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Abstract

In this paper we consider the identification of a linear module that is embedded in a dynamic network using noisy measurements
of the internal variables of the network. This is an extension of the errors-in-variables (EIV) identification framework to the case
of dynamic networks. The consequence of measuring the variables with sensor noise is that some prediction error identification
methods no longer result in consistent estimates. The method developed in this paper is based on a combination of the
instrumental variable philosophy and closed-loop prediction error identification methods, and leads to consistent estimates
of modules in a dynamic network. We consider a flexible choice of which internal variables need to be measured in order to
identify the module of interest. This allows for a flexible sensor placement scheme. We also present a method that can be used
to validate the identified model.

1 Introduction

Many systems in engineering can be modelled as dy-
namic networks, as e.g. power systems, telecommunica-
tion systems, and distributed control systems. Models of
these networks are important either for prediction, simu-
lation, controller design or fault detection. Since sensors
are becoming more ubiquitous and cheaper the result is
that data can be collected from many variables in a dy-
namic network, and a system identification approach for
modelling particular modules in the dynamic network,
becomes attractive. Using this approach it is important
to be mindful of the fact that every measurement is con-
taminated with sensor noise.
The literature on dynamic network identification can be
split into two categories based on whether the intercon-
nection structure of the network is known or not. In the
case that the interconnection structure is not known, the
network structure together with the dynamics typically
needs to be estimated. The majority of the papers in this
category are based on the concept of Granger Causal-
ity (Granger, 1980). In Caines & Chan (1975); Gevers &

⋆ The work of Arne Dankers is supported in part by the Na-
tional Science and Engineering Research Council (NSERC)
of Canada.

Anderson (1981) it is shown that it is possible to distin-
guish between open and closed-loop data generating sys-
tems. The reasoning is extended to more complex inter-
connection structures using a non-parametric approach
(Materassi & Innocenti, 2010; Materassi & Salapaka,
2012); using a Bayesian approach (Chuiso & Pillonetto,
2012); and using a parametric approach supplemented
by ℓ0 regularization (Seneviratne & Solo, 2012; Yuan
et al., 2011), ℓ1 regularization (Friedman et al., 2010),
and compressed sensing (Sanandaji et al., 2012). In these
papers it is assumed that each node in the network is
driven by an unknown, independent stochastic process,
each variable is measured without sensor noise, and ev-
ery variable in the network is measured. It is shown that
under these conditions topology detection is possible.

For many networks in engineering, the interconnection
structure is known. This knowledge can be incorporated
in the identification problem. A type of interconnection
structure that results from the discretization of partial
differential equations is a spatially distributed system
where each node is connected only to its direct neigh-
bors. Methods for identifying such systems are presented
in Massioni & Verhaegen (2008); Haber & Verhaegen
(2012); Ali et al. (2011), where common assumptions are
that each subsystem is identical, known external exci-
tation signals are present at each node, and no process
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noise is present in the networks. Because such networks
are typically very large, emphasis is on improving com-
putational speed of the identification algorithms.
Identification in networks with a general interconnec-
tion structure have been investigated in Van den Hof
et al. (2013); Dankers et al. (2016),where methods are
presented to consistently identify a single transfer func-
tion embedded in a dynamic network. It is shown that
by knowing the interconnection structure assumptions
on the correlation of process noise can be relaxed, and
that there is considerable flexibility in which variables
need to be measured. In these papers the measurements
are assumed to be sensor noise free.
Variance issues of identified models in a structured net-
work have been addressed in Wahlberg et al. (2009);
Gunes et al. (2014); Everitt et al. (2013, 2014) where is
shown that “extra” measurements can be used to reduce
the variance of the estimated transfer function. These
papers assume that there is no process noise, and known
external excitation and sensor noise are both present.

In this paper we consider a very general framework that
covers all the cases discussed in the previous literature
review, where there may or may not be known exter-
nal excitation present, there is both (correlated) process
noise and (correlated) sensor noise present, the modules
making up the network are not identical, and not all in-
ternal variables of the network are measurable. More-
over, we do not make assumptions on the whiteness of
the sensor noise. The main assumption that we make
is that the interconnection structure of the network is
known. We address the following question: under what
conditions is it possible to consistently identify a par-
ticular module embedded in a dynamic network when
only noisy measurements of a subset of the internal vari-
ables of the network are available? This is an extension
of the so-called Errors-in-Variables (EIV) framework to
the case of dynamic networks.

In the system identification literature, the open loop
EIV problem has been extensively studied, see e.g.
Söderström (2007, 2012). The main conclusion in these
papers is that either prior knowledge about the system
or a controlled experimental setup is required to ensure
consistent estimates. This latter condition concerns
either periodic excitation (Söderström & Hong, 2005;
Schoukens et al., 1997; Pintelon & Schoukens, 2012) or
repeated experiments Schoukens et al. (1997); Pintelon
& Schoukens (2012). The closed-loop EIV problem has
been studied in Söderström et al. (2013); Pintelon &
Schoukens (2012) where it is shown that the plant is
identifiable if a noise-free and sufficiently exciting refer-
ence signal is available.
In the extension of this problem to the dynamic network
case fruitful use can be made of additionally measured
signals in the network that can serve as instrumental
variables, thereby enabling a considerable simplifica-
tion of the EIV problem. The method presented in this
paper is based on instrumental variable (IV) reasoning.

The IV method was developed in the econometrics field
(Wright, 1928), where the method has been applied to
static networks (structural equation models in statistics)
(Angrist et al., 1996). In the econometrics literature IV
methods are recognized to have three main advantages
when aiming to obtain consistent estimates:
(1). Presence of sensor noise on the input (explanatory
variable in economics) is no problem (Durbin, 1954);
(2). Confounding variables (omitted variables in econo-
metrics), i.e. unknown or unmeasured variables for
which there is a path to both the output and an input,
are no problem (Angrist & Krueger, 2001; Becker, 2010);
(3). Presence of algebraic loops in the data generating
system (simultaneity in econometrics) is no problem
(Becker, 2010).
In this paper we show that the same advantages can
be converted to the situation of a dynamic network,
and moreover that the choice of candidate instrumental
variable signals actually can be widened.
In the system identification literature IV methods are
also extensively used for identification in open-loop
(Wong & Polak, 1967; Söderström & Stoica, 1983),
and closed-loop systems (Söderström et al., 1988;
Söderström & Stoica, 1989; Gilson & Van den Hof,
2005). Again, IV methods have been recognized to be
robust to the presence of (particular) sensor noise on the
input Söderström & Hong (2005); Thil & Gilson (2011).
In this paper we generalize the IV method such that it
is possible to obtain consistent estimates of a transfer
function embedded in a dynamic network where all pre-
dictor inputs are measured with (colored) sensor noise,
and the instrumental signal(s) are contaminated too.

In Section 2 background material on dynamic networks,
prediction error identification and IV methods is pre-
sented. In Sections 3 and 4 the main result is presented
for two different cases of IV signals. In Section 5 re-
sults are generalized for a flexible choice of predictor in-
puts, while in Section 6 a practical implementation of
the method is proposed. In Section 7 a method is pre-
sented to validate the obtained model. 1

2 Background

2.1 Dynamic Networks

The specific identification framework considered in this
paper is based on Van den Hof et al. (2013). A dynamic
network is built up of L elements, related to L scalar in-
ternal variables wj , j = 1, . . . , L. Each internal variable
is defined by:

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (1)

1 This paper is based, in part, on the preliminary results of
Dankers et al. (2014).

2



whereG0
jk, k ∈ Nj is a proper rational transfer function,

q−1 is the delay operator, i.e. q−1wj(t) = wj(t− 1) and,

• Nj is the set of indices of internal variables that are
direct inputs to the transfer functions determiningwj ,
i.e. k ∈ Nj iff G0

jk ̸= 0;
• vj is process noise, that is modeled as a realization

of a stationary stochastic process with rational spec-
tral density: vj = H0

j (q)ej where ej is a white noise

process, and H0
j is a monic, stable, minimum phase

transfer function;
• rj is an external variable that is known to the user,

and may be manipulated by the user.

It may be that the noise and/or external variables are
not present at some nodes. The network is defined by:


w1

w2

...

wL

=


0 G0
12 · · · G0

1L

G0
21 0

. . .
...

