Frank Vega Nl

P 2016 Hal

Frank Vega
email: vega.frank@gmail.com

Keywords: P, NL, NP, logarithmic space, certificate 2000 MSC: 68-XX, 68Qxx, 68Q15

Introduction

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Cook | The P versus NP Problem[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Cook | The P versus NP Problem[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Cook | The P versus NP Problem[END_REF]. We say that M accepts w if this computation terminates in the accepting state [START_REF] Cook | The P versus NP Problem[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, or if the computation fails to terminate [START_REF] Cook | The P versus NP Problem[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Cook | The P versus NP Problem[END_REF]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational Complexity[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Papadimitriou | Computational Complexity[END_REF].

P versus NP is a major unsolved problem in computer science [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF]. The class NP consists in those languages that can be decided in polynomial time by a nondeterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF].

The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to NP? We can also state the complexity class NP using the following definition. Definition 0.1. A verifier for a language L is a deterministic Turing machine M, where L = {w : M accepts w, c for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded by the length of w, because that is all the verifier can access in its time bound [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Definition 0.2. NP is the class of languages that have polynomial time verifiers [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

A logspace machine is a Turing machine with a read-only input tape, a write-only output tape, and a read/write work tapes [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. The work tapes may contain at most O(log n) symbols [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Another major complexity classes are LS PACE and NL. The class LS PACE has all the languages that are decidable on a deterministic logspace machine [START_REF] Arora | Computational complexity: A modern approach[END_REF]. NL is the class of languages that are decidable on a nondeterministic logspace machine [START_REF] Arora | Computational complexity: A modern approach[END_REF].

We can give a certificate-based definition for NL [START_REF] Arora | Computational complexity: A modern approach[END_REF]. The certificate-based definition of NL assumes that a logspace machine has another separated read-only tape [START_REF] Arora | Computational complexity: A modern approach[END_REF]. On each step of the machine the machine's head on that tape can either stay in place or move to the right [START_REF] Arora | Computational complexity: A modern approach[END_REF]. In particular, it cannot reread any bit to the left of where the head currently is [START_REF] Arora | Computational complexity: A modern approach[END_REF]. For that reason this kind of special tape is called "read once" [START_REF] Arora | Computational complexity: A modern approach[END_REF]. Definition 0.3. A language L is in NL if there exists a deterministic logspace machine and with an additional special read-once input tape polynomial p : N → N such that for every x ∈ {0, 1} * , x ∈ L ⇔ ∃u ∈ {0, 1} p(|x|) such that M accepts x, u where by M(x, u) we denote the computation of M where x is placed on its input tape and u is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write tapes for every input x. We will call this Turing machine M a logspace verifier.

It is known that LS PACE ⊆ NL ⊆ P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Whether LS PACE = NL is another fundamental question that it is as important as it is unresolved [START_REF] Papadimitriou | Computational Complexity[END_REF]. All efforts to solve the LS PACE versus NL problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF]. Nevertheless, we prove NL = P.

Theoretical notions

A function f : Σ * → Σ * is a polynomial time computable function if some deterministic Turing machine M, on every input w, halts in polynomial time with just f (w) on its tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Let {0, 1} * be the infinite set of binary strings, we say that a language L 1 ⊆ {0, 1} * is polynomial time reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ p L 2 , if there exists a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
An important complexity class is NP-complete [START_REF] Goldreich | Np-Completeness[END_REF]. A language L ⊆ {0, 1} * is NP-complete if 1. L ∈ NP, and 2. L ≤ p L for every L ∈ NP.

Furthermore, if L is a language such that L ≤ p L for some L ∈ NP-complete, then L is in NP-hard [START_REF] Cormen | Introduction to Algorithms[END_REF]. Moreover, if L ∈ NP, then L ∈ NP-complete [START_REF] Cormen | Introduction to Algorithms[END_REF]. If any single NP-complete problem can be solved in polynomial time, then every NP problem has a polynomial time algorithm [START_REF] Cormen | Introduction to Algorithms[END_REF]. No polynomial time algorithm has yet been discovered for any NP-complete problem [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF].

