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Abstract

This paper addresses the question of metric learning, i.e. the learning of a dissimilar-
ity function from a set of similar/dissimilar example pairs. This domain plays an impor-
tant role in many machine learning applications such as those related to face recognition
or face retrieval. More specifically, this paper builds on the recent MLBoost method
proposed by Negrel et al. [25]. MLBoost has been shown to perform very well for face
retrieval tasks, but this algorithm relies on the computation of a weak metric which is
very time consuming. This paper demonstrates how, by introducing sparsity into the
weak projectors, the convergence time can be reduced up to a factor of 10× compared to
MLBoost, without any performance loss. The paper also introduces an explicit way to
control the rank of the so-obtained metrics, allowing to fix in advance the dimension of
the (projected) feature space. The proposed ideas are experimentally validated on a face
retrieval task with three different signatures.

1 Introduction

This paper focuses on the task of identity-based face retrieval. This has been a very dynamic
research field over the past five years, raising many interesting challenges and producing a
variety of interesting methods. Identity-based face retrieval heavily depends on the quality
of the similarity function used to compare faces. Instead of using standard or handcrafted
similarity functions, the most popular way to address this problem is to learn adapted metrics
from sets of similar/dissimilar example pairs. It is usually equivalent to projecting face signa-
tures into an adapted (possibly low-dimensional) space in which similarity can be measured
with the Euclidean distance. For large scale applications, the dimensionality of this subspace
should be as small as possible to limit the storage requirements, while the projection should
also be fast to compute. Interestingly, the Euclidean metric fulfill the second requirement,
which explains why producing face representations adapted to the Euclidean metric is inter-
esting. However, such representations are usually of large size. Several methods have been
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proposed to learn projection matrices reducing the size of the signatures while preserving
the performance. This paper builds on such approaches.

More precisely, this paper proposes two improvements over MLBoost – MLBoost [25]
is a supervised metric leaning method based on boosting – one of the state-of-the-art Maha-
lanobis metric leaning methods. These two contributions are:

• The introduction of a new way to compute the weak metrics at a lower computational
cost;

• The introduction of a new approach to control the rank of the learned metrics, al-
lowing to fix the dimensions of the low-dimensional space in which the images are
represented.

The rest of the paper is as follows: after reviewing some metric learning techniques in
Section 2 and giving more details on MLBoost [25] in Section 3, the proposed contributions
are presented in Section 4. Section 5 compares the proposed method with state-of-the-art
competitors and shows its benefits.

2 Related Works
During the last decades, many Metric Learning (ML) approaches have emerged and have
been used in diverse applications such as tracking, image retrieval, face verification, person
re-identification, etc. ML also plays an important role in many machine learning, pattern
recognition or data mining techniques as learning metrics from data is usually better than
designing hand crafted metrics. In practice, not only should the metric be good in terms of
performance, but also it has to be fast, not memory demanding and computationally scalable.

The literature on ML is too vast to be fully covered here, and the interested reader is
referred to the recent book of Bellet et al. [2]. We can, however, mention a few of the most
notable approaches such as: DDML [15], RBML [20], Structural ML [41], PCCA [22],
rPCCA [40], LMNN [37], LDML [14], ITML [11], KISSME [17], RS-KISSME [34], SML [7],
MLBoost [25]. Most of these supervised approaches learn a distance or a similarity function
based on the Mahalanobis distance. The Mahalanobis distance between xi and x j ∈ RD is
defined as:

DW(xi,x j) = (xi−x j)
>W(xi−x j), (1)

where (xi,x j) denotes the pair of samples to compare and W ∈MD×D is a positive semi-
definite matrix. The seminal work of [39] estimated W by solving a convex quadratic pro-
gramming problem, by satisfying constraints defined by some given training pairs.

However guaranteeing the positive semi-definiteness of W is computationally expensive.
To reduce this cost, several works suggested to factorize W as W = LL> with L ∈MD×d .
In this case, W is by construction a positive semi-definite matrix and L defines an implicit
projection matrix (yi = L>xi). thus, it is possible to impose rank constraints to regularize the
model and learn a smaller feature space (d << D).

