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Abstract. In this study, we assessed the evolution of diffusion MRI
(dMRI) derived markers from different white matter models as progres-
sive neurodegeneration occurs in transgenic Alzheimer rats (TgF344-
AD) at 10, 15 and 24 months. We compared biomarkers reconstructed
from Diffusion Tensor Imaging (DTI), Neurite Orientation Dispersion
and Density Imaging (NODDI) and Mean Apparent Propagator (MAP)-
MRI in the hippocampus, cingulate cortex and corpus callosum using
multi-shell dMRI. We found that NODDI’s dispersion and MAP-MRI’s
anisotropy markers consistently changed over time, possibly indicating
that these measures are sensitive to age-dependent neuronal demise due
to amyloid accumulation. Conversely, we found that DTI’s mean diffu-
sivity, NODDI’s isotropic volume fraction and MAP-MRI’s restriction-
related metrics all followed a two-step progression from 10 to 15 months,
and from 15 to 24 months. This two-step pattern might be linked with
a neuroinflammatory response that may be occuring prior to, or dur-
ing microstructural breakdown. Using our approach, we are able to pro-
vide - for the first time - preliminary and valuable insight on relevant
biomarkers that may directly describe the underlying pathophysiology
in Alzheimer’s disease.

1 Introduction

Diffusion MRI (dMRI) allows us to non-invasively study microstructural changes
caused by neuropathology. Among these pathologies, gaining understanding of
Alzheimer’s disease (AD) is of particular importance, affecting over one in nine
people age 65 and above in the U.S. alone [1]. Traditionally, dMRI studies have
used Diffusion Tensor Imaging (DTI) [2] to model the grey and white matter
structure abnormalities in AD patients. Only recently, more complex white mat-
ter models like Neurite Orientation Dispersion and Density Imaging (NODDI) [3]
have been explored to classify AD, and have shown greater discriminative power



than DTT [4]. This reinforces the importance of exploring white matter models
that provide more detailed microstructural information than DTI.

In human studies, it is hard to relate dMRI derived metrics to corresponding
microstructural changes for lack of histological validation. As a solution, animal
models provide a way to gain understanding on the underlying pathophysiology
of AD by allowing dMRI in addition to histological measurements. Mouse models
of human tauopathy (rTg4510) have been previously studied at various time
points using DTI [5, 6], and at a single time point comparing DTI with NODDI
metrics [7]. In this latter study, NODDI derived metrics once again appeared
more discriminative than those derived from DTI. Further efforts focusing on
multi-shell AMRI analysis of transgenic Alzheimer rats (TgF344-AD) have shown
that dMRI measurements at higher gradient strengths aid the classication of
AD-like pathology [8]. However, only anisotropy measures of DTI and hybrid
diffusion imaging (HYDI) [9] were explored.

In this study, we compare the evolution of dAMRI-derived markers from differ-
ent white matter models as progressive neurodegeneration occurs in transgenic
Alzheimer rats (TgF344-AD). In particular, we study the patterns of alteration
across three time points in the hippocampus, cingulate cortex and corpus cal-
losum - areas known to be affected in AD. The two grey matter areas were
previously shown to manifest age-dependent cerebral amyloidosis that precedes
tauopathy, gliosis and apoptotic loss of neurons [10], making these cortical re-
gions extremely relevant for understanding the underlying mechanisms in AD.
We compare biomarkers derived from DTI, NODDI and Mean Apparent Prop-
agator (MAP)-MRI [11] using multi-shell data. To the best of our knowledge,
this is the first study that investigates multi-shell biomarkers at different time
points in AD animal models.

The paper is structured as follows: we first describe the diffusion MRI data
and the metrics we derive in Section 2. We provide the results in section 3 and
discuss them in section 4. We finally provide our conclusions in section 5.

2 Materials and Methods

In this section, we first detail the diffusion MRI data acquisition, preprocessing
and region of interest selection of the AD rats. We then give a brief overview
of the methods we use and their metrics of interest. We detail the fractional
anisotropy (FA) and mean diffusivity (MD) of classical DTI, the orientation dis-
persion index (ODI), neurite density index (NDI) and isotropic volume fraction
(IsoVF) of the multi-compartment NODDI model, and finally the formulation
of several g-space indices of the MAP-MRI functional basis. We estimated the
DTI and MAP-MRI metrics using the diffusion imaging in python (dipy) open
source software [12] and the NODDI metrics using the NODDI toolbox [3].