A principal NP-complete problem is S AT [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF]. An instance of S AT is a Boolean formula φ which is composed of 1. Boolean variables: x 1 , x 2 , . . . , x n ; 2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), ⇒(implication), ⇔(if and only if); 3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. The problem S AT asks whether a given Boolean formula is satisfiable [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition[END_REF].

Another NP-complete language is 3CNF satisfiability, or 3S AT [START_REF] Cormen | Introduction to Algorithms[END_REF]. We define 3CNF satisfiability using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [START_REF] Cormen | Introduction to Algorithms[END_REF]. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [START_REF] Cormen | Introduction to Algorithms[END_REF]. A Boolean formula is in 3-conjunctive normal form or 3CNF, if each clause has exactly three distinct literals [START_REF] Cormen | Introduction to Algorithms[END_REF].

For example, the Boolean formula

(x 1 ∨ x 1 ∨ x 2) ∧ (x 3 ∨ x 2 ∨ x 4) ∧ (x 1 ∨ x 3 ∨ x 4)
is in 3CNF. The first of its three clauses is (x 1 ∨ x 1 ∨ x 2), which contains the three literals x 1 ,

x 1 , and x 2 . In 3S AT , it is asked whether a given Boolean formula φ in 3CNF is satisfiable.

A logarithmic space transducer is a Turing machine with a read-only input tape, a writeonly output tape, and a read/write work tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. The work tapes must contain at most O(log n) symbols [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A logarithmic space transducer M computes a function f : Σ * → Σ * , where f (w) is the string remaining on the output tape after M halts when it is started with w on its input tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. We call f a logarithmic space computable function [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. We say that a language L 1 ⊆ {0, 1} * is logarithmic space reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ l L 2 , if there exists a logarithmic space computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
An important complexity class is P-complete [START_REF] Papadimitriou | Computational Complexity[END_REF]. A language L ⊆ {0, 1} * is P-complete if 1. L ∈ P, and 2. L ≤ l L for every L ∈ P.

A principal P-complete problem is HORNS AT [START_REF] Papadimitriou | Computational Complexity[END_REF]. We say that a clause is a Horn clause if it has at most one positive literal [START_REF] Papadimitriou | Computational Complexity[END_REF]. That is, all its literals, except possibly for one, are negations of variables. An instance of HORNS AT is a Boolean formula φ in CNF which is composed only of Horn clauses [START_REF] Papadimitriou | Computational Complexity[END_REF].

3

For example, the Boolean formula

(x 2 ∨ x 3) ∧ (x 1 ∨ x 2 ∨ x 3 ∨ x 4) ∧ (x 1)
is a conjunction of Horn clauses. The HORNS AT asks whether an instance of this problem is satisfiable [START_REF] Papadimitriou | Computational Complexity[END_REF]. Another special case is the language where the instances are Boolean formulas in CNF and each clause contains only un-negated variables. This language, that we call UN-NEGATED, asks whether an instance of this problem is satisfiable. This is in LS PACE, since every Boolean formula in CNF is always satisfiable when every literal inside of the clauses is a un-negated variable. In a similar way, we define the language NEGATED where the Boolean formulas are in CNF and each clause contains only negated variables. This language is in LS PACE too.

Class equivalent-L

Definition 2.1. We say that a language L belongs to ≡ L if there exist two languages L 1 ∈ LS PACE and L 2 ∈ LS PACE and two deterministic logspace machines M 1 and M 2 , where M 1 and M 2 are the logspace verifiers of L 1 and L 2 respectively, such that L = {(x, y) : ∃z such that M 1 (x, z) = "yes" and M 2 (y, z) = "yes"}.

