is governed by the diffusion
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equation
∂p (x, t)

∂t
=
kK

µφ

∂2p (x, t)

∂x2
. (14)

The specific discharge, or Darcy velocity, is related to pressure by

w (x, t) = −k
µ

∂p (x, t)

∂x
. (15)

Note that this velocity is different to those in the inlet and outlet volumes

(subsystems I and III). The boundary conditions, i.e. inputs, for this subsystem

read

p(x = 0, t) = pi(t), w(x = L, t) = we(t), (16)

in which pi(t) is the inlet pressure defined previously, and we(t) the outlet gas

speed. The outputs are defined by

w(x = 0, t) = wi(t), p(x = L, t) = pe(t). (17)

This subsystem is shown in Fig. 3 in the centre, red-dotted square. Note that184

the first and second subsystem are now connected. What remains is to connect185

subsystem II with subsystem III. We shall now derive the dynamics in the latter.186

Subsystem III: The Outlet Volume187

In the third subsystem, following the same reasoning as for the first subsys-188

tem, the dynamics are determined by the conservation of mass and momentum.189

The pressure profile follows the wave equation and reads (c.f. (10))190

∂2p

∂x2
=

ρ

K

∂2p

∂t2
, (18)

∂w

∂t
= −1

ρ

∂p

∂x
. (19)

The boundary conditions are however different from subsystem I and are given

by

p(x = L, t) = pe(t), w(x = L+ Le, t) = wo(t), (20)

in which wo(t) is an as-of-yet unspecified input for subsystem III. The outputs

are defined by

w(x = L, t) = we(t), p(x = L+ Le, t) = po(t), (21)
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where we(t) is the gas speed at the outlet and po(t) the pressure at the boundary191

x = L+ Le.192

193

At this point, we have defined all dynamics in the experiment set-up. The194

three subsystems are now connected through their boundary conditions and195

outputs. Before proceeding with introducing the scaled set-up, we reflect on the196

assumptions made in the derivation of the governing equations in subsystems I197

until III.198

Range of Applicability199

We have assumed that (a) the flow is essentially laminar and inviscid in the200

inlet and outlet volumes, (b) that the flow in the core sample is laminar and201

non-inertial (Darcy-dominated), and (c) that temperature changes (and the202

associated changes in viscosity and density) of the working fluid are minimal,203

so that isothermal conditions can be assumed.204

One way to test whether or not the flow is laminar in the inlet and outlet205

volume is to calculate the Reynolds number ReI,O = ρvL
µ , in which v is the206

maximum flow velocity with units [m/s], ρ the density of the fluid in [kg m−3],207

L the characteristic travelled length of the fluid in [m], and µ the dynamic vis-208

cosity in [Pa s]. The subscript I,O indicates that this definition of the Reynolds209

number pertains to the inlet and outlet volumes. If ReI,O ≤ 1 the flow may be210

considered laminar. To validate assumption (b), one can utilise the following211

definition of the Reynolds number for porous media ([30]): Re = ρwd
µ , where ρ212

is again the density of the fluid, w the specific discharge, and d the typical grain213

diameter (which is roughly equivalent to the square root of permeability). If214

Re < 10 then the flow in the core is Darcy-dominated. An alternative method is215

to consider the Darcy-Forchheimer equation and compare the effect of the Darcy216

term with the inertial term; see ([31, 32]). Anticipating low-frequency signals217

and the fact that usually water or air is used as gas in a Darcy experiment, (c)218

may be assumed to hold. For the core sample and excitation signals used in this219

work, the Reynolds numbers are ReI,O ≈ 0.8 and Re ≈ 0.03, and thus within220

13



the accepted range.221

222

We proceed by introducing the scaled set-up. The scaled equations are then223

used to find the dynamic relationship between the actuator, inlet pressure, and224

outlet pressure.225

2.2. Scaling226

We are interested to identify the porosity and the permeability of the porous

medium. As shown in Table 1, the values of these parameters differ by twelve

orders of magnitude. It is thus very important for the sake of numerical compu-

tations to scale the dynamical equations in such a way that the to-be-identified

parameters are both of O(1). To this end, we first choose ks and φs equal to

the order of magnitude of k and φ (which are usually known, either from prior

experiment data, or for instance from the Rosetta Soil database from the US

Salinity Lab [33]) and define the dimensionless parameters

k̃ =
k

ks
, φ̃ =

φ

φs
. (22)

Furthermore, we also define the following dimensionless variables227

x̃ =
x

L
, p̃(x̃, t̃) =

p(x/xs, t/ts)

ps
, t̃ =

t

ts
, w̃(x̃, t̃) =

w(x/xs, t/ts)

ws
. (23)

We note that the actuator signal r(t) should be scaled in time and space accord-228

ing to the above definitions, resulting in r̃(t̃) = r(t/ts)
L . The scaled frequency229

ω̃ follows from the above-defined time scaling and is given by ω̃ = ωts. Lastly,230

choosing231

ps =
K

φs
, ts =

φsµL
2

ksK
, ws =

ksps
µL

, (24)
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leads to equations with O(1) terms when substituting (22)-(24) into the equa-232

tions of subsystem I to III (10)-(18). The scaled system is thus given by233

∂2p̃(x̃, t̃)

∂x̃2
=

ρL2

K
t−2
s

∂2p̃(x̃, t̃)

∂t̃2
, (25)

∂w̃

∂t̃
= − tsps

ρwsL

∂p̃

∂x̃
, (26)

∂p̃(x̃, t̃)

∂t̃
=

k̃

φ̃

∂2p̃(x̃, t̃)

∂x̃2
, (27)

w̃(x̃, t̃) = −k̃ ∂p̃(x̃, t̃)
∂x̃

, (28)

with the scaled boundary conditions (12), (16), (20)234

w̃(x̃ = −Li
L
, t̃) =

∂r̃(t̃)

∂t̃
, w̃(x̃ = 0, t̃) = w̃i(t̃), (29)

p̃(x̃ = 0, t̃) = p̃i(t̃), w̃(x̃ = 1, t̃) = w̃e(t̃), (30)

p̃(x̃ = 1, t̃) = p̃e(t̃), w̃(x̃ = 1 +
Le
L
, t̃) = w̃o(t̃), (31)

and outputs (13), (17), (21)235

p̃(x̃ = −Li
L
, t̃) = p̃v(t̃), p̃(x̃ = 0, t̃) = p̃i(t̃) (32)

w̃(x̃ = 0, t̃) = w̃i(t̃), p̃(x̃ = 1, t̃) = p̃e(t̃), (33)

w̃(x̃ = 1, t̃) = w̃e(t̃), p̃(x̃ = 1 +
Le
L
, t̃) = p̃o(t̃). (34)

From now on we shall work with the scaled system and omit the tildes for the236

sake of simplicity. The unscaled results can easily be deduced using the scaling237

defined in this section. We proceed with the determination of the dynamic238

relationships between the actuator and the inlet and outlet pressures.239

2.3. System of Coupled Equations in the Laplace Domain240

For the estimation of the physical parameters we require explicit expressions241

of the transfer functions between the actuator and the outlet pressure, as well242

as the inlet to outlet pressure. For this purpose, we transform the equations for243

each system into the Laplace domain.244
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Subsystem I245

The dynamics in subsystem I are defined by (10)-(13). Their scaled equiva-

lents are given by (25)-(26), (29), and (32). We take the Laplace transform of

(25) and assume zero initial conditions. The resulting equation reads

∂2P (x, s)

∂x2
=
ρL2s2

Kt2s
P (x, s), (35)

where P (x, s) is the Laplace transform of the scaled pressure profile p(x, t). This

equation has the general solution

P (x, s) = m1 sinh

(
x
L

ts

√
ρ

K
s

)
+m2 cosh

(
x
L

ts

√
ρ

K
s

)
, (36)

in which m1 and m2 are two unknown scalars. We solve the coefficients m1,m2

with the equation for the gas speed (26), which we transform into the Laplace

domain (assuming zero initial conditions), giving

W (x, s) = − tsps
ρwsLs

∂P (x, s)

∂x
. (37)

Substitution of (36) into (37) then yields

W (x, s) = − ps
ws
√
ρK

{
m1 cosh

(
x
L

ts

√
ρ

K
s

)
+m2 sinh

(
x
L

ts

√
ρ

K
s

)}
. (38)

Using the Laplace transformed boundary conditions (29) then leads to246

m1 = −ws
ps

√
ρKWi(s), (39)

m2 = −ws
ps

√
ρK

{
sinh−1

(
−sLi

ts

√
ρ

K

)
sR(s)− coth

(
−sLi

ts

√
ρ

K

)
Wi(s)

}
.(40)

Substitution of these expressions into (36) and using the Laplace transformed

outputs (32) allows us to determine the dynamical relationship between R(s),

We(s) and Pv(s), Pi(s): Pi(s)

Pv(s)

 =
ws
ps

√
ρK

 F11(s) F12(s)

F21(s) F22(s)

 R(s)

Wi(s)

 , (41)

in which F11(s) F12(s)

F21(s) F22(s)

 =

 −s sinh−1(−sLits
√

ρ
K ) coth(−sLits

√
ρ
K )

−s coth(−sLits
√

ρ
K ) sinh−1(−sLits

√
ρ
K )

 . (42)
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The argument in each of the above hyperbolic functions contains the fraction

Li
√
ρ

ts
√
K

= ksLi
√
ρK

L2µφs
. Since this expression evaluates to a small number for typi-

cal values of each parameter, we approximate these hyperbolic functions with

coth(z) ≈ 1
z and sinh(z) ≈ z where z � 1. The transfer functions then reduce

to the expressions F11(s) F12(s)

F21(s) F22(s)

 =
φsL

Lis

 s −1

s −1

 =
fi
s

 s −1

s −1

 , (43)

where fi is defined as

fi =
φsAL

Vi
=
φsL

Li
. (44)

Subsystem II247

We recall that the dynamics in subsystem II are defined by the equations

(14)-(17). Their scaled equivalents are given by (27)-(28), (30), and (33). We

apply the Laplace transform to the diffusion equation (27), again assuming zero

initial conditions, and write it as(
∂2

∂x2
− s

k/φ

)
P (x, s) = 0, (45)

where P (x, s) is the Laplace transformed scaled pressure. The general solution

to this equation reads

P (x, s) = c1e
x
√

sφ
k + c2e

−x
√

sφ
k , (46)

where c1 and c2 are as-of-yet unknown scalar coefficients. Taking the Laplace

transform of (28) and using the previous equation shows that the speed of gas

in the porous medium is given by

W (x, s) = −kc1

√
sφ

k
ex
√

sφ
k + kc2

√
sφ

k
e−x
√

sφ
k . (47)

The unknown coefficients c1 and c2 are then determined with the Laplace trans-

formed boundary conditions (30). We then substitute these into (46) and use

(33) to find the dynamical relationships between Pe(s), Wi(s) and Pi(s), We(s): Pe(s)

Wi(s)

 =

 S11(s) S12(s)

S21(s) S22(s)

 Pi(s)

We(s)

 , (48)
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in which S11(s) S12(s)

S21(s) S22(s)

 =

 cosh−1
(√

sφ/k
)

−1√
sφk

tanh
(√

sφ/k
)

√
sφk tanh

(√
sφ/k

)
cosh−1

(√
sφ/k

)
 .