2.1 Processing of Transgenic Alzheimer Rat Data Sets

We use multi-shell AMRI data of three ez-vivo transgenic Alzheimer rats (line
TgF344-AD) [10], also previously analyzed by Daianu et al. [8]. The rats were



Fig. 1. Regions of interest for biomarker estimation on the registered FA map of rat 1.
We mark the cingulate cortex (green), corpus callosum (blue) and hippocampus (red).

euthanized at 10, 15 and 24 months, fixed brains were prepared as described
in [8], and scanned using a 7 Tesla Bruker Biospin MRI scanner at California
Institute of Technology. A high-resolution fast low angle magnetic shot (FLASH)
anatomical image with a mix of T1 and T2 weighting (375 x 224 x 160 matrix;
voxel size: 0.08x0.08x0.08 mm?) was used. The diffusion MRI data were sampled
on 5 shells with b-values {1000,3000,4000,8000,12000} S/mmz, all with the same
60 directions and 5 b0 measurements. Other parameters were §/A = 11/16ms
and TE/TR = 34/500 ms. The voxel dimensions were 0.15 x 0.15 x 0.25 mm?3.

During preprocessing, extra-cerebral tissue was removed using the skull-
stripping Brain Extraction Tool from BrainSuite (http://brainsuite.org/),
for both the anatomical images and the DWIs. We corrected for eddy current dis-
tortions using the eddy correct FSL tool (www.fmrib.ox.ac.uk/fsl) for which
a gradient table was calculated to account for the distortions. As an image pro-
cessing step, DWIs were up-sampled to the resolution of the anatomical images
(with isotropic voxels) using FSLs flirt function with 9 degrees of freedom; the
gradient direction tables were rotated accordingly after each linear registration.
For our study, we draw regions of interest (ROIs) in the cingulate cortex, hip-
pocampus and corpus callosum as shown in Figure 1.

2.2 DTI Metrics

The classical DTI model [2] assumes that the measured diffusion signal belongs
to the set of Gaussian distributions. While DTT has well-known limitations with
respect to the modeling of crossing tissue configurations and restricted diffu-
sion, its derived metrics FA and MD have been found useful to classify AD
patients [4]. Using signal attenuation E(b) = S(b)/S(0), the DTI model de-
scribes the diffusion signal as E(b) = exp(—bg'Dg) with D a 3 x 3 symmetric
positive-definite matrix and g the gradient direction. Estimating the eigenvalues
of D as {A1, A2, A3} the FA and MD are given as

— )2 WY VY
FA= \/T\/(Al X2)? 4 (do = As)? + (A5 — A1) MD — At A+ A
2 A2+ A2+ M 3
In accordance with DTT’s Gaussian diffusion assumption, we only use the b0 and

b=1000s/mm? data when fitting DTI. The FA and MD in our slice of interest
are shown in Figure 2.

(1)



2.3 NODDI Metrics

The more advanced multi-compartment NODDI model [3] separates the signal
contribution of different tissues by fitting a combination of intra-cellular, extra-
cellular and free-water models.

E= (1 - Viso)(l/icEic(ODI) + (1 - Vic) * Eec) + VisoEiso (2)

The intra-cellular signal F;. is modeled as a set of dispersed sticks, i.e., cylinders
of zero radius, to capture the highly restricted nature of diffusion perpendicular
to neurites and unhindered diffusion along them. The amount of dispersion is
given by the orientation dispersion index (ODI), which is defined by a Watson
distribution. The extra-cellular signal E.. is described as a dispersed mixture
of Gaussian anisotropic diffusion, and an isotropic Gaussian compartment Fj;,,
represents free diffusion. Similarly as in [7], we study the ODI, the neurite density
index NDI = (1 — v;5,)V; and the isotropic volume fraction IsoVF = v;,.

In accordance with NODDI’s recommended acquisition scheme [3], we fit
NODDI only using the b0 and b = {1000, 3000} s/mm? data. Furthermore, as
water diffusivity changes in ex-vivo tissue, we set the intra-cellular and isotropic
diffusivity to 0.6x107%m2s™! and 2.0x107%m?s~! [13]. An illustration of the
ODI, NDI and IsoVF can be seen in Figure 2.

2.4 MAP-MRI Metrics

The MAP-MRI approach [11] uses a functional basis to represent the 3D diffusion
signal with as little assumptions as possible. It then analytically reconstructs the
3D diffusion propagator by only assuming the short gradient pulse approximation
(0 ~ 0). In this way, it accurately estimates the diffusion propagator in the
presence of both non-Gaussian diffusion and crossing tissue configurations.

