Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity
Résumé
Effective representation of the diffusion signal's dependence on diffusion time is a sought-after, yet still unsolved, challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this four-dimensional space – varying over gradient strength, direction and diffusion time. In particular , we provide regularization tools imposing signal sparsity and signal smoothness to drastically reduce the number of measurements we need to probe the properties of this multi-spherical space. We illustrate a novel application of our approach, which is the estimation of time-dependent q-space indices, on both synthetic data generated using Monte-Carlo simulations and in vivo data acquired from a C57Bl6 wild-type mouse. In both cases, we find that our regularization approach stabilizes the signal fit and index estimation as we remove samples, which may bring multi-spherical diffusion MRI within the reach of clinical application.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...