(49)

Note that the argument in all hyperbolic functions are of O(1) or higher. We248

therefore do not approximate these functions as we did for subsystem I.249

Subsystem III250

The dynamics in subsystem III are defined by the equations (18)-(21). Their

scaled equivalents are given by (25)-(26), (31), and (34). We follow the exact

same derivation as for subsystem I, albeit with the boundary conditions and

outputs in (31) and (34). The result for subsystem III is that Po(s)

We(s)

 =

 T11(s) T12(s)

T21(s) T22(s)

 Pe(s)

Wo(s)

 (50)

in which T11(s) T12(s)

T21(s) T22(s)

 =

 cosh−1
(
Le
ts

√
ρ
K s
)

−wsps
√
ρK tanh

(
Le
ts

√
ρ
K s
)

ps
ws
√
ρK

tanh
(
Le
ts

√
ρ
K s
)

cosh−1
(
Le
ts

√
ρ
K s
)

 .
(51)

Following the derivation for subsystem I we remark that the arguments in all

the hyperbolic functions are small. We approximate these functions around zero

and find that we may write T11(s) T12(s)

T21(s) T22(s)

 =

 1 −k
2
sKρ
µ2L2

s
fe

s
fe

1

 , (52)

where fe is defined as

fe =
φsAL

Ve
=
φsL

Le
. (53)

The Experiment Set-Up System251

At this point we have coupled the different inputs and outputs of the total252

system. In the Dynamic Darcy Cell experiment set-up, however, we do not have253

gas entering the system at x = 1 + Le
L and thus wo(t) = 0. Consequently, we254

18



Figure 4: The network representation of the experimental setup after simplification.

can remove the transfer functions T12(s) and T22(s) from the network, see Fig.255

3. In addition, the transfer functions F21(s), F22(s) may be removed as they do256

not influence pi(t), r(t), nor pe(t). Lastly, T11(s) can be discarded as it does not257

influence pe(t). The reduced network is depicted in Fig. 4. From this figure, we258

see the output signal ynf (t) = pe(t) that we shall use to estimate permeability259

and porosity. For the two experiment types we consider (see Introduction),260

observe that r(t) = uII(t) is the input in the Indirect Method, and uI(t) = pi(t)261

the input in the Direct Method.262

For the least-squares procedure that we shall introduce in Section 3 we re-263

quire the transfer function between r(t) and ynf (t) = pe(t) and the transfer264

function between pi(t) and ynf (t) = pe(t). We shall derive these transfer func-265

tions now.266

267

We start with the relationship between Pi and Pe, which we shall use to find

the time-domain connection between pe(t) and pi(t). We find from Fig. 4 that

Pe(s) =
S11(s)

1− S12(s)T21(s)
Pi(s). (54)

This equation shows that the outlet pressure depends on both the inlet pressure268

Pi as well as itself through We. This feedback mechanism is clearly seen in Fig.269

4.270

Next, the relationship between R(s) and Pi(s) can be deduced from (43),

19



(48)-(49), and (50) or Fig. 4 and reads

Pi(s) = F11(s)

[
1− F12(s)

(
S21(s) + S22(s)T21(s)

S11(s)

1− S12(s)T21(s)

)]−1

R(s).

(55)

Equations (54) and (55) reveal the transfer functions between the Laplace-271

transformed measurement variables r(t), pi(t), and pe(t). In the next section we272

show how to calculate the time-domain response of pi(t) and pe(t) as a function273

of the actuator signal r(t) using these transfer functions. These responses are a274

function of the physical parameters that we seek to estimate, and will be used275

as estimation functions in Section 3.276

2.4. Input-Output Dynamics in the Time Domain277

Suppose that an input signal u(t) (which in our case can either be pi(t)

or r(t)) affects some noise-free output ynf (θ, t). In the Laplace domain, their

relation is

Ynf (θ, s) = G(s,θ)U(s), (56)

where G(s,θ) is a function of the physical parameters collected in the vector278

θ. This vector represents a family of physical systems, whereas θ = θ0 refers279

to a particular physical system characterised by its parameters θ0. We shall280

refer to the system with θ0 as the data-generating system, and θ0 contains the281

physical parameters we need to estimate. As will become clear in Section 3,282

we shall use discrete-time input and output data to estimate the parameters283

using a least-squares method. To this end, we require a function that simulates284

the noise-free response ynf (θ, t) of the system. In this section, we derive this285

response for sinusoidal (1) and square wave (2) actuator signals.286

287

Suppose we have a closed-form expression of G(s,θ) in (56). The time-

domain signal ynf (θ, t) for an input signal of the form, assuming zero initial

conditions, reads

u(t) = Cγ sin(ωt). (57)
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The corresponding noise-free output is then given by [28]

ynf (θ, t) = Cγ |G(iω,θ)| sin(ωt+ α), (58)

where G(iω,θ) is defined in (56) and α = ∠G(iω,θ). In other words, the

output ynf (θ, t) is also a sinusoid with frequency ω but a different amplitude

and phase. Using this insight, it is straightforward to write down an expression

for the output when the input is a sum of sinusoids. Indeed, for a square wave

input signal (2) with amplitude C and cycle frequency ωc the output ynf (θ, t)

reads

ynf (θ, t) =
4

π
Cγ

∞∑
m=1

|G(i[2m− 1]ωc,θ)|
2m− 1

sin([2m− 1]ωct+ αm), (59)

where αm = ∠G(i[2m − 1]ωc,θ). This is an elegant way to find the time-288

domain expression of the output of the system without requiring an inverse289

Laplace transform.290

291

At this point a general expression of a linear system’s response for sinusoidal292

and square wave input signals is defined. What remains is to find a closed-form293

expression for the transfer function G(s,θ) that connects the actuator signal r(t)294

with the inlet and outlet pressures pi(t) and pe(t). In the next two subsections295

we derive this transfer function for pi(t) to pe(t) and r(t) to pe(t).296

Direct Method: Inlet-Outlet Pressure Measurements297

The first measurement method uses inlet and outlet pressure measurements.

This is one way to collect data in pressure oscillation experiments, see e.g. [1].

The input signal u(t) = uI(t) = pi(t) and the output is ynf (θ, t) = pe(t), see

Fig. 4. In the previous section we have derived the relationship between Pi(s)

and Ynf (s) = Pe(s) (c.f. (54)), being

Pe(s) =
S11

1− S12T21
Pi(s). (60)

Substitution of S11, S12, and T21 defined in (49) and (50) results in

Pe(s) = Gfe(s,θ)Pi(s), (61)
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in which

Gfe(s,θ) =
1

cosh
√
φs/k + f−1

e

√
s(φk)−1 sinh

√
φs/k

. (62)

Note that θ = [k, φ]T and that Gfe also depends on the degree of freedom298

fe. We have now obtained the closed-form expression of the transfer function299

between pi(t) and pe(t). Hence, we can easily calculate the output response in300

the time domain using (58). We remark that the dynamics between pi(t) and301

pe(t) have also been derived in [1] but that the concept of transfer function has302

not been used, see Appendix C for a discussion.303

For future reference we also calculate the gradient of (62) with respect to304

θ = (k, φ):305

∂Gfe(iω,θ)

∂k
=

fe

{
iφω cosh

(√
iωφ
k

)
+ k [feφ+ 1]

√
iωφ
k sinh

(√
iωφ
k

)}
2k2φ

{
fe cosh

(√
iωφ
k

)
+
√
iω(kφ)−1 sinh

(√
iωφ
k

)}2 (63)

∂Gfe(iω,θ)

∂φ
= −

fe

{
iω/k cosh

(√
iωφ
k

)
+

[
fe

√
iωφ
k −

√
iω(kφ)−1

]
sinh

(√
iωφ
k

)}
2φ

{
fe cosh

(√
iωφ
k

)
+
√
iω(φk)−1 sinh

(√
iωφ
k

)}2 .(64)

We shall use these expressions in Section 4 to find the optimal input signals.306

The absolute values of the derivatives are shown in Figs. 5 and 6 as a function307

of ω for several values of fe.308

Indirect Method: Actuator Position/Outlet Pressure Measurements309

Another possible method uses the actuator and outlet pressure signal for

parameter estimation. These signals have so far not been considered in literature

for identification, but have a major advantage with respect to the Direct Method.