...
. . .

. . . G0
L−1 L

G0
L1 · · · G0

L L−1 0




w1

w2

...

wL

+

r1

r2
...

rL

+

v1

v2
...

vL

,

whereG0
jk is non-zero if and only if k ∈ Nj for row j, and

vk (or rk) is zero if it is not present. Using an obvious
notation this results in the matrix equation:

w = G0w + r + v. (2)

Each internal variable is measured with some measure-
ment error or sensor noise:

w̃k(t) = wk(t) + sk(t), k = 1, . . . , L

where w̃k denotes the measurement of wk, and sk is
the sensor noise, which is represented by a stationary
stochastic process with rational spectral density (sk is
not necessarily white noise).
There exists a path from wi to wj if there exist integers
n1, . . . , nk such that G0

jn1
G0

n1n2
· · ·G0

nki
is non-zero.

The following assumption holds throughout the paper.

Assumption 1 General Conditions.

(a) The network is well-posed in the sense that all prin-
cipal minors of limz→∞(I −G0(z)) are non-zero.

(b) (I −G0)−1 is stable.
(c) All process noise variables vk are uncorrelated to all

sensor noise variables sℓ.
2

2 in this paper when two variables x and y are said to be un-
correlated, this will mean that the cross-correlation between
x and y, Rxy(τ) is zero for all τ , where Rxy is defined in (5).

The conditions ensure that there is a stable causal re-
lationship from the external and noise variables to the
internal variables.

2.2 Prediction Error Identification

Let wj denote the variable which is to be predicted. The
one-step-ahead predictor for wj is then (Ljung, 1999):

ŵj(t|t− 1, θ) = H−1
j (q, θ)

( ∑
k∈Dj

Gjk(q, θ)w̃k(t)+rj(t)
)

+
(
1−H−1

j (q, θ)
)
w̃j(t) (3)

where Hj(q, θ) is a (monic) noise model and Gjk(q, θ),
k ∈ Dj are module models. The predictor inputs are
those variables that are used to predict wj . The set Dj

denotes the set of indices of the measured internal vari-
ables that are chosen as predictor inputs, i.e. w̃k is a
predictor input iff k ∈ Dj . The prediction error with re-
spect to the parameter θ is:

εj(t, θ) = w̃j(t)− ŵj(t|t− 1, θ)

= Hj(θ)
−1

(
w̃j −

∑
k∈Dj

Gjk(θ)w̃k−rj

)
, (4)

where the arguments q and t have been dropped for no-
tational clarity. Usually the parameterized transfer func-
tions Gjk(θ), k ∈ Dj and Hj(θ) are estimated by min-

imizing the sum of squared (prediction) errors. Let θ̂N
denote the estimated parameter vector based on N data

points. If θ̂N → θ0 as N → ∞ with probability 1, then
the obtained estimates are consistent.

The following notation will be used throughout the re-
mainder of this paper. The auto and cross correlation of
vectors of variables x and y are defined as

Rx(τ) := Ē[x(t)xT (t− τ)],

Rxy(τ) := Ē[x(t)yT (t− τ)]
(5)

respectively, where Ē[ · ] = lim
N→∞

1

N

N−1∑
t=0

E[ · ], and E

denotes the expected value operator. The power spectral
density and cross power spectral density are

Φx(ω) := F [Rx(τ)] and Φxy(ω) := F [Rxy(τ)]

respectively, where F [ · ] denotes the Fourier Transform.

2.3 Instrumental Variable Method

The instrumental variable (IV) method for identification
of dynamical systems typically applies a model structure
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where the one-step-ahead predictor (3) is written in a
linear regression form:

ŵj(t|t− 1, θ) = φT (t)θ

where φ(t) is composed of measured signals (predictor
inputs) and θ collects all unknown parameters. This is
generally referred to as an ARXmodel structure (Ljung,
1999) when also past values of w̃j(t) are included in φ(t).
The prediction error can then be written as

εj(t, θ) = wj(t)− ϕT (t)θ. (6)

The parameter estimate is obtained by solving for

1

N

N−1∑
t=0

εj(t, θ)z(t−τ)=0, τ=0, . . . , nθ (7)

where z is a measured instrumental variable that typi-
cally is required to be correlated to the predictor inputs
and uncorrelated to the process noise vj (Söderström &
Stoica, 1983), and nθ is chosen sufficiently large, i.e. at
least as large as the dimension of θ.

In the closed-loop situation, the Basic Closed-Loop In-
strumental Variable (BCLIV) method as described in
Söderström et al. (1988); Gilson & Van den Hof (2005)
is characterized by choosing an external reference signal
r as the instrumental variable and not considering any
sensor noise. Under conditions on the excitation prop-
erties of r, and the general prediction error convergence
assumptions, this IV estimate then provides a consistent
estimate of the plant transfer function, see Gilson & Van
den Hof (2005).

3 An IV Method for Dynamic Networks and
sensor noise

In this section an extension of the BCLIV method is
presented. The extension focuses on three aspects:

• We generalize the method so that it is able to identify
a particular module embedded in a dynamic network,
not just a closed-loop data generating system.

• We consider the situation that all measured variables
can be subject to sensor noise.

• Rather than the classical case where only external
variables are considered as candidate instrumental
variables, we consider both internal and external
variables as candidate instrumental variables.

A main theme in this paper is that for a dynamic net-
work, there are many different variables present that
can serve as potential instrumental variables. For in-
stance, one can choose between several external and in-
ternal variables. In this paper we consider any mea-
sured or known variable that is not w̃j or a predic-
tor input as a potential instrumental variable. In other

words, the set of candidate instrumental variables is
w̃ℓ, ℓ ∈ {1, . . . , L} \ {Dj ∪ {j}} and rℓ, ℓ ∈ R. Let Xj

and Ij denote the set of indices of external and internal
variables respectively chosen as instrumental variables
(i.e. rℓ is an instrumental variable iff ℓ ∈ Xj and w̃ℓ is
an instrumental variable iff ℓ ∈ Ij). Since predictor in-
puts and w̃j are not considered as allowable instrumen-
tal variables it must be that Ij ∩ {Dj ∪ {j}} = ∅.
The variables that are selected as instrumental variables
are placed in a vector of instrumental variables, denoted
z, where the elements of z can be excitation signals, mea-
sured variables, or linear combinations of both. The par-
ticular choice will depend on which variables are avail-
able/measured, and which choice ensures that z is per-
sistently exciting of sufficiently high order.

In any IV method, it is essential that the instrumental
variables and the predictor inputs are correlated. In the
case of dynamic networks it is not automatically guar-
anteed that a candidate internal variable is correlated
to (one or more of) the predictor inputs and/or wj . The
following lemma presents graphical conditions to check
whether two variables are (not) correlated.

Lemma 1 Consider a dynamic network as defined in
Section 2.1 that satisfies Assumption 1. Let zℓ be an in-
ternal or external variable. Then zℓ and wk are not cor-
related if the following three conditions hold:

(a) There is no path from zℓ to wk.
(b) There is no path from wk to zℓ.
(c) There is no variable wp, p /∈ Dj ∪ Ij ∪ {j} such that

there are paths from wp to both zℓ and to wk. 2

The proof can be found in Appendix A. Note that the
absence of correlation can be stated in terms of the in-
terconnection structure of the network, but the presence
of correlation cannot be guaranteed by the structure
since it depends on the dynamics of the paths. However,
Lemma 1 can still be used to guide the user to choose
appropriate instrumental variables that are correlated
to the predictor inputs.

