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Abstract. Obstacle detection is a mandatory function for a robot navi-
gating in an indoor environment especially when interaction with humans
is done in a cluttered environment. Commonly used vision-based solu-
tions like SLAM (Simultaneous Localization and Mapping) or optical
flow tend to be computation intensive and require powerful computa-
tion resources to meet low speed real-time constraints. Solutions using
LIDAR (Light Detection And Ranging) sensors are more robust but not
cost effective. This paper presents a real-time hardware architecture for
vision-based obstacle detection and localization based on IPM (Inverse
Perspective Mapping) for obstacle detection, and Otsu’s method plus
Bresenham’s algorithm for obstacle segmentation and localization un-
der the hypothesis of a flat ground. The proposed architecture combines
cost effectiveness, high frame-rate with low latency, low power consump-
tion and without any prior knowledge of the scene compared to existing
implementations.

1 Introduction

Obstacle detection is a fundamental ability of mobile robots to operate in an
cluttered indoor environment and it is essential in order to perform basic func-
tions of mobile robots like avoidance and navigation. This critical task is often
addressed with high cost sensors (LIDAR, RADAR) or computation intensive
algorithms (Optical Flow, SLAM ...) that prevent to limit the cost of a robotic
system.

Sonar based methods prove to be unreliable because of the system noise.
LIDAR sensors provide an accurate information and work independently of the
ambient light. However, LIDAR sensors are expensive, and provide a perfor-
mance with low level of vertical resolution.

The detection of obstacles based on images can determine the type of ob-
stacle, and with the reduction of cameras cost it is possible to integrate a large
number of cameras; Furthermore, they are compact, accurate and well modelled.
However, a software implementation of SLAM and optical flow algorithms in real
time requires a great computational load because of the complexity of these al-
gorithms [6]. Vision approaches based on classification need a prior knowledge



about environment to separate ground pixels from obstacle pixels. Vision ap-
proaches based on IPM allow obstacle detection under the hypothesis of a flat
ground, this method is based on the perspective effect perceived from a scene
when observed from two different points of view [3]. This method was introduced
in [9] and exploited for obstacle detection in [2]. While this method is based on
homographic transformation, it requires an important amount of computations.
Architectures based on GPU (Graphic Processing Unit) platform provide a good
pipeline performance but they don’t meet power requirements. An FPGA (Field
Programmable Gate Array) solution can provide better trade-off for power con-
sumption and pipeline requirements of an embedded platform.

This paper is organized as follows: Section 2 describes the theoretical back-
ground and related work. Section 3 describes the proposed hardware design.
Discussion and conclusion are detailed in sections 4 and 5.

2 Theoretical background

Inverse Perspective Mapping is a technique based on a geometric transformation
applied on frames acquired with different point of view (either using multiple
camera, or frames acquired at different time). This method belongs to the re-
sampling effect family; an initial image is transformed to generate a view from
a different position. Taking advantage of the perspective effect, this generated
image is compared to a real image acquired from the new position. This com-
parison generates high differences for object sticking out of the ground plane.
Detecting and localizing these differences in the ground plane allows to compute
the object position relative to the camera.

2.1 Inverse Perspective Mapping

In Mono Inverse perspective mapping [3], a single camera is used, two frames are
acquired at distinct instants tn and tn+1, as the robot moves. Odometry sensors
are used as input to compute the homography matrix. This matrix encodes the
effect on the images of the relative movement of the robot between the two po-
sitions for a given plane in the scene which is the ground plane in our case. The
camera is considered already calibrated; i.e., it’s intrinsic parameters (focal, prin-
cipal point and distortion coefficients) have been determined off line. Thanks to
this knowledge, optical distortions can be removed and it is possible to consider
the simple Pinhole camera model to perform IPM. With this model, a 3D point
of the scene (Xw, Yw, Zw) in the world frame is projected to pixel coordinates
(u ,v) in the pinhole image with the equation (1). As noted in equation (1), K is
the camera intrinsic matrix and (R ,t) encodes the rotation and translation from
the world frame to the camera frame. These former parameters are named the
camera extrinsic parameters. As IPM is intended to detect the ground pixels,
the world frame which is the robot frame as depicted in figure(1)(a) is chosen
such as the XwYw plane is the ground plane. Therefore, for 3D points in the
world frame laying in the ground plane, Zw = 0 is applied to (1) as shown in
the equation (2):
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Fig. 1: Inverse Perspective Mapping
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In the first acquisition, the robot frame is considered as the world frame. There-
fore, each pixel coordinates are represented with the equation (4):s1u1
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In the second acquisition, the position of the robot frame origin in the second
acquisition is represented in the robot frame of the first acquisition.s2u2
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The transformation (Rcw, t
c
w) is computed from the equation (6) as shown in the

figure (1)(a) :
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Therefore, each ground point is represented in the camera frame I1 and rep-
resented with the coordinates (u1, v1) in the image frame will be presented in
the camera frame I2 with the coordinates (u2, v2) in the image frame from the
equation (7) :
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The transformation (8) is only correct for ground points. Therefore, the pixel to
pixel value subtraction between Tipm[I1] and I2 generates low absolute values
for the ground points.