Indeed, since the actuator signal is applied and not measured, no sensor noise

is present on the actuator signal. Therefore, it is not an Errors-in-Variables

problem as the Direct Method is. For the Indirect Method, the input and

output are respectively given by u(t) = uII(t) = r(t) and ynf (θ, t) = pe(t), see
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Figure 5: Absolute value of the derivative of the transfer function (62) with respect to perme-

ability as a function of the scaled frequency ω, see (63). Observe that for increasing values of

fe, the maximum of the curve shifts to higher frequencies and higher values. A small (large)

fe value means that the outlet volume is large (small).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ω

|∂
G

f
e
/
∂
φ
|(
ω
)

 

 

fe =
1
5

fe =
1
2

fe = 1
fe = 5
fe = 20

Figure 6: Absolute value of the derivative of the transfer function (62) with respect to porosity

as a function of the scaled frequency ω, see (64). For a given ratio fe, the absolute value of

∂Gfe (iω,θ)/∂φ is smaller at almost all frequencies than the absolute value of ∂Gfe (iω,θ)/∂k,

see Figure 5.
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Fig. 4. The relationship between r(t) and pe(t) in the Laplace domain is found

by combining (54), (55) and using (62), i.e.,

Pe(s) = [1− F12 (S21 + S22T21Gfe(s,θ))]
−1
F11(s)Gfe(s,θ)R(s) (65)

Substitution of F11, F12 (43), S11, . . . , S22 (49), and T21 (50), into the previous

expression results in

Pe(s) = Lfi,fe(s,θ)Gfe(s,θ)R(s), (66)

in which

Lfi,fe(s,θ) =

 1

fi
+

1

s

k√sφ

k
tanh

√
sφ

k
+

sGfe(s,θ)

fe cosh
√

sφ
k

−1

. (67)

This is an interesting result. It shows that the relationship between R(s)

and Pe(s) is equal to the relationship between Pi(s) and Pe(s) multiplied by

a complex filter Lfi,fe(s,θ). Thus, we have that Pi(s) = Lfi,fe(s)R(s) and

Pe(s) = Gfe(s)Pi(s). The input-output connection between R(s) and Pe(s) is

thus Pe(s) = Lfi,fe(s,θ)Gfe(s,θ)R(s) = Gfi,fe(s,θ)R(s), where

Gfi,fe(s,θ) =

 1

fi
+

1

s

k√sφ

k
tanh

√
sφ

k
+

sGfe(s,θ)

fe cosh
√

sφ
k

−1

Gfe(s,θ).

(68)

For future reference, we also calculate the derivatives of (68) with respect to k310

and φ:311

∂Gfi,fe(iω,θ)

∂k
=

kφGfe(iω,θ)

[√
iωφ
k sech2

√
iωφ
k − tanh

√
iωφ
k

]
− if−1

e φωG2
fe

(iω,θ)

× sech
√

iωφ
k tanh

√
iωφ
k + 2f−1

i k2 ∂Gfe (iω,θ)
∂k

[√
iωφ
k + fiφ tanh

√
iωφ
k

]
2k2

√
iωφ
k

(
f−1
i + f−1

e Gfe(iω,θ) sech
√

iωφ
k + φ

√
k
iωφ tanh

√
iωφ
k

)2 ,(69)

∂Gfi,fe(iω,θ)

∂φ
= −

iφω

(√
kGfe(iω,θ) sech2

√
iωφ
k − 2f−1

i

√
k
∂Gfe (iω,θ)

∂φ +
tanh
√

iωφ
k√

iωφ

×
[
kGfe(iω,θ)− iωf−1

e G2
fe

(iω,θ) sech
√

iωφ
k − 2kφ

∂Gfe (iω,θ)
∂φ

])
2k3/2

(
f−1
e

√
iωφ
k Gfe(iω,θ) sech

√
iωφ
k + f−1

i

[√
iωφ
k + fiφ tanh

√
iωφ
k

])2 .(70)
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Figure 7: Absolute value of the derivative of the transfer function (68) with respect to per-

meability as a function of the scaled frequency ω, see (69). Observe that for increasing values

of fi and fe, the maximum of the curve increases and shifts to higher frequencies. A small

(large) fe value means that the outlet volume is large (small). A small (large) fi value means

that the inlet volume is large (small).

In these expressions, the transfer function Gfe and its derivatives are defined312

in (62)-(64). The absolute values of the above derivatives are shown in Figs. 7313

and 8 as a function of ω for several values of fe and fi.314

3. Estimation Procedure315

In this section we introduce the estimation procedure. Our goal is to esti-316

mate the physical parameters k and φ of the coupled system defined in Section317

2.1 for the Direct and Indirect Method.318

319

We first rewrite the expression of the actuator amplitude Cγ (c.f. (3)). Since

Cγ and the ratio fi (44) are related to the inlet length Li, we write the actuator

amplitude as a function of fi, i.e.

Cγ(fi) = γ
Li
L

= γ
φs
fi
, (71)

25



0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

ω

|∂
G

f
i,
f
e
/
∂
φ
|(
ω
)

 

 
f i =

1
5 , f e =

1
5

f i =
1
2 , f e = 5

f i = 1, f e = 1
f i = 0 .6, f e = 6 .1
f i = 0 .1, f e = 20

Figure 8: Absolute value of the derivative of the transfer function (68) with respect to porosity

as a function of the scaled frequency ω, see (70).

where we still have that 0 < γ ≤ γm. It is already mentioned that γm ≤ 1320

due to the movement limitations of the actuator. However, it is now also clear321

that γm can not be chosen large as otherwise the inlet volume is no longer322

approximately constant due to the actuator movement, and hence our above323

derivations no longer hold. It is important to use the this definition of the324

actuator amplitude as otherwise unphysical (wrong) results are obtained when325

using optimal experiment design. The value γm ≤ 1 should be determined by326

the experimenter.327

328

We continue with determining the data collection procedure and then define329

the least-squares method. In the remainder of this article we derive results330

based on a square wave actuator signal (with an as-of-yet undetermined am-331

plitude and cycle frequency), which we prove in Appendix D to deliver shorter332

experiment lengths than a sinusoidal one for the same values of fi and fe.333
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Indirect Method334

Let us for simplicity first explain the identification of the parameters for the

Indirect Method. In system identification, parameters of a system are estimated

based on input-output data collected on the system. For the Indirect Method

we already mentioned that the input signal for the identification is a discrete-

time version of the user-chosen actuator signal r(t) and the output signal is a

discrete-time version of the outlet pressure pe(t). An identification experiment

can be performed as follows. We apply, for a certain duration, a continuous-time

excitation signal r(t) of the form (2) and we wait for the transients to die out.

The corresponding steady-state output signal (i.e the outlet pressure) is then

measured at a sampling rate Ts. We will suppose that an anti-aliasing filter

is applied prior to the sampling. In this way, we are able to collect N output

measurements yD[n] (n = 1, . . . , N) with NTs the duration of the experiment.

These measurements are of course corrupted by noise. In the sequel, we suppose

that this noise is white and has a variance σ2
e . Coloured noise could also be taken

into account, see e.g. [28]. The continuous-time input signal r(t) also has to

be transformed into a discrete-time signal that we will denote by uD[n]. This

discretization is done in the same way as for the output signal. First, the signal

is filtered by an anti-aliasing filter and then sampled. Since we precisely know

r(t), we can exactly compute uD[n] (n = 1, . . . , N). This leads to the following

input data (n = 1, . . . , N):

uD[n] =
4

π
Cγ(fi)

Q(Ts)∑
m=1

sin([2m− 1]ωcnTs)

2m− 1
, (72)

where we recall that ωc is the cycle frequency of the square wave. Furthermore,335

observe that the sum no longer extends to infinity but to the finite integer336

Q(Ts) =
⌊

1
2

(
π

ωcTs
+ 1
)⌋

: it determines the highest mode that can be observed337

in the discrete-time data. Here, b·c represents the floor function. This integer338

can be easily deduced from the radial Nyquist rate π
Ts

.339

Using this procedure, we have obtained an input-output data set

ZN = {uD[n], yD[n]}n=1,...,N with which the unknown parameter vector θ0 =
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(k0, φ0) will be estimated. In order to determine an optimal estimator for this

purpose, we need to write an expression of the output data as a function of vari-

ables that represent these parameters. This can be easily done. Indeed, due to

our data generating mechanism, in the frequency range [0, π/Ts], the frequency

response Gd(e
iωTs ,θ0) of the discrete-time transfer function Gd(z,θ0) between

the input data uD[n] and the (noise-free) output data ynf [n] is perfectly equal

to the frequency response Gfi,fe(iω,θ0) of the continuous-time transfer function

Gfi,fe(s,θ0) between the continuous-time input and output. Consequently, we

can write

yD[n] = ynf (θ = θ0)[n] + e[n], (73)

where e[n] is a white noise realisation with variance σ2
e , and the definition of

ynf (θ)[n] for the square wave actuator signal (72) is given by

ynf (θ)[n] =
4

π
Cγ(fi)

Q(Ts)∑
m=1

|Gfi,fe(i[2m− 1]ωc,θ)|
2m− 1

sin([2m+ 1]ωcnTs + αm),

(74)

in which αm = ∠|Gfi,fe(i[2m − 1]ωc,θ)|. Based on (73), an asymptotically

efficient estimate for θ0 is defined through [28]

θ̂N = arg min
N

1

N

N∑
n=1

(yD[n]− ynf (θ)[n])
2
, (75)

where ynf (θ) is defined in (74). In Appendix A the expressions for uD and340

ynf (θ)[n] are given for a sinusoidal actuator signal. Replacing the expressions341

(72), (73) with the ones in Appendix A defines the estimate (75) for the sinu-342

soidal case.343

We remark that the scaling introduced in the previous section should also344

be applied to the measured data set ZN . For a detailed explanation on how345

identification can be used for scaled systems, we refer the reader to [34], pages346

6-7.347

As shown in [28], θ̂N is asymptotically (i.e. for large N) normally distributed

with mean θ0 and a covariance matrix P θ whose inverse is given by the Fisher
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Information Matrix:

P−1
θ =

N

σ2
e

Ē
[
∇θynf (θ)∇Tθ ynf (θ)

]
θ=θ0

, (76)

where Ē(·) = 1
N

∑N
n=1E(·) is a modified expectation operator and ∇θ the

gradient operator of θ. This matrix can be rewritten using Parseval’s theorem

as

P−1
θ [ΦuD ] =

NTs
2πσ2

e

∫ π/Ts

−π/Ts
[∇θGfi,fe(iω,θ)] θ=θ0

[∇θGfi,fe(iω,θ)]
H

θ=θ0
ΦuD (ω)dω,

(77)

and shows that the covariance matrix is a functional in ΦuD , the power spectrum348

of uD[n]. Superscript H denotes the Hermitian conjugate. Note that in (77) the349

discrete-time transfer function Gd is replaced by its continuous-time counterpart350