MAP-MRI represents the discretely measured signal attenuation E(q) using
a set of continuous orthogonal basis functions representing the space E(q;c),
where the signal is now represented in terms of basis coefficients ¢ and the g-
space wave vector q = |q|g with g the gradient direction is related to the b-value
as |q| = \/b/(A —§/3)/2n. Without going into the formulation of MAP-MRI’s
basis functions, we detail the estimation of basis coefficients ¢ in Eq. (3). In
short, we regularize the fitting of c¢ such that E(q; c) smoothly interpolates
between the measured q-space points by using Laplacian regularization [14],
where regularization weight X is set using voxel-wise generalized cross-validation.
We also constrain the estimated diffusion Propagator P(R; c) to be positive using
quadratic programming [11].

Data Fidelity Smoothness

argmin,, /R ) [E(Q) — E(q; C)rdeLA 9 [VQE(q; C)rdq (3)

subjectto P(R;¢) >0 with P(R;c)=IFT (E(q; c))
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Fig. 2. Illustrations of a DTI and NODDI metrics in the same coronal slice for the
three time points.

Once c is known, the MAP-MRI basis simultaneously represents the 3D dMRI
signal and 3D diffusion propagator. We estimate the g-space indices Return-To-
Origin, Return-To-Axis and Return-To-Plane Probability (RTOP, RTAP and
RTPP), which in theory are related to the volume, surface and length of a cylin-
drical pore [11]. We also estimate the non-Gaussianity (NG), which describes
the ratio between the Gaussian and non-Gaussian volume of the signal. Finally
we estimate the propagator anisotropy (PA), which is a normalized metric that
describes the anisotropy of the 3D diffusion propagator. As MAP-MRI is de-
signed to represent the entire 3D diffusion signal, we estimate all metrics using
the entire 5 shell data up to a b-value of 12000 s/mm?, using a radial order of 6,
resulting in 50 estimated coeflicients. We illustrate these metrics in Figure 3.
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Fig. 3. Illustrations of MAP-MRI’s g-space indices in the same coronal slice for the
three time points. To visualize RTOP, RTAP and RTPP in the same unit (mm™") we
show the cubed root of RTOP and squared root of RTAP.

3 Results

In Figure 4 we show the evolution of the mean with 0.5 standard deviation
of all dMRI-derived metrics in the ROIs shown in Figure 1. We use the same
colors for the hippocampus (red), corpus callosum (blue) and cingulate cortex
(green). The only metric that consistently increases over time is NODDI’s ODI
and consistently decreases is MAP-MRI’s PA, with the exception of the cortex.
It is also apparent that FA, NDI, RTOP, RTAP and RTPP follow a different,
2-step pattern, first decreasing and then slightly increasing. Inversely, for MD,
IsoVF and NG we first find an increase and then a decrease. We provide the
raw data values in Table 1. We also produce correlation plots for dispersion and
anisotropy measures in Figure 5 and for the 2-step metrics in Figure 6. It can
be seen that ODI is negatively correlated with FA and PA, and that IsoVF is
positively correlated with MD and negatively with RTOP.



DTI Metrics NODDI Metrics
[ 1 shell by,,x=1000 s/mm? | 2 shells byax=3000 s/mm? |
. FA o5 104 MD oDl 1o NDI 1o IsoVF

\/03

0.6

/ o

—— Hippocampus 50

05N —— Corpus Callosum | ,¢
Cingulate Cortex

0.4 40

35

03 30

\ 25
02
20

0.1 15 0.0
10 15 24 710 15 24 15 24 1

15
Time (months) Time (months) Time (months) Time (months) Time (months)

MAP-MRI Metrics
| 5 shells byna=12000 s/mm? |
RTOP s RTAP oz RTPP oo

30 €7

s~ —

24
/ 0% 07
22 054 06
0.52
15 20 05
06 050
10 18 048 04
os[~— | M— —] 16\/ o .
0.44 02\
00 02 14 042 01
24 10 24 10 24 10 24 10

0.9

058 08

24

15 15 15 15 15
Time (months) Time (months) Time (months) Time (months) Time (months)

Fig. 4. DTI, NODDI and MAP-MRI metrics for the same time points in the hippocam-
pus (red), corpus callosum (blue) and cingulate cortex (green).

4 Discussion

In this work, we have shown that different metrics of DTI, NODDI and MAP-
MRI appear to be sensitive to different processes as age-dependent cerebral amy-
loidosis manifests in both grey and white matter in the Alzheimer rats.

