
HAL Id: hal-01354913
https://hal.science/hal-01354913v2

Submitted on 17 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Momentum-Resolved Observation of Thermal and
Quantum Depletion in a Bose Gas

R. Chang, Q. Bouton, H. Cayla, C. Qu, Alain Aspect, C. i. Westbrook, D.
Clément

To cite this version:
R. Chang, Q. Bouton, H. Cayla, C. Qu, Alain Aspect, et al.. Momentum-Resolved Observation
of Thermal and Quantum Depletion in a Bose Gas. Physical Review Letters, 2016, 117 (23),
�10.1103/PhysRevLett.117.235303�. �hal-01354913v2�

https://hal.science/hal-01354913v2
https://hal.archives-ouvertes.fr


Momentum-Resolved Observation of Thermal and Quantum Depletion in a Bose Gas

R. Chang,1 Q. Bouton,1 H. Cayla,1 C. Qu,2 A. Aspect,1 C. I. Westbrook,1 and D. Clément1, ∗

1Laboratoire Charles Fabry, Institut d’Optique, CNRS, Univ. Paris Sud,
2 Avenue Augustin Fresnel 91127 PALAISEAU cedex, France

2INO-CNR BEC Center and Dipartimento di Fisica, Universita di Trento, 38123 Povo, Italy

We report on the single-atom-resolved measurement of the distribution of momenta h̄k in a weakly-
interacting Bose gas after a 330 ms time-of-flight. We investigate it for various temperatures and
clearly separate two contributions to the depletion of the condensate by their k-dependence. The first
one is the thermal depletion. The second contribution falls off as k−4, and its magnitude increases
with the in-trap condensate density as predicted by the Bogoliubov theory at zero temperature.
These observations suggest associating it with the quantum depletion. How this contribution can
survive the expansion of the released interacting condensate is an intriguing open question.

In quantum systems, intriguing many-body phenom-
ena emerge from the interplay between quantum fluctu-
ations and interactions. Quantum depletion is an em-
blematic example of such an effect, occurring in one of
the simplest many-body systems: a gas of interacting
bosons at zero temperature. In the absence of interac-
tions, the ground state corresponds to all particles oc-
cupying the same single-particle state. Taking into ac-
count inter-particle repulsive interactions at the mean-
field level leads to a similar solution where all particles are
condensed in the same one-particle state whose shape is
determined by the trapping potential and interactions. In
a beyond mean-field approach, which can be interpreted
as taking into account quantum fluctuations and two-
body interactions, the description is dramatically differ-
ent. The many-body ground state consists of several
components: a macroscopically occupied single-particle
state, the condensate, and a population of single-particle
states different from the condensate, the depletion.

This many-body description applies to diverse bosonic
systems such as superfluid Helium [1], exciton-polaritons
[2] and degenerate Bose gases [3]; it has also found analo-
gies in phenomena such as Hawking radiation from a
black-hole [4] and spontaneous parametric down con-
version in optics [5]. The fraction of atoms not in the
condensate at zero temperature, the quantum depletion,
increases with the strength of inter-particle interactions
and with the density, rising up to 90% in liquid 4He [1]. In
ultracold gases, where the density is significantly smaller,
the quantum depletion usually represents a small frac-
tion (less than 1%) of the total population. At non-zero
temperature there is an additional contribution to the
population of single-particle states above the condensate,
originating from the presence of thermal fluctuations.

For weakly interacting systems, Bogoliubov theory de-
scribes quantum and thermal contributions to the con-
densate depletion [6, 7]. This approach shows that the
elementary, low-energy excitations are collective quasi-
particle (phonon) modes, as has been verified in experi-
mental studies with liquid 4He [8], degenerate quantum
gases [9] and exciton-polaritons [2]. At zero temperature,
the many-body ground state is defined as a vacuum of

these quasi-particle modes. When projected onto a basis
of single-particle states with momentum h̄k, this many-
body ground state exhibits a distribution n(k), which
scales as k−4 at large k. These power law tails do not ex-
ist in mean-field descriptions, for which the momentum
distribution has a finite extent. At non zero temperature,
the contribution to n(k) induced by thermal fluctuations
decays exponentially for energies larger than the temper-
ature. Previous experiments with atomic gases [10, 11]
have observed the total depletion of the condensate af-
ter a time-of-flight expansion, but could not distinguish
between the thermal and quantum contributions.