In the following, we denote by (p1i,p2i) ∈ P the set of positive pairs (two samples
belonging to the same class) and by (n1 j,n2 j) ∈ N the set of negative pairs (two samples
belonging to different classes). We also write DL instead of DLL> , for simplicity.

In [3], Bellman highlighted the phenomenon called the curse of dimensionality: when
the dimensionality of the feature space increases, the data representation becomes sparse.
In general, this sparsity is problematic, in particular for any method that requires statistical
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significance. This is why a lot of ML techniques have proposed to reduce the dimension of
the data space [10, 12, 33, 35]. For example, [23] and [24] proposed different (unsupervised
and supervised) methods to reduce the dimension of large-size descriptors (from thousands
to millions dimensions). PCCA [22, 40] proposed to learn a matrix L used to project the sig-
natures into a low-dimensional space where the distance between similar pairs are smaller
than those of dissimilar pairs. To do this, the authors suggested to solve the following opti-
mization problem:

argmin
L

∑
P
`β (DL (p1i,p2i)−1)+∑

N
`β (1−DL (n1i,n2i))+λ ‖L‖2

F , (2)

with `β (x) =
1
β

log(1+ exp(βx)), where β and λ are two hyper-parameters.

Tuning these hyper-parameters is not an easy task and is application dependent. Inter-
estingly, several methods don’t use any hyper-parameters. This is the case of the KissMe
method, introduced in [17], formulating the learning problem as a likelihood-test between
two Gaussian distributions (one for similar and one for dissimilar pairs). Consequently, it is
easy to compute W such as:

W = Σ
−1
P −Σ

−1
N , (3)

with ΣP = ∑P(p1i−p2i)(p1i−p2i)
> and ΣN = ∑N (n1 j −n2 j)(n1 j −n2 j)

>. Despite this
method is very fast and is not requiring any hyper-parameters, it cannot guarantee that the
metric is positive-definite (i.e., distances are not necessarily positive). The authors proposed
to project W on the cone of positive semi-definite matrices when DW is not exactly a metric.

Recently, several researchers investigated the use of Boosting algorithms [30] for ML.
Boosting algorithms are interesting as they do not have, in general, any hyper-parameters
and are not prone to overfitting [29]. Strong metrics can be obtained by combining several
weak metrics (generally rank-one metrics) to solve an optimization problem with triplet-wise
constraints [6, 21, 31, 32]. Negrel et al. [25] introduced MLBoost, showing how to learn a
boosted metric using pairwise constraints only, in a fast and scalable way.

Several Boosting methods have been developed with computational and storage effi-
ciency in mind. A first strategy is to reduce the computational cost for learning weak learn-
ers. This is rather natural as, in boosting, it is better to have simple weak classifiers; a good
example is the Haar basis functions introduced in [36]. A second strategy consists in evalu-
ating less or using less weak learners. In [36], a cascade approach is introduced to reduce the
average number of weak classifiers evaluated during the test stage. FloatBoost [19] uses a
backtracking mechanism: in the training phase, after each iteration of AdaBoost, some weak
classifiers are removed. As the number of weak classifiers selected does not change, the time
required to compute the metric is controlled. Furthermore, removing some weak classifiers
allows to remove the bad ones, improving both convergence and performance. Finally, using
a fixed number of weak learners [1, 13] or updating the weak learners after their selection
[27] have been studied a lot in the tracking literature.

In this paper, we propose two contributions for reducing the learning cost. First, we
propose a novel fast weak ML algorithm; second, we add rank constraints on the strong
metric, allowing us to fix the maximal dimension of the so-produced feature space, even
when the number of boosting iteration increases.
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Algorithm 1 Efficient MLBoost implementation
1: procedure MLBOOST(X,P,N , itersMax)
2: t← 1
3: L(1)←∅
4: Initialize weights: ∀i, u(1)i = 1/|P| ; ∀ j, v(1)j = 1/|N |.
5: repeat
6: Compute weak metric z(t) with equation (4).
7: Choose the best α(t) with equation (6).
8: if α(t) ≤ 0 then
9: break

10: L(t+1)←
[
L(t),
√

α(t)z(t)
]
.