In order to formulate an IV method in a dynamic net-
work setting, it is necessary to move to a multiple input,
single output ARX model structure. In that situation
the modules and noise model are parameterized as:

Gjk(q, θ) =
Bjk(q, θ)

Aj(q, θ)
, and Hj(q, θ) =

1

Aj(q, θ)
, (8)

for all k ∈ Dj , where

Bjk(q, θ) = q−njk
k (bjk0 + bjk1 q−1 + · · ·+ bjk

njk
b

qn
jk
b ),

Aj(q, θ) = 1 + a1q
−1 + · · ·+ anaq

−na ,

Note that all modules Gjk, k ∈ Dj have the same de-

nominator, and that Bjk(θ) is a polynomial of order njk
b
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and Aj(θ) is a polynomial of order na. For notational
convenience all polynomials Bjk(θ) will be assumed to
be of the same order, denoted nb. Let each module G0

jk,

k ∈ Dj be expressed as
B0

jk

A0
jk

. Then, from (1), wj can be

expressed using transfer functions with a common de-
nominator as follows:

wj(t) =
1

Ă0
j (q)

∑
k∈Nj

B̆0
jk(q)wk(t)+rj(t) + vj(t) (9)

where

Ă0
j (q) =

∏
n∈Nj

A0
jn(q) and B̆0

jk(q) =
∏

n∈Nj\k

B0
jk(q)A

0
jn(q).

Then with (8) the one-step-ahead prediction error is

εj(θ) = Aj(q, θ)w̃j(t)−
∑
k∈Dj

Bjk(q, θ)w̃k(t)

= w̃j(t)−
[
ϕ̃T
k1
(t) · · · ϕ̃T

kn
(t) ϕ̃T

j (t)
]
θ

= w̃j − ϕ̃T (t)θ. (10)

where ϕ̃T
ki
(t) = [w̃ki(t) · · · w̃ki(t−nb)], ϕ̃

T
j (t) = [−w̃j(t−

1) · · · − w̃j(t− na)] and θ is a vector of parameters:

θ = [bjk1

0 · · · bjkn

0 · · · bjk1
nb

· · · bjkn
nb

a1 · · · ana ]
T .

The mechanism that forms the foundation for the IV
method applied to dynamic networks is presented in the
following Proposition.

Theorem 2 Consider a dynamic network as defined in
Section 2.1 that satisfies Assumption 1. Consider the
prediction error (10). Choose the set of predictor inputs
{w̃k, k ∈ Dj}, being all measured signals that are direct
inputs of the transfer functions determiningwj, i.e.Dj =
Nj, and let d = card(Dj). Choose a set of instrumental
variable signals {rℓ, ℓ ∈ Xj} and {w̃ℓ, ℓ ∈ Ij} such that
Ij∩{Dj ∪ {j}}=∅. The equivalence relation{

Rεz(τ) = 0, for τ = 0, . . . ns

}
⇐⇒

{
Gjk(q, θ) = G0

jk(q), ∀k ∈ Dj

}
(11)

holds for any finite ns ≥ ⌈(na+dnb)/length
(
z(t)

)
⌉ if the

following conditions are satisfied: 3

(a) If vj is present, then there is no path from wj to any
wℓ, ℓ ∈ Ij

3 ⌈x⌉ denotes the ceiling function, i.e. the smallest integer
that is larger than or equal to x

(b) The
(
dnb + na

)
×
(
nz length(z)

)
matrix

R̄ = Ē
[
ϕ̃(t)[zT (t) · · · zT (t− nz)]

]
is full row rank, where ϕ̃(t) is defined in (10).

(c) Each sensor noise sℓ, ℓ ∈ Ij is uncorrelated to all
sk, k ∈ Dj.

(d) If vj is present, then it is uncorrelated to all vm with
a path to any one of the instrumental variables w̃ℓ,
ℓ ∈ Ij.

(e) The parameterization is flexible enough, i.e. there
exists at least one θ⋆ such that Gjk(q,θ

⋆) =G0
jk(q),

∀k∈Dj. 2

The proof can be found in Appendix B. Most impor-
tantly, the presence of sensor noise does not affect the
validity implication (11) (as long as Condition (c) holds).
Condition (a) puts a restriction on which internal vari-
ables are candidate instrumental variables. All external
signals qualify as well as all internal signals that do not
serve as input/ouput of the predictor model and that are
not in a loop that passes through wj . Note that the pro-
cess noise terms on each predictor input variable can be
correlated. However, by Condition (d) the process noise
term vj must be uncorrelated to all noise terms affecting
the instrumental variables. This condition can also help
in guiding a proper choice of instrumental variables.

Condition (b) of Theorem 2 can be further analyzed us-
ing the concept of persistence of excitation. If no instru-
mental variables are selected (or available) then Condi-
tion (b) is not satisfied. Next, suppose that none of the
selected instrumental variables satisfy all conditions of
Lemma 1. This does not guarantee that the matrix R̄
of Condition (b) of Theorem 2 is full rank. For the con-
dition to hold, the vector z of instrumental variables is
required to be persistently exciting of sufficiently high
order, as shown in the following lemma.

Lemma 3 Consider the situation of Theorem 2 and

R̄ = Ē
[
ϕ̃(t)

[
zT (t) zT (t− 1) · · · zT (t− nz)

] ]
where z is the vector of instrumental variables, and ϕ̃(t)
is defined in (10). Let nθ denote the size of the vector

ϕ̃(t). The matrix R̄ generically has rank nθ (i.e. full row
rank) if the following conditions hold:

(a) nz · length
(
z(t)

)
≥ nθ.

(b) z is persistently exciting of order ⌈nθ/length
(
z)
)
⌉. 4

(c) The parameter vector θ such that Gjk(q, θ) = G0
jk,

∀k ∈ Dj is unique.

4 A vector signal z is persistently exciting of order n if the
n× n block Toeplitz matrix of the autocorrelation function
Rz(τ) is positive definite (Söderström & Stoica, 1989).
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(d) No instrumental variable is uncorrelated to all wk,
k ∈ Dj∪{j} according to the conditions of Lemma 1.

The proof follows the same reasoning as that of Lemma
4.1 and Theorem 4.1 in Söderström & Stoica (1983).

The main point of Lemma 3 is that as long as the instru-
ments are correlated to the predictor inputs and wj , and
are persistently exciting of sufficiently high order, then
Condition (b) of Theorem 2 generically holds. There is
no explicit restriction on the number of instrumental
variables, as long as the chosen z is persistently exciting
of sufficiently high order. However, if only one internal
variable is selected as the instrumental variable, then by
Condition (b) of Lemma 3 z must be persistently excit-
ing of order nθ. Whereas, if two internal variables are
selected as instrumental variables then by the same con-
dition z need only be persistently exciting of order nθ/2.
Thus Condition (b) may implicitly place a restriction on
the required number of instrumental variables.

G0
21 G0

32

G0
23

w1

s1

w̃1

w2

s2

w̃2

s3

w̃3

v1 v2 v3

w3

(a)

G0
21 G0

32

G0
13

w1

s1

w̃1

w2

s2

w̃2

s3

w̃3

v1 v2 v3

w3

(b)

Fig. 1. Closed loop data generating systems

Example 1 Consider the data generating system shown
in Fig. 1a. Suppose that the objective is to obtain a con-
sistent estimate of G0

32. Thus, {j} = {3}, andN3 = {2}.
There is only one variable left as a candidate instrumen-
tal variable (since it must be that {Dj ∪ {j}} ∩ Ij = ∅),
i.e. w̃1 must be chosen as the instrumental variable. Since
there is no path from w3 to w1, Condition (a) of Theorem
2 holds. Moreover, Condition (b) of Theorem 2 gener-
ically holds because the instrumental variable is persis-
tently exciting of sufficiently high order (since v1 is white
noise) and because there is a path from w1 to both w2 and
w3 (i.e. there is a path from the instrumental variable to
the predictor inputs and wj). If the remaining conditions
of Theorem 2 hold, then the implication (11) holds. 2

Example 2 Consider the data generating system shown
in Fig. 1b. Suppose that the objective is to obtain a con-
sistent estimate of G0

32. In this case it is not possible to

satisfy Condition (a) of Theorem 2, since there exists a
path from output signal w3 to the only candidate instru-
mental signal w1. 2

The following algorithm shows how the implication of
Theorem 2 can be exploited to obtain an estimate of a
module embedded in a dynamic network.

Algorithm 1 Objective: obtain an estimate of G0
jk.

1. Choose the set of predictor inputs {wkn
, kn ∈ Nj}.

(i.e. Dj = Nj).
2. Choose the sets Ij and Xj of instrumental variables.

Construct z, the vector of instrumental variables.
3. Choose an ARX model structure and construct the

prediction error (10).