We call the complexity class ≡ L as "equivalent-L". We represent this language L in ≡ L as

(L 1 , L 2).
The logarithmic space reduction is frequently used for P and below [START_REF] Papadimitriou | Computational Complexity[END_REF]. There is a different kind of reduction for ≡ P: The e-reduction. Definition 2.2. Given two languages L 1 and L 2 , where the instances of L 1 and L 2 are orderedpairs of binary strings, we say that the language L 1 is e-reducible to the language L 2 , written L 1 ≤ ≡ L 2 , if there exist two logarithmic space computable functions f : {0, 1} * → {0, 1} * and g : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * and y ∈ {0, 1} * ,

(x, y) ∈ L 1 if and only if (f (x), g(y)) ∈ L 2 .
Lemma 2.3. The e-reduction is a logarithmic space reduction.

Proof. We can construct a logarithmic space transducer M that computes an arbitrary e-reduction and receives as input an ordered-pair of string x, y and outputs f (x), g(y) where f and g are the two logarithmic space computable functions of this e-reduction. Suppose we use a delimiter symbol for the strings x and y. For example, let's take the blank symbol as delimiter [START_REF] Papadimitriou | Computational Complexity[END_REF]. Since f is a logarithmic space computable function, then we can simulate f on M using a logarithmic amount of space in its read/write work tape. In the meantime, M is printing the string f (x) to the output without wander off after the symbol that separates x from y on the input tape. When the simulation of f halts, then M starts to simulate g from the other string y. At the same time, M outputs the result of g(y) using only a logarithmic space in its work tape, since g is also a logarithmic space computable function. Finally, we obtain the output f (x), g(y) from the input x, y using the logarithmic space transducer M. Since we take an arbitrary e-reduction, then we prove the e-reduction is also a logarithmic space reduction.

Theorem 2.4.

If A ≤ ≡ B and B ≤ ≡ C, then A ≤ ≡ C.
Proof. This is because of the logarithmic space reduction is transitive [START_REF] Papadimitriou | Computational Complexity[END_REF].

We say that a complexity class C is closed under reductions if, whenever L 1 is reducible to

L 2 and L 2 ∈ C, then L 1 ∈ C [2].
Theorem 2.5. ≡ L is closed under reductions.

Proof. Let L and L be two arbitrary languages, where their instances are ordered-pairs of binary strings. Suppose that L ≤ ≡ L where L is in ≡ L. We will show that L is in ≡ L too. By definition of ≡ L, there are two languages L 1 ∈ LS PACE and L 2 ∈ LS PACE, such that for each (v, w) ∈ L we have that v ∈ L 1 and w ∈ L 2 . Moreover, there are two deterministic logspace machines M 1 and M 2 which are the logspace verifiers of L 1 and L 2 respectively. For each (v, w) ∈ L , there will be a succinct certificate z, such that M 1 (v, z) = "yes" and M 2 (w, z) = "yes". Besides, by definition of e-reduction, there are two logarithmic space computable functions f : {0, 1} * → {0, 1} * and g : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * and y ∈ {0, 1} * , (x, y) ∈ L if and only if (f (x), g(y)) ∈ L .

Based on this preliminary information, we can support that there exist two languages L 1 ∈ LS PACE and L 2 ∈ LS PACE, such that for each (x, y) ∈ L we have that x ∈ L 1 and y ∈ L 2 . Indeed, we can define L 1 and L 2 as the strings f -1 (v) and g -1 (w), such that f -1 (v) ∈ L 1 and g -1 (w) ∈ L 2 if and only if v ∈ L 1 and w ∈ L 2 . Certainly, for all x ∈ {0, 1} * and y ∈ {0, 1} * , we can decide in logarithmic space whether x ∈ L 1 or y ∈ L 2 just verifying that f (x) ∈ L 1 or g(y) ∈ L 2 respectively, since L 1 ∈ LS PACE, L 2 ∈ LS PACE and f and g are logarithmic space computable functions.