11: Update weights u(t+1)
i and v(t+1)

j with equations (7).
12: until t < itersMax
13: return L

3 Boosted Metric Learning (MLBoost)
This section briefly summarizes the recent MLBoost approach – an efficient technique al-
lowing to learn metrics with Boosting – such as introduced in [25]. MLBoost learns a de-
composition of a Mahalanobis-based metric L. Like other boosting techniques, MLBoost
combines the weak learners obtained at each iteration to form a strong classifier.

At the beginning, all the pairs are initialized with the identical weights (u(1)i = 1/|P| for
positive pairs and v(1)j = 1/|N | for negative pairs). The weak metric Dz(t) is then obtained
by solving the following optimization problem:

z(t) =argmax
z

z>A(t)z,

s.t. ‖z‖2 = 1,with
(4)

A(t) = ∑
N

v(t)j

(
(n1 j−n2 j)(n1 j−n2 j)

>
)
−∑

P
u(t)i

(
(p1i−p2i)(p1i−p2i)

>
)
. (5)

We note that solving problem (4) is equivalent to the computation of the eigenvector cor-
responding to the largest eigenvalue of A(t). Once the weak metric Dz(t) is computed, the
algorithm chooses the best weights α(t) by solving the following problem:

α
(t) = argmin

α

(
∑
P

u(t)i eα

(
D

Z(t)
(p1i,p2i)

))(
∑
N

v(t)j e−α

(
D

Z(t)(n1 j ,n2 j)
))

. (6)

At the end of each iteration, the weights of the training pairs are updated by:

u(t+1)
i =

u(t)i eα(t) D
Z(t)

(p1i,p2i)

w(t)
P

, ∀i v(t+1)
j =

v(t)j e−α(t) D
Z(t)(n1 j ,n2 j)

w(t)
N

, ∀ j. (7)

The different steps of this algorithm are summarized in Algorithm 1.
MLBoost is robust to overfitting and is free of any hyper-parameters. However, one

of its drawbacks is that the final size of the so-obtained feature space can be very large.
Furthermore, computing the weak learners is very expensive.
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Algorithm 2 Low cost weak metrics

1: procedure LCWEAKMETRIC(X,P,N ,u(t),v(t),J)
2: Select randomly a subset I of J < D indices I = {i1, · · · , iJ}.
3: X′← XI .
4: Compute A(t) ∈MJ×J with equation (5) and X′.
5: Solve equation (4), i.e. compute z′(t), the first eigenvector of A(t) matrix.
6: Create a vector of zero entries: z(t) ∈ RW .
7: Set the value of z(t) in indices by I: z(t)I ← z′(t).
8: return z(t)

4 Faster MLBoost
Our contribution for faster MLBoost is twofold: first, we introduce a new way of building
weak learners; second we propose a better way to control the rank (and consequently the
dimension of the signature) of the Mahanalobis matrix. The two contributions are presented
in the two following subsections.

4.1 Producing weak metrics at lower cost
As explained previously, MLBoost relies on the computation of a weak metric, which is
computationally expensive. This cost depends on two parameters: the dimensionality of
the input features and the numbers of positive and negative pairs. More precisely, the weak
metric is computed in two steps: first, matrix A(t) is computed using equation (5); second,
the Rayleigh quotient of equation (4) is obtained by computing the first eigenvector of A(t).
These two steps have (at least) a quadratic complexity with respect to size of the signature
and hence become intractable for large signatures.

In order to reduce the computational cost of the weak metric, we propose to sparsify
the weak metric projectors. We do it by arbitrarily setting some of the components of the
projectors to zero, allowing to consider only the dimensions of the signatures corresponding
to the non-null dimensions of the projectors. These non-null components of the weak metric
projectors are randomly selected and uniformly distributed. Algorithm 2 summarizes this
strategy. For clarity purposes, we introduce τ , i.e. the ratio of non-zero dimensions defined
as: τ = J/D, where J < D is the number of non-null components and D is the size of the
descriptors. The ratio τ can be seen as the proportion of the non-null components.