4. Find a solution, θ̂N to the set of equations

1

N

N−1∑
t=0

εj(t, θ)z
T (t−τ)=0, for τ=0, . . . , nz, (12)

where nz · length
(
z(t)

)
≥ na + dnb.

Let R̂εz(τ) denote the function in (12). Under weak gen-
eral convergence conditions of the Prediction-Error Iden-
tification methods (Ljung, 1999) it follows that

E[R̂εz(τ)] → Rεz(τ) as N → ∞ (13)

and that the solution to (12), denoted θ̂N tends to θ0 as
N → ∞. Thus, the estimates of G0

jk, k ∈ Nj obtained
by Algorithm 1 are consistent if the conditions presented

in Theorem 2 are satisfied. In Step 4 of Algorithm 1 θ̂N
can be obtained by linear regression. This follows from
(12) which is affine in θ.

In the next section this method is generalized to allow
for instrumental variables to appear in a loop around the
output signal wj (i.e. relax Condition (a) of Theorem 2).

4 Generalized Instrumental Variable Approach

In the previous section the set of candidate instrumental
variables is restricted by Condition (a) of Theorem 2. In
this section a method is presented for which all external
variables and all internal variables wℓ, ℓ /∈ Dj ∪ {j} are
candidate instrumental variables.
The key difference in this method is that a Box-Jenkins
model structure is used instead of an ARX model struc-
ture in order to correctly model the process noise also.
The price for the increased applicability is that the esti-
mates of G0

jk k ∈ Nj can no longer be obtained by solv-
ing a linear regression problem.
Themain reason that a path from outputwj to an instru-
mental variable w̃i causes a problem is because then the
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projections of the predictor inputs onto the instrumen-
tal variable(s) are correlated to the output noise. This
is equivalent to the closed-loop identification problem
where the plant input is correlated to the output noise,
and several solutions are available (Forssell & Ljung,
1999; Van den Hof et al., 2013). The Direct Method deals
with the problem by exactly modeling the noise.

Here it is shown that this idea can be extended to the IV
framework, so that all (measured) internal variables w̃ℓ

ℓ ∈ {1, . . . , L} \ {Dj ∪ {j}} are candidate instrumental
variables. Note that the idea is to exactly model the
process noise term vj , and not the sensor noise (or a
sum of the two). The sensor noise is dealt with using the
instrumental variable mechanism.

The Box-Jenkins (BJ) model structure is represented by:

Gjk(q,θ)=
Bjk(q,θ)

Fjk(q,θ)
, k∈Dj andHj(q,θ)=

Cj(q,θ)

Dj(q,θ)
, (14)

where Fjk(θ), Bjk(θ), Cj(θ), Dj(θ) are polynomials in
q−1 of orders nf , nb, nc and nd respectively (similar
to Section 3 for notational convenience we assume that
all module tranfer functions have the same orders). The
polynomials Fjk, Cj , and Dj are monic. In addition we
will assume that the numerators and denominators in
all Gjk(q, θ) and Hj(q, θ) are the same order, i.e. nc =
nd and nf = nb. Similar to (10) denote the regression
matrix ϕ(t) as

ϕT (t) = [ϕT
k1
(t) · · · ϕT

kd
(t) ϕT

j (t)], {k1, . . . , kd} = Dj ,

ϕT
k (t) = [wk(t) · · · wk(t− nx)], k ∈ Dj ,

ϕT
j (t) = [wj(t− 1) · · · wj(t− nx)], (15)

where nx is a finite integer. In the following proposition
it is shown that by changing the model structure from
ARX to BJ, the fundamental mechanism on which the
IV methods are based still holds.

Theorem 4 Consider the same situation as in Theorem
2 with the prediction error (4), the model structure given
by (14), and Dj = Nj. Let z denote the vector of instru-
mental variables:

zT (t) :=
[
w̃ℓ1(t−d1) · · · w̃ℓn(t−dn) rm1(t) · · · rmp(t)

]
where dk, k = 1, · · ·n, are chosen so that Rejw̃ℓk

(τ) = 0
for τ ≥ dk. The equivalence relation{

Rεz(τ) = 0, for τ = 0, . . . , ns

}
⇐⇒

{
Gjk(q, θ) = G0

jk(q), ∀k ∈ Dj ,

Hj(q, θ) = H0
j (q)

}
(16)

holds if the following conditions are satisfied:

(a) The matrix M = Ē
[
ϕ(t)[zT (t−nx) · · · zT (t−nx −

nz)]
]
has full row rank, where ϕ is defined in (15),

nz is any finite integer large enough so that M has
full row rank, and nx = 2dnf + 2nc.

(b) ns ≥ nz + nx.
(c) Every sensor noise variable sk, k ∈ Dj ∪ {j} is un-

correlated to every sℓ, ℓ ∈ Ij.
(d) The process noise variable vj is uncorrelated to all

vk with a path to either wj or any wℓ, ℓ ∈ Ij.
(e) The parameterization is chosen flexible enough, i.e.

there exists a parameter θ such that Gjk(q, θ) =
G0

jk(q), ∀k ∈ Dj, and Hj(q, θ) = H0
j (q). 2

The proof can be found in Appendix C. The requirement
on Rejw̃ℓk

(τ) reflects that there should not be an alge-

braic connection between ej(t) and w̃ℓk(t−dk). If there is
a delay in the path from wj to the instrumental variable
w̃ℓk , then the condition is satisfied for dk = 0. If there is
no delay in that path then one can choose dℓk > 0.

By Condition (e) the process noise must be exactly mod-
elled. This condition is a signature of the Direct closed-
loop method Forssell & Ljung (1999); Van den Hof et al.
(2013). Thus, the mechanism proposed in Theorem 4 is
a hybrid between the Direct closed-loop method and an
instrumental variable method. Recall that in Theorem
2 exact noise modeling was not required.

In Theorem 4 Condition (a) is a condition on the exci-
tation of the data. A necessary condition for Condition
(a) to hold is that no instrumental variable satisfies all
the conditions of Lemma 1 for all wk, k ∈ Dj ∪{j}. The
requirement that the matrix of Condition (a) must have
full row rank implicitly puts a constraint on nm. In par-
ticular it must be that the matrix has at least as many
columns as rows.

Example 3 Consider again the situation of Example 2.
Suppose that there is a delay in G0

13. Choose, {j} = {3},
N2 = {2}. Choose w1 as the instrumental variable, i.e.
z(t) = w̃1(t), Ij = {1}, and Xj = ∅. Note that due to the
delay in G0

13, the instrumental variable is a function of
strictly delayed versions of vj, as required by Theorem 4.
By Lemma 1, since there is a path from w1 to both w2 and
w3 the necessary conditions for Condition (a) to hold are
satisfied. If the remaining conditions of Theorem 4 are
satisfied, then the implication (16) holds. Since the signal
w1 appears in a loop with w3, instrumental variable w̃1

does not satisfy the conditions of Theorem 2. 2

Example 4 Consider the network shown in Fig. 2. Sup-
pose that the objective is to obtain a consistent estimate
of G0

21. Thus, {j} = {2}, and N2 = {1, 4, 6}. A possi-
ble choice for the set of instrumental variables is w̃3(t),
w̃5(t), w̃7(t) and w̃8(t) (i.e. I2 = {3, 5, 7, 8}). In this case
if z(t) = [w̃3(t) w̃5(t) w̃7(t) w̃8(t)]

T is persistently excit-
ing of sufficiently high order, and the remaining condi-
tions of Theorem 4 hold, then the implication (16) holds.
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w1G0
17

w7 G0
21

w2 G0
32
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v5
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Fig. 2. Example of a dynamic network. The sensor noise is not
shown, but is still assumed to be present on every measured
variable. The labels of the wi’s have been placed inside the
summations indicating that the output of the sum is wi.

Another option for choosing the instrumental variables
is to only use w̃7. In this case if z′(t) = [w̃7(t) w̃7(t−ng−
1) w̃7(t−2ng−1) w̃7(t−3ng−1)] is persistently exciting
of sufficiently high order, and the remaining conditions
of Theorem 4 hold, then the implication (16) holds. Other
options for choosing z are also possible depending on the
persistence of excitation of z. 2

The result of Theorem 4 can be cast in the following
identification algorithm.