Gfi,fe(iω) (68) since their frequency response are identical in the frequency range351

up to the Nyquist rate π/Ts.352

The covariance matrix depends on the ratios fi and fe, the input signal uD353

via its power spectrum, and on the number of data samplesN . Using this expres-354

sion, we will be able to design the input spectrum that provides us the maximal355

information about the unknown parameter. This optimal spectrum can e.g. be356

defined as the spectrum that delivers parameter estimates with predetermined357

upper bounds on the parameter variances using the shortest experiment length358

(i.e. using the smallest N possible). This input spectrum selection is called359

optimal experiment design and will be the subject of the next sections. Note360

also the importance of the gradient of the transfer function, ∇θGfi,fe(iω), in361

(77). This components of this gradient are depicted in Figs. 7 and 8.362

Note that, from (77), we see that in order to calculate the covariance matrix,363

we need to know the unknown vector θ0, which we aim to estimate! In practice,364

this vector is replaced by an initial guess that may or may not be derived from365

a prior experiment. Although this will change the optimal input signal, it has366

been shown in e.g. [34] that accurate estimates can nonetheless be obtained.367
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Direct Method368

In the Direct Method we will also apply a square wave or sinusoidal excitation369

signal r(t) to the system via the actuator. However, we will not use this signal370

as input for the identification, but we will use the measured inlet pressure pi(t)371

instead. The output signal remains to be the outlet pressure and is measured372

in the same way as in the Indirect Method, yielding yD[n] (n = 1, . . . , N).373

This method is also followed in [1]. The input signal is transformed into a374

discrete-time signal uD[n] using the same measurement mechanism (anti-aliasing375

filter and sampling with Ts time steps). Since the signal pi(t) is measured376

(and not directly applied as r(t)), we are not able to retrieve precisely the377

inlet pressure (the measurements are indeed corrupted by noise). The signal378

entering the system is thus not known exactly, and consequently, we are facing379

an errors-in-variables (EIV) identification problem that may lead to serious380

problems in practice [35, 36]. As shown in [37] on another problem, a way381

to deal with this EIV problem is to apply a two-stage strategy [38]. First,382

identify a model L̂ of the relation Lfi,fe (c.f. 67) between the actuator signal383

and the noise-corrupted measurements of pi(t). Second, the actuator signal384

r(t) is filtered by that model L̂ to lead to new input data. These new input385

data converge asymptotically to the noise-free inlet pressure if a good model386

structure is chosen for the identification. While this method alleviates the EIV387

issue, it will nevertheless increase the variance of the estimate θ̂N . For the sake388

of comparison between the Direct and Indirect Method, we will disregard here389

this increase of variance and suppose that we can obtain the noise-free discrete-390

time inlet pressure using this procedure. This is the same as supposing that we391

know precisely the filter L(s) = Lfi,fe(s,θ0).392

For a square wave signal r(t), the discrete-time signal pi[n] reads

uD[n] =
4

π
Cγ(fi)

Q(Ts)∑
m=1

|Lfi,fe(i[2m−1]ωc,θ0)| sin([2m− 1]ωcnTs + ∠Lfi,fe(i[2m− 1]ωc,θ0))

2m− 1
.

(78)

The output signal can therefore also be written as (73) with ynf (θ)[n] now
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defined as

ynf (θ)[n] =
4

π
Cγ(fi)

Q(Ts)∑
m=1

|Lfi,fe(i[2m−1]ωc,θ0)| |Gfe(i[2m− 1]ωc,θ)|
2m− 1

sin([2m+1]ωcnTs+αm),

(79)

where αm = ∠Gfe(i[2m−1]ωc,θ)+∠Lfi,fe(i[2m−1]ωc,θ0). Based on the above393

expressions, we can use the data ZN = {uD[n], yD[n]}n=1,...,N to estimate θ̂N394

using (75) but now with the new definitions of ynf (θ)[n]. Note that we now395

identify the parameter vector in the transfer function Gfe while the considered396

transfer function was Gfi,fe for the Indirect Method. The covariance matrix for397

the estimate using the Direct Method is also given by (77) but with the same398

replacement and using the power spectrum corresponding to (78).399

We remark that for the Direct Method we have assumed zero noise on the400

inlet pressure signal. This is never the case in practice and we therefore require401

a two-stage method. The variance in the parameters will consequently be larger402

than given by (77). These are strong arguments to prefer the Indirect Method403

which is the new approach we propose in this paper.404

We furthermore point out that the zero noise assumption on the inlet pres-405

sure signal is alleviated in the literature [1] by averaging points of the signal406

pi(t) over a three-sample window to cancel out the measurement noise. This407

downsampling of data leads to information loss since high frequency dynamics408

is discarded, which leads to higher parameter variances.409

4. Experiment Design using the Direct Method410

In the previous section we have defined the identification experiment and the411

identification criterion. Suppose now that our objective is to obtain estimates412

of both parameters with a variance that is smaller than a given threshold, i.e.,413

var(k̂N ) = eT1 P θe1 ≤ ck, (80)

var(φ̂N ) = eT2 P θe2 ≤ cφ, (81)

where the covariance matrix is the inverse of (77). We would like to optimise414

the frequency content and the amplitude of the excitation signal r(t) as well as415
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the DOF fi and fe in such a way that the above constraints are fulfilled with416

the shortest possible identification length N .417

418

In this section we address this problem for the Direct Method. For the

sake of brevity, we only derive the solution for the square wave actuator signal

(2). The case of a sinusoidal excitation signal (1) can be treated in a similar

fashion. Furthermore, we recall that, even though the excitation signal r(t) is

induced by the actuator, the signals that are used for the identification are the

reconstructed inlet pressure pi(t) and the measured outlet pressure pe(t). The

transfer function that is to be identified is thus Gfe(s,θ0).

The spectrum of the sampled inlet pressure signal with amplitude Cγ(fi) and

cycle frequency ωc is given by

ΦuD (ω) =
16

π2

πC2
γ(fi)

2Ts

Q(Ts)∑
m=1

|Lfi,fe(i[2m− 1]ωc,θ0)|2

(2m− 1)2

∑
l={−1,1}

δ(ω−l[2m−1]ωc).

(82)

Since the filter Lfi,fe(s,θ0) is not identified but only Gfe(s,θ), Lfi,fe for419

the Direct Method is not a function of θ anymore, but assumed known and420

therefore always evaluated at θ = θ0. Substitution of (82) in the expression421

of the covariance matrix (77) and replacing Gfi,fe with Gfe (62) result in the422

inverse of the covariance matrix for the Direct Method:423

P−1
θ [ωc, Cγ(fi), fi, fe] =

16

π2

NC2
γ(fi)

2σ2
e

Q(Ts)∑
m=1

|Lfi,fe(i[2m− 1]ωc,θ0)|2

(2m− 1)2
×

Re
{

[∇θGfe(i[2m− 1]ωc,θ)]θ=θ0
· [ C.C. ]

}
, (83)

where C.C. stands for complex conjugate.424

4.1. Optimization Problem and Its Solution425

Due to the amplitude limitation of the actuator, the optimal experiment

design problem for the Direct Method is defined mathematically as

min
ωc,Cγ(fi),fi,fe

Experiment length N (84)
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subject to426

var(k̂N ) = eT1 P θ[ωc, Cγ(fi), fi, fe]e1 ≤ ck, (85)

var(φ̂N ) = eT2 P θ[ωc, Cγ(fi), fi, fe]e2 ≤ cφ (86)

in which ck and cφ are the scaled user-imposed constraints on respectively the427

variance of the estimates k̂N and φ̂N , ei the i-th unit vector, and P θ the in-428

verse of matrix (83). The optimization problem for a sinusoidal actuator signal429

is defined and solved in Appendix B.430

431

We wish to ensure that the variance of the estimates in θ̂N = (k̂N , φ̂N )T432

do not exceed their respective bounds ck and cφ using the smallest experiment433

length. The solution is found as follows:434

1. Set the factor γ = γm in the actuator amplitude Cγ(fi).435

2. Define the functions436

Nk(fi, fe, ωc) =
1

ck
eT1

(
P−1

θ [ωc, Cγm(fi), fi, fe]

N

)−1

e1, (87)

Nφ(fi, fe, ωc) =
1

cφ
eT2

(
P−1

θ [ωc, Cγm(fi), fi, fe]

N

)−1

e2, (88)

where P−1
θ is given by (83) and we note that γ has been replaced by γm.437

3. Using the functions from the previous item, define

Nmin(fi, fe) = min
ωc
{max [Nk(fi, fe, ωc), Nφ(fi, fe, ωc)]} . (89)

4. The optimal experiment length is given by438

Nopt = Nmin(fi,opt, fe,opt), where {fi,opt, fe,opt} = arg min
fi,fe

Nmin(fi, fe). (90)

The solution to the problem is given by the quartet Nopt, fi,opt, fe,opt,439

and ωc,min(fi,opt, fe,opt) = argNmin(fi,opt, fe,opt).440

In step 1 the coefficient γ in the actuator amplitude Cγ(fi) is set to γ = γm.441

Equation (83) shows that the parameter variances scale inversely proportional442

to Cγ(fi). Thus, selecting the largest possible amplitude of the actuator is a443
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requirement to find the minimal experiment time. The actuator amplitude is444

now only a function of fi. In step 2 the functions Nk and Nφ respectively445

define the required experiment length to ensure that (i) var(k̂N ) = ck and (ii)446

var(φ̂N ) = cφ. Smaller values than Nk and Nφ violate the respective constraints447

in (86), whereas larger ones lead to longer experiment lengths than required.448

Both constraints are honoured simultaneously, i.e. satisfying situation (i) and449

(ii), with the function Nmin(fi, fe) calculated in step 3. It returns the minimal450

required experiment length as a function of fi and fe by finding the optimal451

cycle frequency. The last step then finds the optimal values of fi and fe such452

that the global minimum of Nmin(fi, fe), i.e. Nopt, is obtained.453

454

Previously it was mentioned that in order to compute the optimal input sig-455

nal the true parameter vector θ0 should be used. However, it is this parameter456

that we want to identify. Unfortunately, this so-called chicken-and-egg problem457

is unavoidable in (optimal) Experiment Design. In order to design an optimal458

signal, some knowledge of the system (in this case the true parameter vector)459

is required. Consequently, to solve the optimization problem (84)-(86), we re-460

quire a prior estimate or an initial estimate θinit to evaluate the inverse of the461

covariance matrix (83). This substitution inevitably leads to suboptimal exper-462

iment lengths. However, a recent study [34] showed that much better estimates463

can be obtained using Experiment Design compared to an arbitrary selection464

of signals and frequencies, and that in many cases the variance constraints are465

still honoured. In [39, 40, 41] advanced techniques to circumvent this issue are466

discussed.467

4.2. Numerical Results468

In this section we follow the four steps defined in the previous section to469

numerically find the solution (90) that solves (84)-(86). To this end, we grid470

the frequency ωc ∈ [0, π/Ts] and ratios fi ∈ [0.05, 20], and fe ∈ [0.05, 20].471

The grid resolutions are respectively ∆ωc = 0.05, ∆fi = ∆fe = 0.05. The472

minimum (maximum) values in the interval of fi and fe correspond to unscaled473
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maximum (minimum) inlet and outlet lengths of respectively Li = Le = 0.2474

meters (Li = Le = 0.5 mm). Values outside these intervals are assumed to be475

practically infeasible. The physical system is defined through the values in Table476