2.2 Segmentation of obstacles

In obstacle detection systems, one of the important steps to extract obstacle
pixels is the segmentation of binary image and thresholding is a fundamental
tool for segmentation. Otsu’s thresholding [10] is known as a good method. The
optimal threshold is computed by minimizing the mean square errors between
original image and the resultant binary image. A threshold based on Otsu’s
algorithm is calculated from the equations (9)(10) [10]:

σ2
0(t) =

k∑
i=1

[i− µ0(t)]2
pi
ω0

(9)

σ2
1(t) =

L∑
i=k+1

[i− µ1(t)]2
pi
ω1

(10)

The threshold produced by the equations (9) and (10) minimizes the weighted
within class variance. The problem of searching the optimal threshold can be
reduced to search a theshold that maximizes the between-class variance as shown
in the equation (11):

σ2
B = ω0ω1(µ1 − µ0)2 (11)

For quicker calculation and optimal performance in hardware implementation
the equation (11) is used to find the threshold from the histogram extracted of
gray-level image.

2.3 Bird’s-eye transformation

This transformation allows the distribution of obstacle information among image
pixels [2] and leads to efficient implementation of polar histogram in order to
localize obstacles. The binarized image is projected on the ground plane in the
robot frame as depicted in figure (1)(b), up to a rotation around the vertical
axis and a translation in XY . C1 and C2 represent camera frames as shown in
figure (1)(b). Any point on the ground plane P has a 3D position represented
with respect to the camera C1is rC1 [7]

nT
C1

.rC1
dC1

= 0 (12)

rC2
= RC2C1

(rC1
− tC2C1

C1
) (13)

nC1
is the ground plane normal represented in camera C1 coordinates and dC1

is the distance of the ground plane from the origin of camera C1. The position
vector rC2

of the same point represented in camera C2 is computed from(13).

RC2C1
is the rotation matrix from C1 to C2 and tC2C1

C1
is the translation from

C1 to C2 presented in C1 coordinates. The transformation required from the
Original Camera C1 to the virtual camera C2 presenting bird’s-eye view is:
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,
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t
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By using the equation (14), the homography matrix of bird’s-eye view for the
cameras is calculated. To use this matrix in image coordinates(pixels), camera
intrinsic matrix K is required as shown in the equation (15):

Hbird = K(RC2C1
− 1

dC1
t
C2C1
C2

.nT
C1

)K−1 (15)

The bird’s eye image of the ground plane is generated by applying the homog-
raphy to each pixel.



2.4 Obstacle localization

Obstacle bearing measurement Straight lines perpendicular to ground plane
are parallel in the world frame. By intersecting image plane with a ray parallel to
these lines in the camera frame through the camera center [7], vanishing point in
the image frame is obtained to represent a point called focus [2]. Thus a beam of
lines is originating from focus through the image to represent polar histogram.
So binarized image is scanned using polar histogram to localize obstacle shapes
in the image, and the tracking of pixels located in each line is done by using
Bresenham’s algorithm.

v = PX∞ = K
[
I|0
] [d

0

]
= Kd (16)

X∞ = (dT , 0)
T

is the vanishing point represented in the world frame, and v
is its projection in the image frame. P being projection matrix, K is intrinsic
matrix. Since two points coordinates are required to perform a line equation,
the first point(u0, v0) is a pixel belonging to the first row of image whereas the
second point is focus (0, 0). As noted already, image frame is translated to focus.
Bresenham’s algorithm [4] is initially presented in algorithm 1 for a line having
a point coordinates (u0, v0) in the first row of image for the octant where (u0 <
0, v0 > 0) and the vertical projection |v0|is longer than the horizontal projection
|u0| as depicted in figure (3). I(u, v) is pixel value at the coordinates (u, v). Dens
being the number of overthreshold pixels located in line. The implementation of
the algorithm is generalized to produce and trace lines in different octants.