Algorithm 2 Objective: obtain an estimate of G0
jk.

1. Choose the set of predictor inputs as Dj = Nj.
2. Choose the set Ij and construct the vector of instru-

mental variables, z.
3. Choose a Box-Jenkins model structure, (14), and con-

struct the prediction error (4).
4. Find a solution to the set of equations

1

N

N−1∑
t=0

ε(t, θ)z(t− τ) = 0, for τ = 1, . . . , ns. (17)

By Theorem 4 and the reasoning of (13) it follows that
the estimate obtained using Algorithm 2 is consistent, as
long as all the conditions of the proposition are satisfied.

We now highlight the major properties of the two meth-
ods presented in Sections 3 and 4 in Table 1.

Method Section 3 Method Section 4

MISO ARX MISO BJ

Convex Non-convex

No path from wj to IV
signals

IV signals have path
from wj

No noise modelling Full noise modelling

Table 1
Overview of key properties of the two presented identifica-
tion methods.

w2G0
21

w1

G0
32

w3

G0
31

v2

v3

v1

w2

G0
21

w1

G0
32

w3

G0
23

v2

v3

v1

(a) (b)

Fig. 3. Simple dynamic networks used to illustrate the effect
of predictor input selection .

In the following section the choice Dj = Nj will be re-
laxed, in other words it will be allowed to remove partic-
ular signals from the set of predictor inputs, and include
signals that are not in Nj .

5 Predictor Input Selection

In this paper thus far, the required set of predictor in-
puts for identifying G0

ji has been fixed to include all
internal variables with direct connections to wj , i.e. w̃k,
k ∈ Nj .This is an overly restrictive requirement. There
is a strong motivation to seek less restrictive conditions.
For instance it may be that several internal variables are
difficult or expensive to measure and it would be pre-
ferred to avoid the necessity ofmeasuring these variables.

The problem of predictor input selection has been ana-
lyzed in Dankers et al. (2016) where conditions are de-
rived for consistent identification of G0

ji for the direct
and two-stage method of identification in dynamic net-
works. In this section those ideas are extended to the
methods of Sections 3 and 4.

The conditions can be used to determine whether it
is possible to consistently identify a particular transfer
function given a set of measured internal variables. Con-
versely, the conditions can also be used to design a sensor
placement scheme to ensure that a particular transfer
function can be consistently estimated. The sensor place-
ment scheme could be designed to minimize the number
of sensors, or it could be designed to avoid using a par-
ticular variable that is difficult to measure. The cost of
the increased flexibility in the choice of predictor inputs
is that instead of consistently estimating G0

jk, k ∈ Nj ,

only the module of interestG0
ji is consistently estimated.

When attempting to identify G0
ji, wi must be included

as a predictor input. Interestingly, the other variables
that are included as predictor inputs affect the dynam-
ics that are identified between wi to wj . There are two
phenomena that result in a change in the object being
identified, illustrated in the following two examples.

Firstly, consider the system shown in Figure 3a. Sup-
pose that the objective is to identify G0

31. If w1 and w3
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are both included as predictor inputs, then the dynam-
ics from w1 to w3 are G0

31. However, if only w1 is chosen
as a predictor input, then the identified transfer func-
tion is an estimate of G0

31 + G0
21G

0
32, i.e. a sum of both

parallel paths from w1 to w3.
Secondly, consider the system shown in Figure 3b. Sup-
pose that the objective is to identify G0

21. If w1 and w3

are both included as predictor inputs, then the dynam-
ics from w1 to w2 are G0

21. However, if only w1 is chosen
as a predictor input, then the identified transfer func-
tion is an estimate of G0

21/(1 − G0
32G

0
23), i.e. the target

transfer function includes the sensitivity function of the
(unmodelled) loop on the output.
The results of these two examples, can be generalized in
the following property and proposition.

Property 1 Consider the internal variables wi, wj and
the set of indices of predictor inputs, Dj. Let Dj satisfy
the following conditions:

(a) i ∈ Dj, j /∈ Dj,
(b) every loop fromwj towj passes through awk, k ∈ Dj,
(c) every path from wi to wj, excluding the path G0

ji,
passes through a wk, k ∈ Dj. 2

Proposition 5 (Dankers et al. (2016)) Consider a
dynamic network as defined in Section 2.1 that satis-
fies Assumption 1, and a set of predictor inputs Dj.
Denote Zj as the index set of all variables k, such that
k /∈ {Dj , j}. Then wj(t) can be uniquely written as

wj(t) =
∑
k∈Dj

Ğ0
jk(q)wk(t) +

∑
k∈Zj

F̆ 0
jk(q)

[
rk(t)

vk(t)

]
+

+rj(t) + vj(t) (18)

and Ğ0
ji(q) = G0

ji(q) if Dj satisfies Property 1. 2

Note that Proposition 5 does not say anything about
the actual transfer functions between the predictor in-
puts wk and wj , k ̸= i. Thus, if the set of chosen predic-
tor inputs has Property 1 then it is possible to obtain
an estimate of G0

ji. This is formalized in the following
proposition which is a generalization of Theorem 2.

Theorem 6 Consider the situation of Theorem 2, ex-
cept for the case that the set of predictor inputs Dj is not
predefined anymore.
If Dj satisfies Property 1, then the implication{
Rεz(τ)=0, for τ=0, . . . ns

}
⇒

{
Gji(q, θ)=G0

ji(q)
}

holds for any finite ns ≥ ⌈(na+dnb)/length
(
z(t)

)
⌉ if the

following conditions are satisfied:

(a) Conditions (a) - (c) of Theorem 2 hold, (thus there is
no path fromwj to any of the instrumental variables.)

(b) Xj ⊂ Dj, i.e. only external variables that directly
excite predictor inputs are selected as instrumental
variables.

(c) There is no noise term vm that has both of the fol-
lowing two properties: 1) there is a path from vm to
wj that passes only through nodes wk, k ∈ Zj, and 2)
there is a path from vm to an instrumental variable.

(d) All process noise variables are uncorrelated.
(e) The parameterization is flexible enough, i.e. there

exists a θ such that Rεz(τ, θ) = 0 for τ = 0, · · ·ns. 2

As was the case in Theorem 2 the fact that there cannot
be a path from wj to any of the instrumental variables
poses a severe restriction on the candidate instrumen-
tal variables. However, this restriction can be removed
while still keeping the flexible choice of predictor inputs,
as shown in the following proposition which is a gener-
alization of Theorem 4.

Theorem 7 Consider the situation of Theorem 4, ex-
cept for the case that the set of predictor inputs Dj is not
predefined anymore.
If Dj satisfies Property 1, then the implication

{
Rεz(τ)=0, for τ = 0, . . . , ns

}
⇒

{
Gji(q, θ)=G0

ji(q)
}

(19)

holds if the following conditions are satisfied:

(a) Conditions (a) - (c) of Theorem 4 hold.
(b) Xj ⊂ Dj, i.e. only external variables that directly

excite predictor inputs are selected as instrumental
variables.

(c) Consider every vm that has a path to wj that passes
only through nodes wk, k ∈ Zj. For every such vm,
it must hold that every path from vm to wℓ, ℓ ∈ Ij,
must pass through wj before reaching wℓ.

(d) All process noise variables are uncorrelated.
(e) The parameterization is flexible enough, i.e. there

exists a θ such that Rεz(τ, θ) = 0. 2

The following example illustrates the flexibility that is
allowed in choosing the set Dj (instead of forcing the
user to use only the variables with direct paths to wj as
predictor inputs, i.e. w̃k, k ∈ Nj).

Example 5 Consider the network shown in Fig. 4. Sup-
pose that the objective is to obtain an estimate of G0

32.
First we must choose which internal variables to include
as predictor inputs, i.e. we must choose D3 such that it
has Property 1. By Condition (a) of Property 1 w̃2 must
be included as a predictor input. Next, we must check
all loops from w3 to w3. All such loops pass through w2,
which is already chosen as a predictor input, so Condi-
tion (b) of Property 1 is satisfied. Next, we check all paths
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32G0
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v1

v2

v3

v4

v5v6

Fig. 4. Network analyzed in Example 5. For clarity the sensor
noise is not shown, although it is still assumed to be present.

from w2 to w3:

w2→w1→w4→w5→w3 w2→w1→w4→w6→w3

for instance. It can be seen that all paths from w2 to w3

(not including G0
32) pass through w4. Thus Condition (c)

is satisfied if we include w̃4 as a predictor input. Note
that this is not the only choice of D3 that has Property 1.