1; the experiment conditions and experiment design values in Table 2. We wish477

to ensure that the standard deviation of the estimate k̂N and φ̂N are respectively478

less than or equal to 5% of their true values k0 and φ0, defined in Table 1, using479

minimal experiment time. We remark that the optimal experiment lengths480

found in this section depend strongly on the choice of noise variance σ2
e and481

actuator amplitude bound γm. Thus, comparison with results in the existing482

literature is only fair under the same experiment conditions.483

We first discuss separate parameter estimation results, followed by joint484

parameter estimation results.485

4.2.1. Separate Parameter Estimation486

Separate parameter estimation refers to the situation where either k0 or φ0487

is known, and respectively φ0 and k0 is unknown and needs to be estimated.488

We thus wish to ensure that the standard deviation of the estimate k̂N or489

φ̂N is less than or equal to 5% of their true value k0 or φ0 in minimal time.490

Separate estimation is a special case of the situation considered in the previous491

section where both parameters are identified together (joint estimation), and492

the optimal experiment design problem in this case can thus be solved following493

a very similar procedure of the one presented in the previous section. This494

procedure is given in Appendix B for the case of the sinusoidal excitation signal.495

The problem and solution for a square wave excitation signal can also be trivially496

formulated using that appendix.497

The different results for separate estimation of k and φ with sinusoidal or498

square wave excitation are summarized in Table 3. In order to interpret these499

results, it makes sense to start discussing the result corresponding to the si-500

nusoidal excitation and in particular the function Nmin(fi, fe) defined for this501

signal in (B.4) in Appendix B. This function is represented in Fig. B.13 of502

Appendix B for the case where the parameter k is identified. We observe the503
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following:504

• For any value of fi the required experiment length reduces with increas-505

ing fe. Inspection of Nmin(fi, fe) (c.f. (B.4)) shows that increasing506

∂Gfe(iωex, θ)/∂θ decreases Nmin. From Fig. 5 we see that increasing507

fe results in a larger absolute value of the derivative. At fe = 20 we find508

a maximum at ωex ≈ 2.4. Similar behaviour is shown for the case θ = φ.509

The optimal value is fe,opt = 20.510

• For any value of fe the required experiment length reduces with decreasing

fi. Let us analyse this result. Note first that fi is only present in the

term Cγm(fi)|Lfi,fe(iω,θ0)|, i.e. the amplitude of the inlet pressure pi(t).

Obviously, by decreasing fi, we increase the inlet volume and thus also

the maximal amplitude of the actuator Cγm(fi) (see remark below (3) and

(71)), which in turn decreases the required experiment time (c.f. (B.4)).

However, the inlet amplitude attenuation due to the filter |Lfi,fe | decreases

with decreasing fi, yet increases with frequency. It is easy to show that

∀fi, fe : max
ω

Cγm(fi)|Lfi,fe(iω,θ0)| = γmφs.

Thus, the maximal amplitude of the inlet pressure is equal to γmφs and511

independent of fi and fe. However, for small fi this asymptotic value is512

reached quicker at lower frequencies than for larger fi, see Fig. 10. It513

is also reached quicker for larger fe. This explains why one should opt514

for taking fi,opt = 0.1 for any fe. It is also at low frequencies where515

the derivative of Gfe(iω,θ) with respect to k is large, as explained in the516

previous item.517

• The optimal ratios are fi,opt = 0.1 and fe,opt = 20. The corresponding518

optimal experiment length Nopt = 2.86× 105 at optimal frequency ωopt =519

2.45, see Table 3. The value of fe,opt corresponds with a choice made in520

literature [1]: minimising the outlet volume. The optimal values occur at521

the boundary of the considered intervals of fi and fe. The aim in practice522

is thus to maximise the inlet volume and minimise the outlet volume.523

36



Quantity Scaled Value Real Value

Sampling time T̃s = 0.021 Ts = 0.01 s

Sensor noise variance σ̃2
e = 0.05 σ2

e = 1.25× 109 Pa2

Permeability variance constraint c̃k = 2.5× 10−3 ck = 2.5× 10−3k2
0 m4

Porosity variance constraint c̃φ = 2.5× 10−3 cφ = 2.5× 10−3φ2
0

Actuator amplitude constraint γm = 0.1 γm = 0.1

Table 2: The experiment is designed using the above quantities. The scaled system is defined

through the choices L = 0.05, ks = k0, φs = φ0. These scalars define the scaled system in

Section 2.2.

• Quantitatively the same results and analysis holds for the case where θ =524

φ. The experiment lengths in Table 3 show that porosity is more difficult525

to estimate than permeability, as ∂Gfe/∂φ is smaller than ∂Gfe/∂k for all526

values of fe depicted in Fig. 6.527

• Square wave actuator signals result in shorter experiment lengths than528

sinusoidal ones, in agreement with our result in Appendix E.529

4.2.2. Joint Parameter Estimation530

We follow the procedure outlined at the start of this section, using the same531

experiment conditions, to analyse the joint parameter estimation experiment532

design solutions. The optimization problem is given by (84)-(86). The results533

are also given in Table 4 for the case of the sinusoidal and square wave signals.534

The logarithm of the Nmin(fi, fe) (c.f. 89)) is shown in Fig. 9 as a function535

of fi and fe. Starting once again the discussion with the sinusoidal signal, we536

observe the following:537

• The optimal input signal for joint estimation, defined through (90), is538

found for ωopt = ωc,min(fi,opt, fe,opt) = 2.35 at optimal ratios fi,opt = 0.1539

and fe,opt = 1.0, see Table 3 and Fig. 9. The minimal experiment length540

for this combination is Nopt = 4.47× 107, and corresponds to an unscaled541

experiment time of about five days (Ts = 0.01 seconds). The experiment542
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Direct

Method k φ {k, φ}

Sine SW Sine SW Sine SW

Nopt 2.86× 105 1.66× 105 3.46× 105 2.0× 105 4.47× 107 2.51× 107

ωopt 2.45 2.3 2.45 2.3 2.35 2.1

fi,opt 0.1 0.1 0.1 0.1 0.1 0.1

fe,opt 20 20 20 20 1.0 1.0

Table 3: Optimal experiment lengths, scaled frequencies, and optimal ratios fi,opt, fe,opt of

input using the Direct Method for sinusoidal (Sine) and square wave (SW) actuator signal.

Three cases are shown: estimation of only k or φ, and the joint estimation of the parameters

{k, φ}.
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Figure 9: The logarithm minimal experiment length Nmin(fi, fe) (90) for the simultaneous

estimation of k and φ using a sinusoidal excitation signal required to honour their respective

variance constraint and the amplitude constraint γm = 0.1, is plotted against the ratios fi

and fe. In sharp contrast to single parameter estimation experiments, the optimal ratio

fe,opt = 1.0. The optimal inlet ratio fi,opt = 0.1.
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Figure 10: The inlet pressure amplitude Cγm (fi)|Lfi,fe (iω,θ0)| as a function of frequency

ω for various values of fi. For each ratio fi the inlet amplitude is shown for various values

of fe in the same color. For the same fi value, smaller values of fe correspond to smaller

amplitudes. Observe that a smaller fi leads to a higher amplitude at any given frequency,

although all ratios of fi lead to the same asymptotic value of γmφs = 0.02. Notice that fe

only affects the amplitude at low frequencies and after ω = 7.0 all ratios fe yield the same

amplitude at their respective value of fi.
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length when using a square wave actuator signal is shorter than when using543

a sinusoidal actuator signal, as expected from the result in Appendix D.544

• For any value of fe it is clear from the figure that by lowering fi shorter545

experiment times are obtained. This effect has already been explained in546

Section 4.2.1.547

• In sharp contrast to the single parameter experiments (see Table 3), we548

observe that now, instead, fe should be chosen equal to fe = fe,opt = 1.0 as549

opposed to fe � 1. The experiment length N is affected by fe through the550

gradient of Gfe , see (83). In Figs. 5 and 6 we see that both components of551

this gradient increase with increasing fe, which in principle should shorten552

N . This is not the result we obtain from the optimal experiment design553

results.554

In order to understand the curiosity mentioned in the last item, i.e. why

the optimal ratio is now fe,opt = 1.0 instead of fe = 20, we need to analyse the

physical system further. In fact, we will now show that the parameters k and φ

are not identifiable in the limit fe →∞. To this end, we introduce the general

condition for identifiability ([42, 28])

G(iω,θ1) = G(iω,θ2)∀ω ⇒ θ1 = θ2. (91)

Taking the limit fe →∞ of the frequency response Gfe(iω,θ) in (62) yields

lim
fe→∞

Gfe(iω,θ) =
1

cosh
√
iωφ/k

. (92)

Suppose that θ1 = [k1, φ1]T and θ2 = [κk1, κφ1]T , where κ ∈ R. Substitution555

in (92) then shows that G∞(iω,θ1) = G∞(iω,θ2) for any frequency ω, whereas556

θ1 6= θ2.557

We have thus shown that in the limit of fe → ∞ the transfer function Gfe558

contains the quotient φ
k . As a consequence, infinitely many equal quotients exist559

by multiplying k and φ with the same scalar κ. This problem does not exist for560

the estimation of only one parameter, as the other one is known. How is this561

effect then reflected in (90)?562
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It turns out that the components of the gradient ∇θGfe(iω,θ) are linearly

dependent for all frequencies in the limit fe → ∞. Consequently, the inverse

of the covariance matrix P−1
θ is rank deficient for any input spectrum ΦuD (ω).