Furthermore, there are two deterministic logspace machines M 1 and M 2 that are the logspace verifiers of L 1 and L 2 respectively. For each (x, y) ∈ L, there will be a succinct certificate z such that M 1 (x, z) = "yes" and M 2 (y, z) = "yes". Indeed, we can know whether M 1 (x, z) = "yes" and M 2 (y, z) = "yes" just verifying whether M 1 (f (x), z) = "yes" and M 2 (g(y), z) = "yes". Certainly, for every triple of strings (x, y, z), we can define the logarithmic space computation of the verifiers M 1 and M 2 as M 1 (x, z) = M 1 (f (x), z) and M 2 (y, z) = M 2 (g(y), z), since we can evaluate f (x) and g(y) in logarithmic space, M 1 and M 2 are logspace machines and the logarithmic space computable transformations are closed under composition [START_REF] Papadimitriou | Computational Complexity[END_REF]. These compositions can be made in the same way that is composed the logarithmic space reductions [START_REF] Papadimitriou | Computational Complexity[END_REF]. Indeed, these compositions do not change the certificate, and therefore, they do not affect the read-once behavior of the special tape on these verifiers. In addition, min(| f (x)|, |g(y)|) is polynomially bounded by min(|x|, |y|) where | . . . | is the string length function, due to the logarithmic space transducers of f and g cannot output an exponential amount of symbols in relation to the size of the input. Consequently, |z| is polynomially bounded by min(|x|, |y|), because |z| will be polynomially bounded by min(| f (x)|, |g(y)|). Hence, we have just proved the necessary properties to state that L is in ≡ L.

Class double-P

All the transformations that have been used in proving P-completeness are logarithmic space transformations [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We define a complexity class which has a close relation to this property. Definition 3.1. We say that a language L belongs to 2P if there exists a language L ∈ P, such that L = {(x, x) : x ∈ L }.

We call the complexity class 2P as "double-P". We represent this language L in 2P as (L , L).

We define the completeness of 2P using the e-reduction.

Definition 3.2. A language L ⊆ {0, 1} * is 2P-complete if 1. L ∈ 2P, and 2. L ≤ ≡ L for every L ∈ 2P.
Furthermore, if L is a language such that L ≤ ≡ L for some L ∈ 2P-complete, then L is in 2P-hard. Moreover, if L ∈ 2P, then L ∈ 2P-complete. This definitions are based on the result of Theorem 2.4.

We define 2-HORNSAT as follows,

2-HORNSAT = {(φ, φ) : φ ∈ HORNS AT }. Theorem 3.3. 2-HORNSAT ∈ 2P-complete.
Proof. 2-HORNSAT is in 2P, because HORNS AT is in P. Since HORNS AT is in P-complete, then we obtain 2-HORNSAT ∈ 2P-complete, because 2-HORNSAT contains the elements of HORNS AT but in a duplicated way.

c i = (x 1 ∨ x 2 ∨ . . . ∨ x j
), then we create a new variable x c i for this clause and create the formulas

Q i = (x c i) P i = (x c i ∨ x 1 ∨ x 2 ∨ . . . ∨ x j).
2. If the clause has all the variables negated except a single one, that is c i = (y∨

x 1 ∨ x 2 ∨ . . . ∨
x j), then we create a new variable x c i for this clause and create the formulas

Q i = (y ∨ x c i) P i = (x c i ∨ x 1 ∨ x 2 ∨ . . . ∨ x j).
3. If the clause has a single un-negated variable, that is c i = (y), then we create a new variable x c i for this clause and create the formulas

Q i = (y) P i = (x c i ∨ y).
Finally, we create a new variable x f inal and the formulas

Q f inal = (x f inal ∨ x 1 ∨ x 2 ∨ . . . ∨ x n ∨ x c 1 ∨ x c 2 ∨ . . . ∨ x c m) P f inal = (x f inal ∨ x 1 ∨ x 2 ∨ . . . ∨ x n ∨ x c 1 ∨ x c 2 ∨ . . . ∨ x c m)
where these final formulas contain all the variables x j of φ and the created variables x c i for each clause c i . Every clause c i is satisfiable if and only if both formulas Q i and P i in each case have a satisfying truth assignment such that the evaluation in the common variables coincide. Hence, we can construct the Boolean formulas ψ and ϕ as the conjunction of Q i or P i for every clause

c i in φ, that is, ψ = Q 1 ∧ . . . ∧ Q m ∧ Q f inal and ϕ = P 1 ∧ . . . ∧ P m ∧ P f inal .
The last constructed formulas Q f inal and P f inal guarantee the Boolean formulas ψ and ϕ contain the same variables. Finally, we obtain that, (φ, φ) ∈ 2-HORNSAT if and only if (ψ, ϕ) ∈ MONOTONE-CNF.