For this choice of Dj, the candidate instrumental vari-
ables are {w̃1, w̃5, w̃6}. For all these candidates there is a
path from wj to the candidate. Thus, Theorem 6 does not
apply and we have to defer to Theorem 7. If measurements
of all the candidate instrumental variables are available,
we could choose to use them all, i.e. Ij = {1, 5, 6}. How-
ever, for this choice of instrumental variables Condition
(c) is not satisfied, since there is a path from v6 (where
6 ∈ Z3), that does not pass through the output w3 before
reaching the instrumental variable w6. Thus, we choose
the set Ij = {1}. In this case Condition (c) is satisfied.
If the remaining conditions of Theorem 7 are satisfied,
then the implication (19) holds. 2

6 Implementation of Algorithm 2

An attractive feature of the classical IV methods is that
the estimates can be obtained by solving a linear regres-
sion problem. When making the move to a BJ model
structure, as in the method proposed in Section 4, this
property is lost. In this section an implementation of the
method presented in Section 4 is presented.

We show that standard tools for identifying Box-Jenkins
models can be used to obtain an estimate of the solution
to (17). Recall from Section 4 that we are interested in
finding θ such that

Rεz(τ, θ) = 0 for τ = 0, . . . , nz.

This is equivalent to finding θ such that

nz∑
τ=0

R2
εz(τ, θ) = 0. (20)

G0
21 G0

32

G0
12

w1

s1

w̃1

w2

s2

w̃2

w3

s3

w̃3

v1 v2 v3

Fig. 5. Data generating system considered in Example 6

Since (20) is nonnegative for all θ, finding θ such that
(20) holds is equivalent to finding θ such that

θ̂ = argmin
θ

nz∑
τ=0

R2
εz(τ, θ). (21)

Note that (21) is a standard sum of squared errors objec-
tive function. Now, consider the expression for Rεz(τ):

Rεz(τ)= Ē
[(
H−1

j (θ)
(
wj(t)−

∑
k∈Dj

Gjk(θ)wk(t)
))

z(t−τ)
]

=H−1
j (q, θ)

(
Rwjz(τ)−

∑
k∈Dj

Gjk(q, θ)Rwkz(τ)
)
. (22)

The point is that (22) has the same form as the pre-
diction error using a Box-Jenkins model structure (see

(4)), where the “output” is R̂wjz(τ) and the predictor

“inputs” are R̂wkz(τ), k ∈ Dj . In practice Rwjz(τ) and
Rwkz(τ) cannot be exactly computed. However,Rwjz(τ)
for instance can be approximated as:

R̂wjz(τ) =
1

N − τ

N∑
t=τ

wj(t)z(t− τ).

Thus, we can compute R̂wjz(τ) and R̂wkz(τ) for τ =
0, . . . , nz, k ∈ Dj resulting in a data set. Now standard
identification tools (such as the bj function in the MAT-
LAB identification toolbox) can be used to find θ.

Example 6 Consider the system shown in Fig. 5. The
objective is to obtain an estimate of G0

21 using w̃1, w̃2

and w̃3. Thus, the output is w2, and the predictor input
is w̃1. This leaves w̃3 as the only choice for instrumental
variable. In this case Algorithm 1 does not apply since
there is a path from w2 to the instrumental variable w3.
Thus, we use Algorithm 2. All the noise variables vk and
sk, k = 1, 2, 3 are simulated as sequences of low-pass fil-
tered white noise. 5000 data points are simulated. Re-
sults are shown in Fig. 6. The blue lines denote estimates
that are obtained by ignoring the presence of sensor noise
and applying the Direct Method of Van den Hof et al.
(2013). Clearly these estimates are biased. The red lines
denote estimates obtained using the implementation of
Algorithm 2 presented in this section with nz = 1000.
The estimates appear consistent, as expected. 2
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Fig. 6. Frequency responses related to the system of Fig.
5: G0

21 (dashed), five realizations of estimated frequency re-
sponses using the Direct Method (blue) and the generalized
IV Method (red).

7 Model Validation

Once a model is obtained, it is possible to express how
confident one is that the obtained model is in fact the
model that generated the data. Presumably, R̂εz(τ, θ̂N )
is small for all τ ≥ 0. However, how can one be sure that
it is small enough to be considered “very near to zero”?

If the variance of R̂εz(τ, θ̂N ) is known, then it is possible

to say that R̂εz(τ, θ̂N ) is zero with probability p. Then,
by the implications (11) and (16), it follows that it is

possible to address the quality of the estimate Gjk(q, θ̂).

The steps shown in Söderström & Stoica (1990, 1989);
Ljung (1999) can be closely followed in order to obtain

the variance of R̂N
εz(τ, θ̂N ). The result is that

√
NR̂N

εz(τ, θ̂N ) ∈ AsN (0, P )

where AsN (0, P ) means that asN → ∞ the distribution

of
√
NR̂N

εz(τ, θ̂N ) tends to a normal distribution with
zero mean and variance P , where (Ljung, 1999):

P =
∞∑

τ=−∞
Rε(τ)Rz(τ).

Let nα denote the α level of the N (0, 1) distribution.
Then it is possible to check if (Ljung, 1999)

∣∣R̂N
εz(τ, θ̂)

∣∣ ≤ √
P

N
nα.

If the inequality holds, then the obtained model is the
correct model with probability α.

Example 7 Consider the same situation as in Example
6. Consider a confidence level of 95%. The results are
shown in Fig. 7. From the figure, one can conclude with
95% confidence that there is no evidence in the data that
the model is wrong. 2

0 5 10 15 20 25 30
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−0.05
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0.05

0.1

0.15

0.2
Plot of RN

εz
(τ, θ̂)

τ

Fig. 7. Results of the validation test presented in Section
7 for the setup considered in Examples 6 and 7. The red
dashed lines represent the 95% confidence intervals.

8 Conclusion

In this paper a novel IV-based method is presented to
obtain consistent estimates of a module G0

ji embedded
in a dynamic network using measurements of internal
variables that are corrupted by sensor noise. Any vari-
able (external or internal) that is not a predictor input or
wj is a candidate instrumental variable. If instrumental
variables are chosen that do not have a connected path
from the module output wj , the resulting algorithm is
of a linear regression format. If there is such a connec-
tion then a nonlinear optimization algorithm results. In
both cases consistency results are formulated that are
based on excitation conditions on the appropriate input
and IV signals, while allowing all measured signals to
be measured with noise. The resulting EIV problem,
that is known to be problematic in classical (open-loop
and closed-loop) identification, becomes tractable now
because of the additionally measured variables that are
available in a dynamic network. Additionally predictor
input selection results are formulated that allow a check
on which choice of predictor input signals leads to con-
sistent module estimates. This allows the experimenter
to flexibly choose which particular variables to measure
in a particular network, allowing choices that are based
on sensor costs, least number of variables, etcetera.

A Proof of Lemma 1

Consider first the following lemma. For a proof see Ma-
son’s Rules (Mason, 1953), or Van den Hof et al. (2013).

Lemma 8 Consider a dynamic network as defined in
Section 2.1 that satisfies Assumption 1. Let G0

mn be the
(m,n)th entry of (I −G0)

−1. If there are no paths from
n to m then G0

mn is zero. 2

Now follows the proof of Lemma 1.

PROOF. The proof proceeds by considering zℓ = wℓ

(the proof for zℓ = rℓ is analogous). First bothwℓ andwk

are expressed in terms of process noise variables. Then
Lemma 8 is used to prove the result. Using the notation
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of Lemma 8, wℓ and wm can be expressed in terms of
only process noise terms:

wℓ(t)=
L∑

n=1

G0
ℓn(q)vn(t) and wk(t)=

L∑
n=1

G0
kn(q)vn(t).