To see this, consider the derivative of the transfer function (62) with respect

to the parameters k and φ; see (63) and (64). Dividing the numerator and

denominator of each derivative by f2
e and taking the limit fe →∞ shows that

∂Gfe(iω, θ)

∂k
= −k

φ

∂Gfe(iω, θ)

∂φ
. (93)

This shows that the elements in ∇θGfe(iω,θ) are linearly dependent at all

frequencies. Consequently, for any input spectrum ΦuD , the inverse of the co-

variance matrix for the Direct Method in this limit, i.e.

P−1
θ =

NTs
2πσ2

e

k2/φ2 −k/φ

−k/φ 1

∫ π/Ts

−π/Ts

∣∣∣∣∂Gfe(iω,θ)

∂φ

∣∣∣∣2
θ=θ0

|Lfi,fe(iω,θ0)|2ΦuD (ω) dω

(94)

is rank deficient for all ω. Indeed, we find that det(P−1
θ ) = 0. It is clear that563

the variances of the estimates k̂N and φ̂N approach infinity when increasing fe564

towards the limit fe →∞.565

4.2.3. Discussion566

The above calculations show that when identifying the two parameters jointly,567

high values of fe should be avoided. We see now that there are two compet-568

ing mechanisms. One the one hand, the sensitivity of the physical system with569

respect to the parameters increases with increasing fe, which is beneficial to re-570

duce the individual variances of the parameters (and thus shorten the required571

experiment time). On the other hand, joint estimation of the two parameters572

becomes more difficult as the derivatives become more and more similar for573

large fe. Hence, the parameters become increasingly correlated for increasing574

fe for any excitation frequency (or, in fact, any input spectrum), making the575

covariance matrix singular in the limit fe → ∞. This effect already plays a576

dominant role at fe ≈ 20, as can be observed from Figs. 5 and 6. Consequently,577

a trade-off between these two mechanisms has to be made. Optimal experiment578
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design shows that the best trade-off is reached by choosing fe = 1.0 and using579

an optimal frequency of ωc,opt = 2.1. Due to this trade-off, the minimal experi-580

ment time increases to N = 2.51× 107 (approximately five days), which is two581

orders of magnitude larger than the experiment lengths obtained for separate582

parameter estimation.583

5. Experiment Design using the Indirect Method584

In this section we consider experiment design for the Indirect Method. We585

recall that we estimate the parameters in the transfer function Gfi,fe(s,θ0) =586

Lfi,fe(s,θ0)Gfe(s,θ0). The input in this case is the actuator signal r(t) and the587

output is the outlet pressure pe(t), see Fig. 4. We use the same core sample588

values and scaling as in the previous section, see Tables 1 and 2. As in Section589

4, we only derive the results for the square wave signal. The result for the590

sinusoidal excitation can be treated in a similar fashion. The experiment design591

theory on single parameter estimation can be found in Appendix C.592

The power spectrum of the square wave actuator signal, corresponding to

the input signal (72), is defined by

ΦuD (ω) =
16

π2

πC2
γ(fi)

2Ts

Q(Ts)∑
m=1

1

(2m− 1)2

∑
l={−1,1}

δ(ω − l[2m− 1]ωc). (95)

Substitution of this spectrum in the covariance matrix (77) yields593

P−1
θ [ωc, Cγ(fi), fi, fe] =

16

π2

NC2
γ(fi)

2σ2
e

×

Q(Ts)∑
m=1

1

(2m− 1)2
Re
{

[∇θGfi,fe(i[2m− 1]ωc,θ)]θ=θ0
· [ C.C. ]

}
, (96)

where C.C. stands for complex conjugate and the transfer functionGfi,fe is given594

by (68). As in the previous section, we search for the minimal identification595

length N that nonetheless fulfils variance constraints on the estimates, and596

respects the actuator amplitude limitations, by finding optimal values for γ, ωc,597

fi, and fe.598
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5.1. Optimization Problem and Its Solution599

The optimization problem in the Indirect Method is given by

min
ωc,fi,fe,Cγ(fi)

Experiment length N (97)

subject to600

var(k̂N ) = eT1 P θ[ωc, Cγ(fi), fi, fe]e1 ≤ ck, (98)

var(φ̂N ) = eT2 P θ[ωc, Cγ(fi), fi, fe]e2 ≤ cφ, (99)

in which the inverse of the covariance matrix for two parameters is given by601

(96) for the transfer function Gfi,fe (68). Notice that the optimization problem602

is similar to (84)-(86), although we now consider the transfer function is Gfi,fe603

and the amplitude of the input is different.604

605

The solution is found by following the same reasoning as in Section 4.1. We606

follow the steps 1-4 in Section 4.1, where we instead use (96) for P−1
θ .607

5.2. Numerical Results608

Let us now investigate the experiment design solutions, where we use the609

same physical set-up, experiment parameters, and gridding method as defined610

in Section 4.2. For convenience we recall that we wish to ensure that the variance611

of the estimate k̂N and φ̂N are respectively less than or equal to 5% of their true612

values k0 and φ0, defined in Table 1. All parameters defining the porous medium613

are also mentioned in this table. Other parameters are defined in Table 2.614

We will first consider separate parameter estimation experiment design results,615

followed by the joint parameter results.616

5.2.1. Separate parameter estimation617

In Appendix C the optimization problem (B.1)-(B.2) and solution are given618

for the separate parameter estimation problem in case of a sinusoidal signal.619

The case of a square wave input signal is trivially formulated and solved with620

the use of (96).621
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The optimal experiment times are tabulated in Table 4. The function622

Nmin(fi, fe) (c.f. (C.2)) plotted against fi and fe is qualitatively similar to623

the Direct Method case (see Fig. B.13) for both θ = k and θ = φ. Furthermore,624

we observe the following:625

• For both θ = k and θ = φ the optimal ratios are fi,opt = 0.1 and fe,opt =626

20. Apparently, it is best practice to maximize the inlet volume and627

minimize the outlet volume.628

• From (C.2) we find that fe influences the gradient ∂Gfi,fe(iωex, θ)/∂θ.629

The larger the gradient, the smaller Nmin(fi, fe) for any value of fi. Fig-630

ures 7 and 8 show that increasing fe increases the gradient of both k and631

φ. This explains why one should opt for maximising fe.632

• The same figures also show that decreasing fi decreases the gradient, which633

increases the required experiment length. Yet, we see from Table 4 that634

fi should be minimised. The actuator amplitude Cγm(fi) scales inversely635

proportional to fi, and so minimising fi increases the amplitude and re-636

duces the required experiment length. The two effects are thus competing,637

but the latter one is dominant. Hence, fi should me minimised.638

• The optimal excitation frequencies lie close to those values where the gra-639

dients are maximal, see Figs. 7 and 8.640

5.2.2. Joint parameter estimation641

The solution for the joint estimation of permeability and porosity is also642

presented in Table 4 and is discussed now. The numerical results are obtained643

through the same procedure as in Section 4, but using (96) to define P θ. We644

discuss here directly the case of the square wave signal:645

• The function Nmin(fi, fe) attains its minimum for fi,opt = 0.6 and fe,opt =646

6.1, giving Nopt = Nmin(0.6, 6.1) = 1.8 × 106 (5 hours) and an optimal647

cycle frequency of ωc,opt = 1.0, see Fig. 11.648
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Indirect

Method k φ {k, φ}

Sine SW Sine SW Sine SW

Nopt 3.00× 105 1.74× 105 3.6× 105 2.1× 105 3.3× 106 1.8× 106

ωopt 2.55 2.4 2.5 2.4 1.2 1.0

fi,opt 0.1 0.1 0.1 0.1 0.6 0.6

fe,opt 20 20 20 20 6.4 6.1

Table 4: Scaled optimal experiment lengths, frequencies, and ratios fi, fe of input for the

Indirect Method. The scaled system is defined through Table 1. These scalars define the

scaled system in Section 2.2. For simultaneous estimation in case of a SW actuator signal,

note that fi,opt and fe,opt translate into an inlet length of Li = L/3 ≈ 1.7 cm and an outlet

length of Le = L/30 ≈ 1.7 mm, both of which are feasible in practice.
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Figure 11: The logarithm of the minimal experiment length Nmin(fi, fe) as a function of

the ratios fi and fe. Note that the shortest experiment length is obtained for fi,opt = 0.6,

fe,opt = 6.1.
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• These optimal values differ significantly from the separate estimation re-649

sults, see Table 4. From Figs. 7 and 8 we see that for fi = 0.1, fe = 20 the650

gradients of k and φ are very similar, resulting in high correlation between651

the two parameters in a joint estimation. This increases the required ex-652

periment length. However, we have here no identifiability problem as for653

the Direct Method.654

• In Section 5.2.1 it is explained that the actuator amplitude is maximised655

by minimising fi and therefore for those cases fi,opt = 0.1. By virtue of the656

previous item, a trade-off between parameter correlation and amplitude657

maximisation has to be made. We see from Figs. 7 and 8 that the gradients658

are large and not identical at the optimal ratios of fi and fe, so the increase659

in fi (reducing the amplitude and thus increasing the required experiment660

length) is compensated by larger gradients.661

5.2.3. Discussion662

We now discuss some differences between the Indirect and Direct Method663

results.664

Let us first discuss the case of separate estimation. For this specific case,665

observe from Tables 3 and 4 that permeability or porosity is estimated with666

slightly shorter experiment times when using the Direct Method. However, we667

point out that we have assumed the input signal pi(t) is noise free, corresponding668

to the assumption that we know the filter Lfi,fe(iω,θ0). In reality, this is not669

the case, and will increase the variance of the estimates. Probably the Indirect670

Method is then preferred.671

Let us now go to the more interesting case of joint estimation of the two672

parameters. Experiment Design has revealed that the optimal experiment length673

strongly depends on the selected input signals. Indeed, the experiment time for674

the Indirect Method is a factor fourteen smaller for joint estimation compared675

to the Direct Method. We have seen for the latter method that fe had to676

be reduced due to singularity issues at fe >> 1. This back-off reduces both677

the inlet pressure amplitude and the gradients, hereby increasing the required678
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experiment length enormously compared to the separate estimations. For the679