Moreover, there are two logarithmic space computable functions f : {0, 1} * → {0, 1} * and g : {0, 1} * → {0, 1} * such that f (φ) = ψ and g(φ) = ϕ . Indeed, we only need a logarithmic space to analyze every time each clause c i in the instance φ and generate Q i or P i to the output. Finally, we can also create the formulas Q f inal and P f inal in logarithmic space. Then, we have proved that 2-HORNSAT ≤ ≡ MONOTONE-CNF. Consequently, we obtain that MONOTONE-CNF ∈ 2P-hard. Theorem 3.6. 2P ⊆ ≡ L.

Proof. Since MONOTONE-CNF is hard for 2P, thus all language in 2P reduce to ≡ L. Since ≡ L is closed under reductions, it follows that 2P ⊆ ≡ L.

Class equivalent-NL

Definition 4.1. We say that a language L belongs to ≡ NL if there exist two languages L 1 ∈ NL and L 2 ∈ NL and two deterministic logspace machines M 1 and M 2 , where M 1 and M 2 are the logspace verifiers of L 1 and L 2 respectively, such that L = {(x, y) : ∃z such that M 1 (x, z) = "yes" and M 2 (y, z) = "yes"}.

We call the complexity class ≡ NL as "equivalent-NL". We represent this language L in ≡ NL as (L 1 , L 2). Proof. Let's take an arbitrary language L in ≡ NL which is defined from the two languages L 1 ∈ NL and L 2 ∈ NL and two deterministic logspace machines M 1 and M 2 , such that L = (L 1 , L 2) where M 1 and M 2 are the logspace verifiers of L 1 and L 2 respectively. We are going to prove there is a deterministic logspace machine M, such that M will be the logspace verifiers of L. M contains the read/write work tapes of M 1 and the ones from M 2 . Besides, it will contain three additional read/write work tapes. Now, we could define M in the following way:

For some input (x, y) and a certificate u on the special read-once tape, 1. We simulate the logspace machines M 1 over the string x on the input tape using the read/write work tapes of M 1 which contains M. For each step, it is stored the current position of the head over the input tape just using one of the three additional read/write work tapes. This position can be calculated just adding 1 if the head moves to the right, or subtracting 1 if the head moves to the left or adding 0 if it remains in the same place on the input tape. This simulation ends when the program of M 1 makes a single forward step on the special read-once tape that contains the certificate u. At this point, it is saved the position of the head in the input tape in one of the three additional read/write work tapes without change it. Besides, it will store in another of the three additional read/write work tapes the previous symbol that is on the special read-once tape to the left of where the head currently is, that is the previous read symbol. This is done before the program of M 1 makes this single forward step on the special read-once tape, and thus, it will not violate the definition of the special read-once tape. 2. Then, M starts to simulate the logspace machines M 2 over the string y on the input tape using the read/write work tapes of M 2 which contains M. For each step, it is stored the current position of the head over the input tape just using the last of the three additional read/write work tapes. This position can be calculated just adding 1 if the head moves to the right, or subtracting 1 if the head moves to the left or adding 0 if it remains in the same place on the input tape. But, in this simulation instead of using the special read-once tape to read the certificate u, it will use the previous symbol that was stored in one of the three additional read/write work tapes. This simulation ends when the program of M 2 tries to make a single forward step on the special read-once tape that contains the certificate u. But in this case, instead of moving forward on the special read-once tape, it will replace the previous symbol that is stored in one of the three additional read/write work tapes by the blank symbol. At this point, it is saved the position of the head in the input tape in the last of the three additional read/write work tapes without change it. 3. Next, it will take the last position that was stored over the string x on the input tape that was used in the previous simulation of M 1 that will contain one of the three additional read/write work tapes. And thus, the head of the input tape will be placed in that position and it will continue the simulation of M 1 over the read/write work tapes of M 1 which contains M. Hence, M will make again the same actions of the step (1) that we already explained. After that, it will continue with the actions of the step (2) be placing the head of the input tape in the last position over the string y in the input tape that was already stored, and thus, it will repeat the same routine over and over again until one of the logspace machine M 1 or M 2 halts. 4. When one of the logspace machine M 1 or M 2 halts and the final state is the acceptance state "yes", then M will simulate in a normal way the other machine that have not halted yet. That means it will not alternate at the same time the simulations of M 1 and M 2 , but only one of them. In this way, if M 1 is the first machine that halts, then M simulates M 2 over the string y from the last position on the input tape in a normal way, that is using only the special read-once tape and not the read/write work tape that we were using in the step [START_REF] Papadimitriou | Computational Complexity[END_REF]. The same happens if M 2 is the first machine that halts. However, if the simulation that firstly halts over the possible logspace machine M 1 or M 2 has reached the reject state, then machine M will reject too. 5. Finally, M accepts whether the final and normal simulation, that continues after the first halted simulation, just halts in the acceptance state otherwise M will reject.