Data: u0,v0
Result: Dens
dv = v0, du = −u0, D = 2du− dv, v = v0 ;
for v = v0 → 0 do

if D > 0 then
u← u+ 1;
D ← D + 2du− 2dv;

else
D ← D + 2du;

end
if I(u, v) > 0 then

dens← dens+ 1 ;

end

Algorithm 1: Bresenham’s method implemented for a specific octant

Obstacles localization in the ground plane Obstacle shapes produced
by IPM and binarization often have an isosceles triangular shape where the
peak corresponds to the intersection point between ground plane and obsta-
cle object. A method is proposed to find isosceles triangles crossed by Bre-
senham’s lines and extract the peak of each isosceles triangle; meanwhile po-
lar histogram is calculated. For each pixel I(u, v) located in a defined line
traced by Bresenham’s algorithm, a factor ar defined as a sum of neighbour-
ing pixels located in the same image row r as shown in the equation (18):

ar =
l∑

k=−l

I(u+ k, v) (17)

Sc = f(ar, ar+1) =

{
Sc+ 1, if ar+1 ≤ ar

0, otherwise (18)

l being window width, and Sc is a score refering to the possibility whether an
isosceles triangle is found or not. Since pixels of lines traced by Bresenham’s
algorithm don’t include all image pixels, extracted points don’t represent the
ideal points.
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(b) Second Hardware System design.

Fig. 2: The two proposed architectures

3 Hardware Design

Two hardware architectures are proposed as depicted in figure (2). In the first
architecture, bird’s eye transformation is applied to the whole image produced
by erosion module, while this transformation is only applied to the contact points
in the second architecture. Figure (2) shows the general hardware system design
with the differences between the two proposed architectures. Figures (3)(4) show
details of an implementation done for images of VGA resolution.

3.1 Homography and Bird’s eye transformation

Homography transformation is a pixel-level operation that maps input pixel
coordinates to computed output pixels coordinates (mapping operation). This
operation requires to store image frames in memory. This transformation can
be performed in hardware design by two methods detailed in [3]. As depicted
in figure (4)(a), non-sequential reads of the input image and sequential writes
of the output image are performed. Each output pixel is mapped to an input
pixel. Thus the calculation of inverse matrix of homography matrix produced by
the equation (8) is required, this process is performed in software as proposed
in [3]. An approximation is done for the non integer output coordinates, and a
null pixel value is assigned to the coordinates having no correspondence with
the input image. The same process is performed for bird’s eye transformation.
The main difference between these two transformations is that the values of the
transformation matrix can be computed off-line if we assume camera movement
only over x, y, φz. The drawback of this transformation in hardware implemen-
tation is the high bit-depth required for fractional of the fixed point elements of
the bird’s eye matrix elements and the high cost of latency time. Since bird’s eye
matrix is a constant matrix, the maximum value of |yh − yin| is calculated off-
line and is used to perform the minimum size of Block Random Access Memories
(BRAMs) required for the transformation.
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Fig. 3: Differences between the two proposed architectures

In our implementation done for VGA resolution, 191 rows of eroded image
are stored in BRAMs in order to start bird’s eye transformation.

3.2 IPM and Binarization

As shown in figure (3)(a)(b), the image transformed H[In] is generated from the
previous process. A subtraction is performed between pixels from H[In] acquired
at tn and pixels from In+1 at tn+1 as shown in the figure (3). A FIFO module
is used in order to synchronize the stream of image transformed H[In] acquired
at tn to the image In+1 acquired at tn+1. The image In+1 will be written in
the memory replacing the image In. The output image of subtraction passes
through a gaussian filter to remove noise and insure an optimal performance in
Otsu’s binarization. This gaussian filter for a standard deviation σ = 0.8 is im-
plemented as 3× 3 as a kernel. The image filtered by the gaussian kernel called
Ign,n+1 is binarized using Otsu’s threshold; This threshold thn−1,n is already
computed from the histogram of the image filtered Ign−1,n. As the computation
of histogram used to perform Otsu’s method to find optimal threshold requires
a high latency time, the threshold which binarizes the image filtered Ign,n+1

is a threshold thn−1,n calculated from the image filtered Ign−1,n as depicted in
figure(3). Since there is not a high variation in intensities between two sequential
frames, this binarization threshold remains valid and allows to save on processing
latency. The resulting binary image is then eroded with a kernel element 3× 3.
As erosion process and gaussian filter use a 3×3 kernel, two image rows and two
pixels are stored in BRAMs to perform these operations. Thus an additional
cost to latency time is imposed as depicted in figure(3). In the first architec-
ture, a definite number of eroded image rows is stored in BRAMs to perform
bird’s eye transformation and provide bird’s eye image Bird[Ibin]. In the second
architecture, eroded image pixels simply pass to the localization module.