The so-computed sparse weak metrics are weaker than those of [25] and more boosting
iterations are necessary to reach convergence. However, in the end, the speedup of each
iteration is so important that the overall learning time is drastically reduced. We can explain
the overall gain by the fact that sampling only a few components reduces the time required
to learn the weak classifiers in a quadratic way. On the other hand, we observe that the
components are correlated, explaining why keeping only a fraction of them does not result
in a strong degradation of the performance. In addition, the proposed random sampling
ensures more diversity than optimally selecting the components (e.g. using PCA).

4.2 Explicitly Controlling the Rank of MLBoost
As discussed in the related work section (Section 2), controlling the dimensionality of the
image signatures is very interesting for practical reasons. This can be done by controlling the
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rank of the Mahalanobis matrix. As MLBoost adds a new weak metric at each iteration, the
rank of the Mahalanobis matrix is increased, iteration by iteration. The only way to control
the rank is then to fix the number of boosting rounds, e.g. to T(t) =

[
L(t),
√

α(t)z(t)
]

which
is inconsistent with the general principle of Boosting (i.e. the combination of lots of weak
learners to obtain a strong learner).

We argue, in this paper, that a better way to control of the rank (rank(W) ≤ R) consists
in adding an extra projection at each iteration. This projection is done in two steps: (i)
we approximate the current Mahalanobis metric by a Mahalanobis metric with a rank lower
or equal to R; (ii) we compute the best weighting of the new metric before using it in the
boosting process.

The current Mahalanobis metric DT(t) (·, ·) can be approximated by solving:

P(t) = argmin
P∈MW×R

∑
i j

(
DT(t) (xi,x j)−DP (xi,x j)

)2
, (8)

where xi denotes the training samples.
This problem (Eq. (8)) is a standard Multi-Dimensional Scaling (MDS) problem [9].

Moreover as the Mahalanobis metric (1) can be seen as a Euclidean metric in the reduced
subspace, then we solve this problem easily by using a Principal Component Analysis (PCA)
in the reduced subspace:

Cov(Y) = VΛV>, (9)

with Y=T(t)>X and X the matrix containing the training pairs (vectors of differences), V the
eigenvectors of the covariance, and Λ the diagonal matrix containing eigenvalues of the co-
variance matrix. The optimal matrix P(t) is computed by combining the current Mahalanobis
matrix T(t) with the R eigenvectors corresponding to the largest eigenvalues V{1,··· ,R}:

P(t) = T(t)V{1,··· ,R}. (10)

In this case, P(t) is the best R-dimensional approximation of T(t). However, it is not
possible to directly replace T(t) by P(t) in the next steps of MLBoost. As in the first boosting
step, we need to compute the weights of the metric:

L(t+1) =

√
α
(t)
2 P(t), (11)

where α
(t)
2 denotes the weights. Indeed, at the end of each boosting iteration, weighting the

training pairs makes the previous weak metric performing as well as a random metric. To
compute α2, we solve (via line search) the following problem:

α
(t)
2 = argmin

α

(
∑
P

eα

(
D

P(t)
(p1i,p2i)

))(
∑
N

e−α

(
D

P(t)(n1 j ,n2 j)
))

. (12)

Finally, we update the weights of the training pairs as follows:

u(t+1)
i =

eD
L(t+1) (p1i,p2i)

w(t+1)
P

, ∀i v(t+1)
j =

e−D
L(t+1)(n1 j ,n2 j)

w(t+1)
N

, ∀ j (13)

with w(t+1)
P and w(t+1)

N the normalization factors chosen such that ∑u(t+1)
i = 1 and ∑v(t+1)

i = 1.
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Sign. Method Final n= n= n= n= n=
Dim. 1 10 20 50 100

L
B

P

- 9860 31.9 53.7 60.5 68.8 74.7

PCA

16 10.2 24.8 34.5 44.7 55.3
32 16.5 34.5 44.7 55.3 66.0

128 28.4 46.6 54.6 65.7 72.1
512 31.2 51.5 59.6 67.4 74.7
585 36.4 57.7 64.3 74.2 79.7