Certainly, the Turing machine M can be deterministic, because the logspace machines M 1 and M 2 are deterministic. Besides, the Turing machine M is a logspace machine, since the read/write work tapes of M 1 and M 2 which contains M only use a logarithmic space. Furthermore, the twice storing of the last position in the input tape over the string x and y in the additional read/write work tapes can only use a logarithmic space if we represent that position as a binary number. Moreover, the additional read/write work tape that saves the previous symbol, that is on the special read-once tape to the left of where the head currently is, can store that information into at most one single symbol on that tape. In addition, M will accept the input (x, y) with a certificate u on the special read-once tape if and only if (x, y) ∈ L. In this way, M will be a logspace verifiers of L, and therefore, we obtain that L ∈ NL. Since we took arbitrarily a language L in ≡ NL, then we can deduce ≡ NL ⊆ NL. Proof. As result of applying the Theorems 3.6 and 4.2 with the Lemma 4.3, then we can deduce 2P ⊆ NL. Alternatively, we can reduce in logarithmic space every language in L ∈ P to another language (L, L) ∈ 2P just using a logarithmic space transducer that copies the content on its input tape to the output twice. Since NL is closed under logarithmic space reductions and every language in 2P is in NL, then every language in P will be in NL too [START_REF] Papadimitriou | Computational Complexity[END_REF]. Consequently, we obtain that P ⊆ NL. However, we already know that NL ⊆ P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Since we have that P ⊆ NL and NL ⊆ P, then NL = P [START_REF] Cormen | Introduction to Algorithms[END_REF].

Definition 3 . 4 . 1 .

 341 MONOTONE-CNF is a problem in ≡ L, where every instance (ψ, ϕ) is an ordered-pair of Boolean formulas, such that if (ψ, ϕ) ∈ MONOTONE-CNF, then we have ψ ∈ UN-NEGATED and ϕ ∈ NEGATED. According to the definition of ≡ L, this language is the ordered-pairs of elements of UN-NEGATED and NEGATED such that they will have the same satisfying truth assignment using the same variables. Theorem 3.5. MONOTONE-CNF ∈ 2P-hard. Proof. Given an arbitrary Boolean formula φ in CNF of n variables and m clauses which are Horn clauses, we iterate for i = 1, 2, . . . , m over each clause c i in φ and analyze the following cases, If the clause has all the variables negated, that is

Theorem 4 . 2 .

 42 ≡ NL ⊆ NL.

Lemma 4 . 3 .

 43 ≡ L ⊆ ≡ NL.Proof. Since LS PACE ⊆ NL, then we can support that ≡ L ⊆ ≡ NL as a direct consequence of the Definitions 2.1 and 4.1[START_REF] Papadimitriou | Computational Complexity[END_REF].

Theorem 4 . 4 .

 44 NL = P.