3.3 Localization

In the first architecture as depicted in figure(3)(a), polar histogram makes use
of bird’s eye image for obstacles localization. However, the potential presence of
two or more obstacles will complicate the process [2]. Therefore, eroded image
is used to perform polar histogram, and this is done for the second architec-
ture. For pipeline requirements, two rotating registers of image width size are
used to store two image rows, the first register is used to determine which pix-
els belong to lines drawn by Bresenham’s algorithm, count overthreshold pixels,
detect isosceles triangles and their peaks, and to compute the next coordinates
in the next register. The second register stores pixels read from memory while
applying Bresenham’s algorithm to the first register. Figure (3)(a) introduces
an example how to scan bird’s Eye image 640 × 480 by 80 lines. The output
of this module is stored in BRAMs. Each address refers to a scanned sector of
the image, and the content of memory represents the number of overthreshold
pixels. Figure(3)(b) introduces an example showing how to scan an eroded image
640 × 480 by 120 lines in the second architecture, and an example is shown to
implement the equations (17) and (18) for extracting obstacles contact points
with ground plane. A selection process is performed to choose the best points.
Extracted points are divided into clusters, each cluster represents points assigned
to same obstacle object. In the second architecture, the extracted pixels coordi-
nates which are considered as contact points between ground plane and obstacles
are transformed by bird’s eye matrix to produce occupancy grid map for robot.

4 Discussion and Results

In the second architecture, Bird’s eye transformation is not applied to eroded
image, this is advantageous in hardware implementation because this transfor-
mation requires a high latency time, many BRAMs to store a specific number
of eroded image rows, and a large amount of hardware resources.

The two proposed architecture are implemented using Xilinx Virtex 6 plat-
form. A hardware accelerator for homography transformation and IPM algorithm
has been developed in [3]. Table 2 shows the differences between our architec-
ture and [3]. The software part of our architecture includes the calculation of
homography matrix produced by the equation (8). A software solution is pro-
posed in [3] to implement this equation by using a soft-processor, this solution is
adopted and used in our architecture. In [1], a hardware system based on stereo-
vision is proposed for obstacle detection, this architecture requires two cameras
to perform the system while our architecture is a monocular vision system; fur-
thermore, the maximum frequency of our system is better than the maximum
achieved frequency in [1]. Latency time in [1] (minimum detection time) is 5.5ms
for VGA resolution while latency time (computed to produce contact points be-
tween obstacles and ground plane) of our architecture is 7.49µs for the second
architecture and 2.05ms for the first architecture, the computational latency
time is ∼ 4610 clock cycles for the second architecture, while ∼ 126897 clock
cycles are required to perform the first architecture, figure (3) shows the required



clock cycles for each part in the two proposed architectures. Table (1) shows the

Table 1: comparison with other obstacle detection system
platform OD method Frame rate

[8] CPU + GPU optical flow 25 fps 640× 480
[11] PC 1.73 GHz IPM coarse detection 30 fps 720× 480
[5] GPU 3D reconstruction 45.8 fps 640× 480
[1] FPGA stereovision Fmax = 51.7 Mhz,180 fps 640× 480

ours FPGA IPM Fmax = 61.9 Mhz, 201 fps 640× 480

Table 2: Comparison of our system
with [3](640× 480)

FPGA [3] our FPGA
IPM Yes Yes

Binarization No Yes
Localization No Yes
Bird’s Eye No Yes
Frame rate 30 fps (SDRAM) 201 fps(BRAMs)

Table 3: Resources required for the
two architectures
architecture Slice Reg Luts RAMB36E1

First 35469 101479 87
second 34746 153623 78
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Transformation Address 
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(a) Implementation of homography and
bird’s eye.

detected detected 

detected 

detected detected 

detected 

(b) Results of obstacles localization in the
ground plane.

Fig. 4: Results and homography hardware architecture

comparison of the proposed system to other obstacle detection systems. In [8],
a system based on Optical flow, a computational intensive method, is used for
obstacle detection. The estimation of power consumption in our architecture is
around 3.9 watt which is clearly less than power consumption in GPU platform
as [8]. In [11], a method based on IPM is used to perform a system with local-
ization of obstacles using polar histogram. However, three sequential frames are
needed to perform the system; furthermore, the proposed method is limited to
vertical edges of obstacles. Figure(4)(b) shows the results of an implementation
done for 640× 480 images of the second architecture. Most of obstacles contact
points with ground plane are detected. However, two contact points are detected



as two obstacle objects, this is because of the selection process for contact points.
An optimization is still required to overcome that problem.

5 Conclusion

This paper presents a hardware architecture for obstacle detection and local-
ization implemented on FPGA. An efficient solution combines Mono IPM for
detection and Otsu’s method, plus Bresenham’s algorithm for localization. This
architecture produces a pipelined design with a high frame rate. The results
show the high frame rate of the system. In future, the proposed architecture will
be optimized to consume less resources, and extended to a multi-camera system
to generate occupancy grid map of the environment around robot.

This work has been performed by Ali Alhamwi, paid by the FUI-AAP14
project AIR-COBOT, co-funded by BPI France, FEDER and the Midi-Pyrénées
region.
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