KissMe - 24.3 53.6 59.5 69.7 78.3
MLBoost 585 40.2 60.8 66.7 74.9 81.1

A
le

xN
et

- 4096 78.3 92.2 94.8 97.2 97.9

PCA

16 53.7 82.7 89.1 94.3 96.7
32 70.7 90.5 92.4 96.2 97.6

128 75.7 91.7 94.6 96.9 98.1
383 78.7 92.7 94.8 97.4 98.3
512 78.7 92.4 94.8 97.4 98.3

KissMe - 76.6 92.4 95.3 96.9 97.8
MLBoost 383 81.3 93.9 96.0 97.9 98.3

V
G

G
-F

ac
e

- 4096 89.6 96.9 97.4 98.1 98.3

PCA

16 75.7 91.3 93.9 96.2 97.6
32 87.7 95.0 95.7 97.2 97.9

128 91.3 96.5 97.2 97.6 98.3
191 91.5 96.5 97.2 97.6 98.6
512 91.3 96.7 96.9 97.6 98.3

KissMe - 90.1 96.7 97.2 97.6 98.8
MLBoost 191 91.5 97.2 97.9 98.1 98.3

Table 1: Baseline performance of 3 types
of descriptors with (i) Euclidean metric (ii)
Euclidean metric after PCA reduction (iii)
KissMe [17] (iv) MLBoost [25].

Sign. Final n= n= n= n= n=
Dim. 1 10 20 50 100

LBP 1226 41.8 61.4 68.6 75.4 80.9
AlexNet 1128 81.8 94.3 95.7 97.9 98.1

VGG-Face 538 91.7 96.5 97.4 98.3 98.8
Table 2: Performance of MLBoost with
low-cost weak metrics (τ = 5%), for the
three types of signatures.

Sign. Final n= n= n= n= n=
Dim. 1 10 20 50 100

LBP

16 18.7 43.5 52.7 64.3 74.0
32 31.4 57.0 63.1 72.1 77.3
128 36.4 54.8 62.9 71.6 77.5
512 38.5 58.6 63.6 74.0 79.2

AlexNet

16 60.0 97.9 91.3 93.4 94.8
32 73.5 92.2 95.3 97.6 98.1
128 78.0 93.9 95.7 97.6 97.9
512 79.0 94.1 95.7 97.6 98.3

VGG-Face

16 82.0 94.1 96.7 97.6 98.6
32 89.4 96.2 97.4 98.1 98.6
128 90.8 95.7 97.2 98.1 98.8
512 92.4 96.7 97.6 98.3 98.6

Table 3: Performance of MLBoost with
low-cost weak metrics (τ = 5%) and rank
constraints (R ∈ {16,32,128,512}).

5 Experiments
The two contributions of this paper are experimentally evaluated on the identity-based face
retrieval task, i.e. given a face query, the objective is to find a face of the same person in a set
of known-identity face images and hence predict the identity of the query face. The criterion
used to evaluate the performance is the one used in [4, 25], i.e., the mean k-call@n (such as
defined in [8]), with k = 1. for n ∈ {1,10,20,50,100}.

Datasets and learning pairs. We use the aligned version [38] of the Labeled Faces in
the Wild (LFW) database by Huang et al. [16]. It contains more than 13,000 images of over
4,000 different persons. In our experiments, we use the same set of images/queries as [4, 25].
Only the identities having at least five examples are used; the others are not used during the
learning of metrics nor during their evaluations. This results in a subset of 5,985 images of
423 different persons. The query set is composed of one image of each identity while the
training set contains the remaining images. To learn the metrics, we build a set of similar
pairs and a set of dissimilar pairs in such a way that all the identities are used equally.

Image descriptions. We evaluate the methods with three types of image signatures: (i)
LBP [26]: we use the same signatures as in [4, 25] (signatures of 9860 dimensions). (ii)
AlexNet descriptors [18]: we use the same descriptors as Bhattarai et al. [5](signatures of
4096 dimensions). (iii) VGG-Face CNN descriptors [28]: we use the publicly available
source code1 (signatures of 4096 dimensions).

1http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
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(a) LBP
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(b) AlexNet
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(c) VGG-Face

Figure 1: Objective as the function of the accumulated time spent on learning the weak
metrics, for different values of τ . τ is the parameter fixing the ratio of non-zeros dimensions
in the low-cost MLBoost weak metric.