Indirect Method, the combination (fi = 0.1, fe = 20) corresponds to highly680

correlated parameters and thus a long experiment time. However, we found681

that for fi,opt = 0.6 and fe,opt = 6.1 the gradients can be increased significantly682

even though the actuator amplitude is less. The difference in the required683

experiment length for joint estimation compared to the separate estimations is684

therefore less drastic than in the Direct Method.685

6. Simulation of the Experiment Set-Up: Estimation Results686

In this last section we apply the optimal square wave input signal of the In-687

direct Method detailed in Section 5, Table 4, to the core sample. All parameters688

are defined in Tables 1 and 2. In the absence of a physical set-up, we instead689

generate numerical experiment data ZN = {uD[n], yD[n]}n=1,...,N by applying690

our optimal input signal uD (using the values in Table 4 and (72)) and gener-691

ating noise-corrupted output sequences yD using (74) and (73). We then follow692

the estimation procedure for the Indirect Method detailed in Section 3.693

694

We consider the simultaneous estimation of permeability and porosity from a695

single experiment. We performed five thousand Monte Carlo simulations yield-696

ing the estimated pairs
{
k̂N , φ̂N

}
. The optimal square wave signal has a cycle697

frequency of ωc,opt = 1.0, the experiment length is Nopt = 1.8 × 106, and the698

optimal ratio fi,opt = 0.6, fe,opt = 6.1, see Section 5. A scatter plot of the esti-699

mates is shown in Fig. 12. The mean of all points is (1.0, 1.0), corresponding to700

the true scaled parameter values k0 = φ0 = 1.0. The variance of the estimates701

k̂N and φ̂N are respectively σ2
k = 2.49×10−3 and σ2

φ = 2.5×10−3. The variance702

constraints defined in Table 2 are clearly respected.703

In conclusion, we see the optimal input signal and set-up conditions indeed704

generate estimates that respect the variance constraints that we set prior to the705

experiment.706

We note that in the experiment design sections we have made use of the fact707
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that we know θ0 in order to find the optimal input spectra, since the inverse708

of the covariance matrix depends on θ0. Unfortunately, this dependence is uni-709

versal in experiment design: no optimal experiment can be designed without710

prior knowledge of the system. This work considers a non-Bayesian Experiment711

Design approach; the unknown true parameter vector θ0 in the inverse covari-712

ance matrix should therefore be replaced by an initial estimate θinit. We have713

shown in [34] that by replacing the true vector by an initial guess nonetheless714

delivers better results than an arbitrary input signal or degrees-of-freedom in715

the set-up. Other solutions to tackle this problem are reported in [39, 41]. It716

is worthwhile to remark that this problem has a close analog in the Bayesian717

Experiment Design approaches. Indeed, in these approaches a prior has to be718

defined for each parameter through e.g. assuming a uniform distribution [13].719

Another method, known as ”preposterior data analysis” [26], uses a collection720

of simulated data sets that account for all possible experiment outcomes. This721

set is used to find the best experiment set-up given that you do not know the722

actual data prior to the experiment.723

We furthermore note that our results are based on the values k0 and φ0724

shown in Table 1. Different values will lead to different optimal frequencies725

and optimal ratios fi,opt and fe,opt. However, the Indirect Method will remain726

a better estimation method than the Direct Method, regardless of the actual727

values of permeability and porosity.728

7. Discussion and Conclusions729

In this paper we have introduced a novel estimation method that allows find-730

ing the minimal experiment time that is required to estimate permeability and731

porosity under user-specified parameter variance constraints and actuator limits.732

We illustrated our methodology on the Dynamic Darcy Cell. We approached733

the problem by introducing a classical least-squares estimation procedure, from734

which we derived an expression for the covariance matrix of the estimates. This735

expression allowed computation of the optimal input signal (either a sinusoid736
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Figure 12: Scatter plot of the couples
{
k̂N , φ̂N

}
resulting from 5 × 103 experiments. The

variance of permeability is σ2
k = 9.9183 × 10−5 and of porosity σ2

φ = 5.1211 × 10−5. The

black cross indicates the coordinate of the mean values of permeability and porosity, which

were < k̂N >= 1.0 and < φ̂N >= 1.0 and hence respectively equal to k0 = 1.0 and φ0 = 1.0.

or square wave) and optimal experiment set-up degrees of freedom, being the737

ratios of the pore volume to inlet volume, fi, and pore volume to outlet volume,738

fe using Experiment Design techniques. We considered sinusoidal and square739

wave actuator signals and two measurement types: actuator position/outlet740

pressure measurements (the Indirect Method, novel in this article) and inlet741

pressure/outlet pressure measurements (Direct Method).742

743

We have proven that square wave signals deliver shorter experiment lengths744

than sinusoidal ones under the same variance constraints and actuator limits.745

The experiment design results for the Direct Method were as follows. For the746

joint estimation of permeability and porosity, we found that the optimal ratios747

fe,opt = 1.0 and fi,opt = 0.1, in contrast to separate parameter experiments for748

which fe,opt = 20. This curiosity originates from a trade-off between variance749

reduction of permeability and porosity (which is obtained for high fe values, and750

49



reduces the variance of each separate parameter) and their correlation (which751

increases with increasing fe, and drives the inverse of the covariance matrix752

to singularity). As a result, the minimum experiment time in this case is two753

orders of magnitude larger than for the separate parameter experiments.754

We also investigated the Indirect Method, novel in this article. We found755

it superior to the Direct Method for joint parameter estimation: experiment756

lengths of a factor fourteen less are found. This difference originates mainly757

from the fact that, compared to the Direct Method, the sensitivity of the system758

with respect to changes in permeability and porosity for the Indirect Method is759

large over a broader range of fi and fe values.760

Our analytical results are verified by simulating the Dynamic Darcy cell nu-761

merically, and we found excellent agreement between the numerical results and762

theoretical predictions.763

764

Experiment design, and the introduction of the novel estimation method, clearly765

have enormous potential in practice. This theoretical work is therefore also an766

invitation to experimentalists to apply our technique to real cores in a labora-767

tory.768

769

Future work could consist of applying our methodology to a system at the catch-770

ment scale, e.g. an aquifer. On this scale, multiple input and output signals771

are typically available, which can be used to identify the spatially-dependent772

permeability and porosity values of an inhomogeneous reservoir. This is for773

instance the case in the Hydrogeological Experiment Site of Poitiers, France,774

where pumping at several wells of the aquifer is possible ([43, 44]).775

For applicability of our methodology to catchment-scale problems several776

hurdles are to be overcome. First, the experiment design method has to be777

generalised to multiple-input, multiple-output systems (e.g. an aquifer). Sec-778

ond, our methodology is only suitable for linear models. Consequently, lin-779

earisation techniques have to be applied to the governing nonlinear equations780

of the catchment-scale problem, and possibly a dimensional analysis has to be781
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performed to validate whether or not the linear dynamics are sufficient to accu-782

rately model the process. A third hurdle is the parameter identifiability issue783

which, on the catchment scale, is likely much larger than on the core scale. User784

choices such as the spatial resolution of the problem (determining the number785

of porosity and permeability values that have to be estimated), and the number786

of input and output locations will play an important role to address this issue.787

An interesting option that could aid identifiability and input design is the pos-788

sibility to gather additional information about the aquifer or reservoir with a789

method known as Fiber-Optic Distributed Acoustic Sensing ([45, 46]).790
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Appendix A. Definitions using Sinusoidal Excitation Signals914

In this appendix we define the sinusoidal actuator signal r[n] for the Direct915

and Indirect Method that can be used to estimate the parameters permeability916

and porosity in Section 3.917

Sinusoidal Input in the Indirect Method918

The power spectrum of a sinusoidal actuator signal, i.e. the input, with

amplitude Cγ(fi) and frequency ωex is defined by

ΦuD (ω) =
πC2

γ(fi)

2Ts

∑
l={−1,1}

δ(ω − lωex). (A.1)

This leads to the discrete-time actuator signal r[n], which is the input uD[n],

given by

uD[n] = Cγ(fi) sin(ωexnTs) (A.2)

In this case the noise-free outlet pressure is given by

ynf (θ)[n] = Cγ(fi)|Gfi,fe(iωex,θ)| sin(ωexnTs + α), (A.3)

where α = ∠|Gfi,fe(iωex,θ)|. Replacing (72) and (73) by respectively (A.2)919

and (A.3) defines the estimation problem (75) for the Indirect Method using a920

sinusoidal actuator signal.921

Sinusoidal Input in the Direct Method922

The power spectrum the discrete-time inlet pressure signal, defined as the

input signal in the Direct Method, as a consequence of a sinusoidal actuator

signal with amplitude Cγ(fi) and frequency ωex is defined by

ΦuD (ω) =
πC2

γ(fi)

2Ts
|Lfi,fe(ωex,θ0)|

∑
l={−1,1}

δ(ω − lωex). (A.4)

The discrete-time pressure signal pi[n] is thus given by uD[n] and reads

uD[n] = Cγ(fi)|Lfi,fe(iωex,θ0)| sin(ωexnTs + ∠Lfi,fe(iωex,θ0)), (A.5)
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where the filter Lfi,fe(iωex,θ0) is defined in (67). The noise-free outlet pressure

is then given by

ynf (θ)[n] = Cγ(fi)|Lfi,fe(iωex,θ0)||Gfe(iωex,θ)| sin(ωexnTs+∠Lfi,fe(iωex,θ0)+∠Gfe(iωex,θ)).