DTTI findings: We find a significant drop in FA in all ROIs from 10 to
15 months and a small increase from 15 to 24 months. This corresponds with
previous findings in the hippocampus using data up to b = 1000 s/mm? [8]. While
a comparison of using different b-values in the DTI estimation was outside of
the scope of this study, it was shown that when higher b-values are included, the
FA trend counsistently decreases over time [8]. Nonetheless, it has been argued
that compared to FA, MD lends itself better to the assessment of cortical and
subcortical grey matter, where net diffusion may not be expected to conform
to any one specific direction [15]. When we assess MD, we consistently find an
increase from 10 to 15 months and a decrease from 15 to 24 months. This may
suggest that FA and MD are sensitive to different processes taking place in AD.

NODDI findings: Several studies have suggested that NODDI metrics, in
particular ODI, have better AD classifying potential due to NODDI’s ability
to delineate signal contributions from different tissue compartments [4, 7]. While
we cannot do a classification study using our data, we find that ODI consistently
increases in areas where tau pathology increases in our rat model [10]; the hip-
pocampus, cingulate cortex and corpus callosum. We also find that IsoVF shows
an increase from 10 to 15 months and a decrease from 15 to 24 months in all
areas, following the same trend as DTI’s MD. Though, it should be mentioned
that fitting NODDI requires presetting the intra-cellular and isotropic diffusiv-
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Fig. 5. Scatter plots of FA, ODI and PA for the rats of ages 10 months (blue), 15
months (green) and 24 months (red) in the hippocampus. It can be seen that ODI is
negatively correlated with both FA and PA.

ity, which influences obtained metric values. Fitting NODDI on the selected
bmax = 3000s/mm? or the full data does not significantly impact our findings.

MAP-MRI findings: To the best of our knowledge, this is the first study
that estimates MAP-MRI metrics on data from an AD model. We find that all
metrics except PA follow a two-stage progression pattern similar to DTT’s MD.
The decrease-increase of return-to-origin, return-to-axis and return-to-plane prob-
ability (RTOP, RTAP and RTPP) makes sense with the increase-decrease of MD,
as an increased diffusivity means that spins are able to move away farther, reduc-
ing the chance they return to their origin, axis or plane. Interestingly, this does
not make the signal more Gaussian, as the Non-Gaussianity follows an increase-
decrease pattern in all ROIs. The exception to this trend is the RTPP in the
corpus callosum, which increases monotonically, indicating a steady increase in
restriction parallel to the axon direction. Finally, PA consistently decreases in
all areas except the cortex, where a small increase is found, followed by a larger
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Fig. 6. Scatter plots of MD, IsoVF and RTOP for the rats of ages 10 months (blue),
15 months (green) and 24 months (red) in the hippocampus. It can be seen that IsoVF
is positively correlated with MD and negatively with RTOP.

decrease. This decreasing trend in anisotropy measures when using higher gra-
dients strengths was also reported with DTI’s FA or HYDI’s NQA [8]. We note
that while we fitted MAP-MRI to the full data with 300 DWIs, it was shown
that its metrics are stable under subsampling to less than 100 DWIs [14] or could
even be fitted directly on a NODDI acquisition scheme.

Biological explanation for biomarker trends: The trends of all derived
metrics can be divided into two groups: those that consistently decrease or in-
crease and those that show a ‘decrease-increase’ or ‘increase-decrease’ pattern.

The first group could point towards the accelerating cerebral amyloidosis as
age increases in these rats [10]. Over time, this “amyloid burden” results in age-
dependent neuronal demise that is likely owed to oligomeric AS accumulation. In
turn, this neuronal demise could result in a more dispersed, less anisotropic diffu-
sion signal. This corresponds with the observed correlations between dispersion
and anisotropy measures in Figure 5.



The second group may indicate an inflammatory response to amyloid ac-
cumulation, occurring prior to (or coincident with and obscuring) the onset
of microstructural breakdown and macrostructural atrophy [16]. At 15 months
TgF344-AD rats have heavy plaque burden and strong neuroinflammation, whereas
by 24 months most of the inflammatory reaction to the plaques has passed. This
corresponds to what we see when MD and IsoVF increase-decrease and RTOP,
RTAP and RTPP decrease-increase (except RTPP at corpus callosum). The
correlations between MD, IsoVF and RTOP in Figure 6 therefore makes sense.
Though, the increase-decrease in NG indicates that while the inflammatory re-
sponse increases diffusivity, it also increases the non-Gaussian portion of the
signal at higher b-values.