Consequently the cross power spectral density Φwℓwk
is

Φwℓwk
(ω) =

L∑
n=1
n ̸=ℓ,k

G0
ℓn(e

jω)Φvn(ω)G0
kn(e

−jω)+

G0
ℓk(e

jω)Φvk
(ω)G0

kk(e
−jω)+G0

ℓℓ(e
jω)Φvℓ(ω)G0

kℓ(e
−jω)

Suppose that none of the Conditions of Lemma 1 hold.
By Lemma 8 and Condition (a), G0

kℓ is zero. Thus the
third term of Φwℓwk

(z) is zero. Similarly, by Condition
(b) the second term is zero. By Condition (c) for each
n ∈ {1, . . . , L} \ {k, ℓ} either G0

ℓn or G0
kn is zero. Thus

the first term of Φwℓwm(z) is zero. Consequently, if none
of the conditions hold, wk and wℓ are uncorrelated. 2

B Proof of Theorem 2

PROOF. The proof proceeds by first deriving a simpli-
fied expression forRεz(τ) and then showing that this ex-
pression equals 0 for τ = 0, . . . , ns if and only if θ = θ0.
Using (10) Rεz(τ) can be expressed as

Ē[ε(t)z(t− τ)] = Ē
[(
w̃j(t)− θT ϕ̃(t)

)
z(t− τ)

]
Both the predictor inputs and the instrumental variable
have a component that is due to the sensor noise. How-
ever, By Condition (c) both these components can be
removed from the expression of Rεz(τ):

Rεz(τ) = Ē
[(
wj(t) + sj(t)− θTϕ(t)− θTϕs(t)

)
·
(
z(t− τ) + zs(t− τ)

)]
= Ē

[(
wj(t)− θTϕ(t)

)
z(t− τ)

]
where

ϕT
s (t)=

[
sd1(t) · · · sd1(t−nb) · · · sj(t−1) · · · sj(t−na)

]
and, similarly, zs(t) is a vector of all the measurement
noise terms associated with the instrumental variables.
From (9) wj(t) can be expressed as:

wj(t) = θT0 ϕ(t) +A0
j (q)vj(t)

where θ0 = [b̆0jk1
· · · b̆0jkd

a0j ] where b̆0jki
is a vector of

the coefficients of B̆0
jki

, ki ∈ Nj and a0j is a vector of the

coefficients of A0
j . Using this expression for wj inRεz(τ):

Rεz(τ) = Ē
[(
θT0 ϕ(t) +A0

j (q)vj(t)− θTϕ(t)
)
z(t− τ)

]
= Ē

[(
∆θϕ(t) +A0

j (q)vj(t)
)
z(t− τ)

]
(B.1)

where ∆θ = θ0 − θ. Condition (a) states that there is
no path from any predictor input to any variable chosen
as an instrument. This implies that each wℓ, ℓ ∈ Ij is
not a function of vj . This statement can be proved using
Lemma 8 as follows. First, using the notation of Lemma
8, express wℓ in terms of v:

wℓ =

L∑
k=1

G0
ℓkvk. (B.2)

Since there is no path from wj to wℓ, by Lemma 8 G0
ℓj is

zero. Thus, wℓ is not a function of vj . Consequently, by
Condition (d) wℓ and vj are uncorrelated. This leads to
the following simplification of (B.1):

Rεz(τ) = Ē
[
∆θϕ(t)z(t− τ)

]
(B.3)

This is the final expression for Rεz(τ). It follows imme-
diately from (B.3) that if θ = θ0 then Rεz(τ) = 0 for all
finite τ ≥ 0. It remains to be shown that if Rεz(τ) = 0
for τ = 0, . . . , ns then θ = θ0. Consider the set of equa-
tions:

[Rεz(0) Rεz(1) · · · Rεz(ns)] = 0

Then, using (B.3), it follows that

∆θ[Rϕz(0) · · · Rϕz(nm) · · · Rϕz(ns)] = 0. (B.4)

Thematrix [Rϕz(0)Rϕz(1) · · · Rϕz(nm)] is either square
or has more columns than rows. By Condition (b) it
is full row rank. Consequently, the only solution to the
equation is ∆θ = 0. This proves the result. 2

C Proof of Theorem 4

The following Lemma is used in the proof of Theorem 4.

Lemma 9 Consider vector signals w(t) ∈ Rm and
z(t) ∈ Rn and let the scalar signal ε(t) be given by
ε(t) = M(q)w(t) with M(q) = a−1(q)B(q), with

a(q) = 1 + a1q
−1 + · · · anaq

−na , and

B(q) =B0 +B1q
−1 + · · ·Bnb

q−nb .

Denote the vector: ϕT (t) = [wT (t) · · · wT (t− nb)].
If the matrix

Ē
[
ϕ(t)[zT (t− na) · · · zT (t− na − nm)]

]
(C.1)
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has full row rank for sufficiently large nm, then the im-
plication

{Rεz(τ) = 0 for τ = 0, . . . , ns =⇒ M(q) ≡ 0}

holds for any finite ns ≥ na + nm. 2

PROOF. Using the expression for M(q) it follows that
a(q)ε(t) = B(q)w(t). Postmultiplying this expression
with zT (t− τ) and taking expectations, then leads to

a(q)Rεz(τ) = [B0 B1 · · ·Bnb
] · Ēϕ(t)zT (t− τ).

Combining this equation for τ = na, na + 1, · · ·na + nm

and positioning them next to each other then leads to

[1 a1 · · · ana ]


Rεz(na) · · · Rεz(na + nm)

...
...

Rεz(0) · · · Rεz(nm)

 =

=[B0 B1 · · · Bnb
]Ē
[
ϕ(t)[zT(t−na) · · · zT(t−na−nm)]

]
where nm is chosen large enough so that the matrix on
the right hand side can have full row rank.
If Rεz(τ) = 0 for τ = 0, . . . , na + nm, then the matrix
on the left hand side is 0, and under the condition that
the matrix on the right hand side has full row rank,
this implies that [B0 B1 · · ·Bnb

] = 0 which implies that
M(q) ≡ 0. 2

Now follows the proof of Theorem 4.

PROOF. First an expression for Rεz(τ) is derived.
Then it is shown that under the specified conditions,
Rεz(τ) = 0 for τ = 0, . . . , ns iff Gjk(θ) = G0

jk and

Hj(θ) = H0
j . Consider first an expression for the pre-

diction error. Substitute the expressions for w̃j and w̃k

into (4):

εj(θ)=H−1
j (θ)

(
wj +sj−

∑
k∈Nj

Gjk(θ)(wk+sk)
)

(C.2)

The vector of instrumental variables is chosen to con-
tain only node measurements and no external variables.
This does not affect the reasoning, it simply reduces the
notational burden:

zT (t) =
[
w̃ℓ1(t− d1) · · · w̃ℓn(t− dn)

]
(C.3)

where w̃ℓk(t − dk) = wℓk(t − dk) + sℓk(t − dk). No
measurement chosen as an IV can be a predictor input
(Nj ∩ Ij = ∅ by the statement of the theorem). Thus,

no sℓ that appears in the instrumental variable vector
z (C.3), will appear in the expression for εj , (C.2). By
Condition (c) each sk, k ∈ Dj is uncorrelated to all sℓ,
ℓ ∈ Ij . Thus, combining (C.2) and (C.3) results in the
following expression for Rεz:

Ē[εj(t,θ) · z(t− τ)] = Ē
[(

H−1
j (θ)

(
wj −

∑
k∈Nj

Gjk(θ)wk

))
·
[
wℓ1(t−τ−d1) · · · wℓn(t−τ−dn)

]]
. (C.4)

Using the fact that wj =
∑

k∈Nj
G0

jkwk + vj , and using

the notation ∆Gjk(θ) = G0
jk −Gjk(θ) and ∆Hj(θ) =

H−1
j (θ)−H0−1

j , we can rewrite the first component on the

right hand side of (C.4) as:

H−1
j (θ)

(
wj −

∑
k∈Nj

Gjk(θ)wk

)
=

∑
k∈Nj

∆Gjk(q,θ)

Hj(θ)
wk(t) + ∆Hj(q,θ)vj(t)+ej(t).