MLBoost learning parameters. We learn the metrics using 217 ≈ 131,000 positive and
negative examples pairs. Boosting is stopped when the objective function is lower than
10−9 or the maximum number of iterations is reached, i.e., 2048 iterations. To evaluate the
metric learned with MLBoost, we project the signatures on the projectors yi = L∗>xi and
we normalize (`2) the reduced signatures y′i = yi/‖yi‖. We then use the Euclidean metric to
compare the queries with the images of the test set.

Baseline results. We use as a baseline the performance obtained with: (i) raw signa-
tures (without metric learning) / Euclidean distance; (ii) signatures reduced by PCA; (iii)
KissMe [17]; (iv) MLBoost [25]. The results are reported in Table 1, which compares the
performance obtained with the three types of signatures (LBP, AlexNet and VGG-Face). The
performances are given in terms of the percentage of the mean 1-call@n. To learn the metric
with KissMe, we use the signatures reduced to 128 dimensions with PCA, and we use only
214 ≈ 16000 positive and negative pairs (setting giving the best performance).

We can see that the recent CNN signatures provide much better performance than LBP.
We also note that for AlexNet and VGG-Face, PCA can improve the performance (for 128-d
or more projections). We can finally see that the metric learned with MLBoost constantly
improves the performance, for all types of signatures.

5.1 Low cost weak metric performance

To analyze the effects of our low-cost weak metric on the convergence speed and metric per-
formance, we learn the metrics for the different types of signatures and for various ratios of
non-zeros dimensions τ ∈ {100%,50%,10%,5%,1%}. We note that τ = 100% is equivalent
to the original MLBoost of [25]. Figures 1(a), 1(b) and 1(c) illustrate the convergence of the
algorithm for the different ratios of non-zeros components. The vertical axis corresponds to
the objective function while the horizontal axis corresponds to the accumulated time spent
on computing the weak metrics during boosting. We see that for any type of signatures, the
overall time spent in computing the weak metrics before the objective function reaches 10−9

is significantly reduced. For a ratio of 5% of non-zeros dimensions, the total time is at least
divided by a factor of 10. Table 2 gives the performance of the metrics learned with our
low-cost weak metric with 5% of non-zeros dimensions. The performance is very similar to
those of the weak metric proposed in [25] (see Table 1). However, the dimension of the final
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Figure 2: Effect of the rank constraints on MLBoost as a function of the number of iterations

signature is larger, due to the larger number of iterations needed reach convergence.

5.2 Adding Rank Constraints
In this section, we focus on the evaluation of our second contribution, i.e. the method pro-
posed to limit the rank of the Mahalanobis matrix. We perform these experiments with our
low-cost week metric with 5% of non-null components (τ = 0.05), for the following rank
constraint: R ∈ {16,32,64,128,256,512}. Figure 2 illustrates the convergence of the algo-
rithm (using LBP signatures) for the different rank constraints. The vertical axis corresponds
to the objective function while the horizontal axis corresponds to the number of boosting it-
erations. The blue curve shows the convergence of MLBoost without rank constraints. We
see that for strong rank constraints (e.g., R = 16), the convergence speed is reduced. How-
ever, for R = 64, R = 128 and R = 256, we note that we need fewer iterations to converge
than without the rank constraint. We report, in Table 3, the performance given by the metrics
learned with MLBoost combined with our low-cost weak metric and the rank constraint. We
see that the performance increases with R. In comparison to the original MLBoost (see Ta-
ble 1), and for any type of signature, we always obtain better performance. The conclusion
is that not only is the proposed method faster, but it is also better in terms of performance.

6 Conclusions
This paper introduces two improvements to the state-of-the-art MLBoost method [25]. The
first one addresses the prohibitive computational cost required to learn weak metrics in the
presence of high-dimensional signatures. The second contribution allows us to limit the rank
of the Mahalanobis matrix and, thus, to fix the dimension of the final signatures. The pro-
posed experimental validation not only show a more than 10× speedup but also a significant
improvement of the performance. In addition, the paper shows that the size of the final
signature can significantly be reduced with only a small loss in performance.
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