Difficulties of comparing our findings with previous animal studies:
There have been several previous dMRI studies using Alzheimer animal models.
However, different species and disease expressions make comparisons of dMRI
metrics difficult. For instance, our TgF344-AD rat model was made to drive
cerebral amyloid and downstream tauopathy and neuronal loss, also known as
the “amyloid cascade hypothesis” of John Hardy [17]. In contrast, the Tgd510
mouse model used by Colgan et al. [7] was developed to only assess tauopathy;
and not the amyloid cascade hypothesis. For this reason, it is hard to make claims
about differences in biomarker trends found between this study and theirs.

Limitations of the study: As we did not have healthy rats to statistically
test for changes with disease progression — which means there is room for im-
provement — we used the youngest rat (10 months old) as a control subject to
compare against suggestive changes at later time points. Another limitation is
the low number of experimental subjects that also prevents us from statistically
differentiating between the disease stages of the transgenic Alzheimer rat model.

5 Conclusion

We presented a unique study on transgenic Alzheimer rats at 10, 15 and 24
months, comparing DTI, NODDI and MAP-MRI-derived metrics, in grey and
white matter areas known to manifest age-dependent cerebral amyloidosis that
precedes neurofibrillary tangles and apoptotic loss of neurons. We found that
NODDTI’s ODI and MAP-MRI’s PA metrics uniformly changed over time, likely
indicating that they are sensitive to age-dependent neuronal demise due to amy-
loid accumulation. It is relevant to note that both of these metrics require b-
values higher than 1000s/mm?. Conversely, we found that DTI’s MD, NODDI’s
IsoVF and MAPMRI’s RTOP, RTAP, RTPP and NG all follow a two-step pro-
gression from 10 to 15 to 24 months — either an increase-decrease or a decrease-
increase — likely indicating sensitivity to the neuroinflammatory response at 15
months and potentially, atrophy of the microstructure at 24 months. While this
study does not have enough subjects to statistically differentiate between the dif-
ferent disease stages, it does provide valuable insight on which biomarkers and
models come closest to explaining the biological changes in the cerebral tissue.



Table 1. Mean and standard deviation of DTI, NODDI and MAP-MRI metrics for
the three time points in each region of interest.

DTI Metrics Age
Metric ROI 10 months 15 months 24 months
FA Hippocampus 0.2940.08 0.19+0.05 0.20+0.06

C. Callosum 0.514+0.15 0.27£0.08 0.30%0.09
C. Cortex 0.284+0.08 0.2040.05 0.2240.08

MD (x10?) Hippocampus 0.32+0.02 0.39+0.03 0.29+0.02
C. Callosum 0.1940.05 0.30+0.05 0.21£0.02
C. Cortex 0.31+£0.04 0.49£0.06 0.2340.04

NODDI Metrics Age
Metric ROI 10 months 15 months 24 months
ODI Hippocampus 0.39+£0.11 0.48+0.10 0.5540.11

C. Callosum 0.39+0.08 0.4840.09 0.53£0.09
C. Cortex 0.444+0.11 0.4740.10 0.63£0.10

NDI Hippocampus 0.46+£0.03 0.454+0.04 0.5440.05
C. Callosum 0.93+0.09 0.8640.07 0.93+0.08
C. Cortex 0.58+0.04 0.60+0.10 0.7440.10

IsoVF Hippocampus 0.03+0.02 0.11£0.03 0.03£0.01
C. Callosum 0.02+0.03 0.1140.05 0.0240.02
C. Cortex 0.084+0.05 0.284+0.06 0.02+0.03

MAP-MRI Metrics Age
Metric ROI 10 months 15 months 24 months

RTOP (x107) Hippocampus 0.68+0.08 0.45+0.10 0.76+0.14
C. Callosum 1.03+0.12 0.854+0.10 0.94+0.10
C. Cortex 1.0440.27 0.90+0.27 1.58+0.56

RTAP (x10%) Hippocampus 0.38+0.03 0.31+£0.04 0.4140.05
C. Callosum 0.931+0.09 0.86+0.07 0.93+£0.08
C. Cortex 0.51£0.08 0.45+0.08 0.65+0.12

RTPP (x10%) Hippocampus 0.16£0.01 0.15£0.01 0.1740.01
C. Callosum 0.214+0.02 0.2240.02 0.23+£0.02
C. Cortex 0.184+0.01 0.1740.01 0.2140.02

NG Hippocampus 0.43+0.03 0.4940.02 0.4540.02
C. Callosum 0.514+0.02 0.554+0.01 0.5240.01
C. Cortex 0.514+0.03 0.5740.02 0.4940.02

PA Hippocampus 0.27£0.09 0.240.07 0.15£0.06
C. Callosum 0.78+0.11 0.64+0.11 0.53£0.13
C. Cortex 0.30+0.12 0.33£0.16 0.1740.10
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