Because each (delayed) instrumental variable wℓk(t −
dk) is only a function of delayed versions of ej (i.e.
Rejwℓk

(τ) = 0 for τ ≥ dk as stated in the body of the

theorem), and because, by Condition (d) vj is uncorre-
lated to each of the noise terms that make up the IV’s,
the following simplification of (C.4) results:

Rεz(τ) = Ē
[(∑

k∈Nj

∆Gjk(q,θ)

Hj(q,θ)
wk(t) +∆Hj(q, θ)vj(t)

)
·
[
wℓ1(t−τ−d1) · · · wℓn(t−τ−dn)

]]
(C.5)

which holds for all τ ≥ 0. Using a vector notation (C.5)
can be expressed as:

Rεz(τ)= Ē
[
∆X(q,θ)T

·


wk1(t)

...

wkd
(t)

vj(t)


[
wℓ1(t−τ−d1)· · ·wℓn(t−τ − dn)

]]

where
∆X(q, θ)T =

[
∆Gjk1

(q,θ)

Hj(q,θ)
· · · ∆Gjkd

(q,θ)

Hj(q,θ)
∆Hj(q, θ)

]
and {k1, . . . , kd} = Dj . The variable vj can be expressed
in terms of internal variables as:

vj = wj −
∑
k∈Nj

G0
jk(q)wk

13



and so
wk1(t)

...

wkd
(t)

vj(t)

=


1

. . .

1

−G0
jk1

(q) · · · −G0
jkd

(q) 1




wk1(t)

...

wkd
(t)

wj(t)

 . (C.6)

Denote the matrix in (C.6) as J0(q). Using this notation,

Rεz(τ)= Ē
[
∆X(q, θ)TJ0(q)w(t)

· [wℓ1(t−τ−d1) · · · wℓn(t−τ−dn)]
]

(C.7)

where w(t) = [wk1(t) · · · wkd
(t) wj(t)]

T . Note that (C.7)
is valid for all finite τ ≥ 0.

First consider the ‘if’ statement. It must be shown that if
Gjk(q, θ) = G0

jk, for all k ∈ Nj and Hj(q, θ) = H0
j , then

Rεz(τ) = 0 for all finite τ ≥ 0. Let θ0 denote this partic-
ular parameter vector (such a parameter vector is guar-
anteed to exist by Condition (e)). Clearly, ∆Gjk(θ0) = 0
and ∆Hj(θ0) = 0. Thus, from (C.5), Rεz(τ, θ0) = 0, for
τ = 0, . . . , ns.

Now consider the ‘only if’ statement. It must be shown
that if Rεz(τ) = 0, for τ = 0, . . . , ns then Gjk(θ) = G0

jk,

for all k ∈ Nj and Hj(θ) = H0
j . From (C.7) the filtered

w(t)-signal can be expressed as M(q, θ)w(t) where

M(q, θ) = ∆X(q, θ)TJ0 = xd(q, θ)
−1P (q, θ)

with xd and P polynomial. By Condition (a) of Theo-
rem 4 the matrix Ē[ϕ(t)[z(t − nx) · · · z(t − nx − nz)]
is full row rank where ϕ(t) is composed of delayed ver-
sions of w(t). If the value of nx is chosen correctly and
the result of Lemma 9 can be applied, then it follows
that ∆X(q, θ)J0 = 0. By evaluating this latter equa-
tion, incorporating Condition (e), it follows then imme-
diately that Gjk(q, θ) = G0

jk(q), and Hj(q, θ) = H0
j (q).

The only remaining item to address now is to determine
the polynomial degrees of xd and P for the appropriate
application of Lemma 9.

To this end, let G0
jk =

B0
jk

F 0
jk

and H0
j = C0

D0 , where B0
jk

and F 0
jk are co-prime polynomials (in q−1) for each k,

C0 and D0 are co-prime polynomials. Then ∆X can be
expressed as:

∆X(q, θ) =
1

xd(q, θ)

[
pk1(q, θ) · · · pkd

(q, θ) pj(q, θ)
]
,

where

xd(q, θ) = F 0
jk1

Fjk1(θ) · · ·F 0
jkd

Fjkd
(θ)C0C(θ),

pkn(q, θ) =
(
B0

jkn
Fjkn(θ)−Bjkn(θ)F

0
jkn

)
∏

km∈Dj\{kn}

F 0
jkm

Fjkm(θ)C(θ)D0, (C.8)

pj(q, θ) =
(
D(θ)C0 −D0C(θ)

) ∏
km∈Dj

F 0
jkm

Fjkm(θ).

Multiplying ∆X by J0 results in:

∆X(q, θ)J0 =
1

xd(q, θ)

[
pk1(q, θ)− jk1(q, θ)

· · · pkd
(q, θ)− jkd

(q, θ) pj(q, θ)
]
,

where jkn =
pjB

0
jkn

F 0
jkn

(which is a polynomial). From (C.8)

it follows that pkn has degree
∑

k∈Dj
2nfk + 2nc, which

is the same as the degree of jkn , pj and xd. As a re-
sult Lemma 9 can be applied with na = nb = nx =∑

k∈Dj
2nfk + 2nc, and this is used in Condition (a),

which proves the theorem. 2

D Proof of Theorem 6

PROOF. Recall the expression forwj fromProposition
5 and denote

v̆j :=
∑
k∈Zj

F̆ 0
jkvk + vj . (D.1)

The proof will proceed by showing that Conditions (c)
and (d) of Theorem 6 result in v̆j being uncorrelated to
all vm with a path to any one of the instrumental vari-
ables. Then all the conditions of Theorem 2 hold, and so
the implication holds.
The expression for F̆ 0

jZ is GjZ(I − G0
ZZ)

−1. Applying

Lemma 8 to (I−G0
ZZ)

−1 it follows that any F̆jk is zero if
there is no path from vk, k ∈ Zj to wj that passes only
through nodes in Zj . Thus, by Condition (c) and (D.1),
it follows that vj is not a function of any vm that has a
path to wj that passes only through nodes in Zj .
Secondly, consider the the instrumental variables. Ex-
press the instrumental variables in terms of process noise
and external variables:

wℓ =
L∑

k=1

G0
ℓk(vk + rk) (D.2)

By Lemma 8 and Condition (c) wℓ is not a function of
vm. In addition, by the same reasoning as in the proof of
Theorem 2 wℓ is not a function of vj . Thus it has been
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shown that no instrumental variable is a function of any
vm that has a path that passes only through nodes in Zj

to wj . It follows by Condition (d) ṽj is uncorrelated to
the instrumental variables, wℓ, ℓ ∈ Ij .
Thus, by Theorem 2 and the expression for wj from
Proposition 5 the implication of Theorem 6 holds.

E Proof of Theorem 7

PROOF. The proof will proceed by showing that Con-
ditions (c) and (d) result in Condition (d) of Theorem
4 being satisfied. Then, all conditions of Theorem 4 are
satisfied, and so the implication holds. Recall the expres-
sion for v̆j (D.1). From the same reasoning as in the proof

of Theorem 6 it follows that F̆ 0
jk is non-zero if there is a

path from a vk, k ∈ Zj to wj that passes only through
nodes in Zj . Now we will show that Conditions (c) and
(d) ensure that ṽj is uncorrelated to all other process
noise terms with a path to any instrumental variable.
Each instrumental variable can be expressed as:

wℓ =

L∑
k=1

G0
ℓkvk. (E.1)

The instrumental variables can be expressed in terms of
v̆j . Denote the set of variables vk that make up v̆j as
Aj . Because there is no path from any vk, k ∈ Aj to wℓ

that does not pass through wj , it follows that wℓ can be
expressed as

wℓ =
∑
k∈B

Gℓkvk + Gℓj v̆j (E.2)

where B = {1, . . . , L} \ Aj . Because all process noise
terms are uncorrelated, it follows that v̆j is uncorrelated
to all other noise terms vk that have a path to wℓ.
Thus we have shown that Condition (d) of Theorem 7
holds. All remaining conditions of Theorem 7 hold, and
so the implication holds.
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Söderström, T. (2007). Errors-in-variables methods in
system identification. Automatica, 43 , 939–958.
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Söderström, T., & Stoica, P. (1983). Instrumental
Variable Methods for System Identification. LNCIS.
Berlin: Springer.
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