(A.6)

Replacing (72) and (73) by respectively (A.5) and (A.6) defines the estimation923

problem (75) for the Direct Method.924

Appendix B. Single Parameter Experiment Design for Direct Method925

In this appendix we consider the estimation of either permeability of poros-

ity using a sinusoidal actuator signal. The power spectrum of the sinusoidal

inlet pressure signal (c.f. (A.5)) is given by (A.4). The true parameter vector

is denoted by θ0 and is thus either equal to k0 or φ0. To find the minimal

experiment time that honours the variance constraint on one of the estimates

given the amplitude constraints on the inlet pressure signal reads:

min
ωex,Cγ(fi),fi,fe

Experiment length N (B.1)

subject to926

var(θ̂N ) = Pθ[ωex, Cγ(fi), fi, fe] ≤ cθ, (B.2)

where cθ is either ck (constraint value for permeability) or cφ (constraint value

for porosity), Gfe is given by (62), and the inverse of the covariance matrix (??)

is given by the scalar

P−1
θ =

NC2
γ(fi)

2σ2
e

|Lfi,fe(iωex,θ)|2
∣∣∣∣∂Gfe(iωex, θ)∂θ

∣∣∣∣2
θ=θ0

. (B.3)

From this expression it is clear that a requirement to find the optimal solution927

is that the condition var(θ̂N ) ≡ Pθ = cθ is met, and that furthermore that we928

should select γ = γm, see previous sections for motivation. The solution to929

(B.1)-(B.2) for given ratios of (fi, fe) is then trivially found to be930

Nmin(fi, fe) =
2σ2

e

cθ C2
γm(fi)

min
ωex

[
|Lfi,fe(iωex,θ0)|−2

∣∣∣∣∂Gfe(iωex, θ)∂θ

∣∣∣∣−2

θ=θ0

]
,(B.4)
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Figure B.13: The logarithm of Nmin(fi, fe) as a function of fi and fe for θ = k. The optimal

ratios are fi,opt = 0.1 and fe,opt = 20.

where the optimal excitation frequency ωex,min(fi, fe) is a function of fi and fe

and is the frequency at which the minimum in (B.4) is obtained. The shortest

possible experiment length is then found to be:

Nopt = Nmin(fi,opt, fe,opt), (fi,opt, fe,opt) = arg min
fi,fe

Nmin(fi, fe). (B.5)

The logarithm of the function Nmin(fi, fe) (c.f. (B.4)) is plotted for θ = k in931

Figure B.13 as a function of fi and fe. The result for porosity is qualitatively932

the same. All optimal values are reported in Table 3. All other parameters933

are defined in Tables 1 and 2. The constraint value is respectively cθ = ck and934

cθ = cφ for these cases, see Table 2.935

Appendix C. Single Parameter Experiment Design for Indirect Method936

In this appendix we follow the exact same procedure as in Appendix B,

but now for actuator to outlet measurements. The actuator limit is given by

γm = 0.1. All parameters are defined in Tables 1 and 2. The optimization

problem for the Indirect Method is given by (B.1)-(B.2), where Pθ should be

replaced with

P−1
θ [ωc, Cγ(fi), fi, fe] =

NC2
γ(fi)

2σ2
e

∣∣∣∣∂Gfi,fe(iωex, θ)∂θ

∣∣∣∣2
θ=θ0

. (C.1)
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Following the same arguments as in the previous appendix we find that the

minimal experiment time for a given set of {fi, fe} is given by

Nmin(fi, fe) =
2σ2

e

cθC2
γm(fi)

min
ωex

∣∣∣∣∂Gfi,fe(iωex)

∂θ

∣∣∣∣−2

θ=θ0

, (C.2)

where Gfi,fe is defined in (68). The optimal experiment length Nopt is then937

found as in the previous appendix.938

Appendix D. Dynamical Relationship between Inlet Pressure and939

Outlet Pressure940

An alternative way to find the dynamical relationship between the inlet

pressure pi(t) and outlet pressure pe(t) has been considered in [1]. In that

paper, the expression for the system output when applying an input signal

u(t) = C cos(ωt) was found to be

ynf (t) = p(x = 1, t) = C
Ψ1(ω) cos(ωt) + Ψ2(ω) sin(ωt)

Ψ2
1(ω) + Ψ2

2(ω)
(D.1)

in which (after some additional algebraic manipulation to their expressions)941

Ψ1(ω) = cosh

(√
ωφ

2k

)
cos

(√
ωφ

2k

)
+

√
ωφ

2k
f ×[

sinh

(√
ωφ

2k

)
cos

(√
ωφ

2k

)
− cosh

(√
ωφ

2k

)
sin

(√
ωφ

2k

)]
,

Ψ2(ω) = sinh

(√
ωφ

2k

)
sin

(√
ωφ

2k

)
+

√
ωφ

2k
f ×[

sinh

(√
ωφ

2k

)
cos

(√
ωφ

2k

)
+ cosh

(√
ωφ

2k

)
sin

(√
ωφ

2k

)]
.

It is clear that (58) is more compact and easier to use, especially for more

complex input signals. A simple time plot of these two signals shows that the

expressions (58) and (D.1) are indeed equivalent for u(t) = C cos(ωt) (not shown

here). Note that for this comparison, sin(·) in (58) needs to be replaced by cos(·).

In fact, one can show with trigonometric identities that their amplitude ratio

between the outlet and inlet pressure

R =
2√

Ψ2
1 + Ψ2

2

(D.2)
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is equal to |Gfe | in (62), and that their phase shift Θ between outlet and inlet

pressure

Θ = arctan
−Ψ2

Ψ1
(D.3)

is equal to α = ∠Gfe .942

Importantly, regardless of the different notations, the way of deriving the943

expression of the ratio R and phase shift Θ in [1] is more involved than when944

considering the coupled subsystems in Section 2. This becomes especially true945

when considering the full inlet to outlet dynamics, i.e. subsystems I until III.946

Appendix E. Square Wave versus Sinusoid947

In this appendix we prove that a square wave input signal can deliver shorter948

experiment times under the same variance constraints compared to a sinusoidal949

input signal, and give a lower bound on how much shorter the experiment time950

can be. This result is valid for the estimation of one or two parameters simulta-951

neously. Indeed, one cannot identify more than two parameters with one single952

sinusoid. The result derived here does not only pertain to the Direct and Indi-953

rect Methods, but holds in general. The dimension of θ must however be equal954

to or less than two.955

We introduce some notations. The spectrum for a sinusoidal input signal

with frequency ωex and amplitude C reads

Φu(ω) =
πC2

2Ts

∑
l={−1,1}

δ(ω − lωex), (E.1)

in which Ts is the sample time. The spectrum for a square wave with cycle

frequency ωc and amplitude C reads

Φu(ω) =
8C2

πTs

Q(Ts)∑
m=1

1

(2m− 1)2

∑
l={−1,1}

δ(ω − l[2m− 1]ωc), (E.2)

where Q(Ts) =
⌊

1
2

(
π

ωcTs
+ 1
)⌋

.956

Lastly, for an input u(t) that is connected to output y(t) through a transfer

function GΞ(iω,θ0), where Ξ contains all degrees-of-freedom of the set-up, as-

suming white measurement noise and no feedback, the inverse of the covariance
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matrix of the estimates θ̂N is given by

P−1
θ [Φu(ω)] =

NTs
2πσ2

e

∫ π/Ts

−π/Ts
[∇θGΞ(iω,θ)]θ=θ0 [∇∗θGΞ(iω,θ)]θ=θ0Φu(ω) dω,

(E.3)

where σ2
e is the variance of the white noise, N the experiment length, and the957

asterisk denotes complex conjugation.958

959

We are now ready to prove the following lemma.960

Lemma 1. Let N1, ωex = ωopt, Ξopt, C be respectively the minimal experi-

ment time, optimal excitation frequency, optimal set of degrees-of-freedom in

the set-up, and amplitude C of the sinusoid u(t) = C sin(ωext) that solve the

optimization problem

min
ωex,Ξ

N (E.4)

subject to

∀θi ∈ θ : var(θ̂i,N ) ≤ cθi , (E.5)

where cθ,i is the variance constraint for estimate θ̂i,N . Then, using a square wave961

signal with cycle frequency ωc = ωopt and amplitude C, the minimal experiment962

time NSW that fulfil constraint (E.5) can be guaranteed to be at least a factor963

π2/16 times smaller than N1.964

Proof. The expression of the covariance matrix (E.3) for a single sinusoid with

spectrum (E.1) using the optimal parameters N = N1, ωex = ωopt, Ξ = Ξopt,

and amplitude C reads

P−1
θ,opt,1 =

N1C
2

2σ2
e

Re
{[
∇θGΞopt(iωopt,θ)

]
θ=θ0

[
∇θGΞopt(iωopt,θ)

]∗
θ=θ0

}
.

(E.6)

By definition this covariance matrix honours the variance constraints. The965

substitution of (E.2), ωc = ωopt, and N = NSW into the covariance matrix966

(E.3) results in967

P−1
θ,SW =

16

π2

NSWC
2

2σ2
e

Q(Ts)∑
m=1

1

(2m− 1)2
Re

{[
∇θGΞopt(i[2m− 1]ωopt, θ)

]
θ=θ0

×

[
∇θGΞopt(i[2m− 1]ωopt,θ)

]∗
θ=θ0

}
.(E.7)
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Separating the expression P−1
θ,SW into the sum of modes m = 1 and m > 1 we968

find969

P−1
θ,SW =

16

π2

NSWC
2

2σ2
e

Re
{[
∇θGΞopt(iωopt,θ)

]
θ=θ0

[
∇θGΞopt(iωopt,θ)

]∗
θ=θ0

}
+extra positive definite terms.

Clearly, by choosing NSW = π2

16N1 < N1 and using (E.6), (E.7), the above

equation may be rewritten as

P−1
θ,SW = P−1

θ,opt,1 + extra positive definite terms. (E.8)

What remains to show is that the variance(s) of θ̂N,i has (have) not increased.

To this end, using Schur’s complement, we rewrite the constraints in (E.5) for

covariance matrix P−1
θ,SW as:

∀θi ∈ θ :

cθi ei

eTi P−1
θ,SW

 � 0. (E.9)

Denote Ω � 0 the extra positive definite terms in (E.8). For the constraint on

θ̂N,i, we find by substitution of (E.8) that we require

∀θi ∈ θ :

cθi ei

eTi P−1
θ,opt,1 + Ω

 =

cθi ei

eTi P−1
θ,opt,1

+

0 0

0 Ω

 � 0. (E.10)

The first terms on the r.h.s. of this equation is positive definite by virtue of970

the fact that the constraint is satisfied for P−1
θ,opt,1. Multiplying this equation971

on the left by an arbitrary vector [ξ,θ]T and [ξ,θ] on the right, with ξ a scalar972

entry, shows that we require that θTΩθ > 0 for all θ. This condition is clearly973

honoured since Ω � 0. Hence, by selecting NSW = π2/16N1 < N1 we can974

honour the constraints with a shorter experiment time when using a square975

wave signal.976

977
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