In this letter, we report on the observation of
momentum-space signatures of thermal and quantum
depletion in a gas of interacting bosons. We investi-
gate, for various temperatures and atomic densities, the
three-dimensional atomic distribution after a long time-
of-flight (see Fig. 1), i.e., the asymptotic momentum
distribution. Three components can be identified (see
Fig. 2): the condensate (I), the thermal depletion (II)
and a tail decaying as k−4 and increasing with the in-
trap condensate density (III). This suggests associating
region III with the quantum depletion, but with two
caveats. Firstly, k−4-tails originated from contact in-
teraction were observed to vanish during the expansion
of interacting fermions [12]. Recent theoretical work in-
vestigating interacting bosons predicts that the k−4-tails
adiabatically decrease with the condensate density dur-
ing the expansion [13]. Secondly, the magnitude of the
k−4-tails we measure is larger than the in-trap prediction
of the Bogoliubov theory, by a factor of about 6. Our
identification of the k−4-tail with the quantum depletion
thus demands that there exists either a non-adiabatic
process in the expansion, decoupling the in-trap k−4 com-
ponent from the expanding condensate, or an interaction-
induced effect beyond the mean-field description of the
expansion, leading to 1/k4 tails.

Our experiment is performed with a Bose-Einstein con-
densate of metastable Helium-4 atoms (4He∗). Cigar-
shaped condensates, of typically N = 2 × 105 4He∗

atoms in the polarized 23S1, mJ = +1 state are pro-
duced in an optical dipole trap with trapping frequencies
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FIG. 1. (a) Sketch of cloud expansion and detection by a
micro-channel plate detector, yielding the 3D asymptotic mo-
mentum distribution (far-field regime). The initially cigar-
shaped Helium condensate (black) undergoes anisotropic ex-
pansion, inverting its aspect ratio. Quantum depletion and/or
thermally excited atoms (grays) populate momentum states
beyond those associated with the condensate, and are ex-
pected to have a spherical symmetry. (b) Measured 3D dis-
tribution of atoms n∞(k) after a 330 ms time-of-flight. The
central dense part corresponds to the condensate while the
isolated dots are excited particles outside of the condensate
wavefunction. Also shown are the 2D projections, highlight-
ing the condensate anisotropy.

ω/2π = (438, 419, 89) Hz [14, 15]. After abruptly turn-
ing off the optical trap (in less than 2 µs) we detect the
gas with a micro-channel plate (MCP) [16, 17], after a
55 cm free-fall corresponding to a time-of-flight (TOF)
of ∼ 330 ms. A radio-frequency (RF) ramp transfers a
fraction of the polarized mJ = +1 atoms to the non-
magnetic mJ = 0 state after 2 ms of TOF (see [18]
for details). The presence of a magnetic gradient after
the RF ramp ensures that only mJ = 0 atoms fall onto
the MCP and can be detected. The MCP allows us to
detect 4He∗ atoms individually and to record the two-
dimensional (2D) position and the arrival time of each
atom in the plane of the detector. The arrival time of
each atom directly translates into a vertical coordinate,
so that we reconstruct the complete 3D atoms distribu-
tion, in contrast with usual optical imaging which yields
a 2D column-integrated density. Another advantage of a
MCP operated in counting mode is its extremely low dark
count rate. Here it allows us to investigate the atomic
density over more than 5 decades (see below).

The detector is placed 55 cm below the trapped cloud
(see Fig. 1(a)), so that after switching off the trap, the ob-
servation is made in the far-field regime where finite-size
effects of the source can be safely neglected. In the free-
falling frame of reference, we thus identify the position r
of a detected atom (with respect to the cloud center) with
a momentum component k = mr/h̄t̄, where t̄ = 330 ms is
the time-of-flight of the cloud center [18]. This yields the
asymptotic momentum distribution n∞(k) obtained from
the density distribution of the expanding cloud n(r, t̄),

according to the ballistic relationship

n∞(k) = (h̄t̄/m)3 n(r, t̄) (1)

The distribution n∞(k) should not be confused with the
in-trap momentum distribution n(k), since the initial
phase of the expansion is affected by inter-atomic in-
teractions. Nevertheless, as we argue below, the high-
momentum tails of n∞(k) provide interesting informa-
tion on the in-trap momentum distribution n(k).

An example of n∞(k) is shown in Fig. 1(b). The main
component is the pancake-shaped distribution expected
for the cigar-shaped condensate according to the mean-
field description of the expansion [19, 20]. We also distin-
guish momentum components beyond those of the con-
densate, with a much lower density and an isotropic dis-
tribution [18]. From 3D distributions n∞(k), we obtain
radial and longitudinal profiles as shown in Fig. 2 [18].
The resulting profiles exhibit three distinct regions, as
illustrated in Fig. 2(b).

Firstly, the observed distributions are dominated by
the high-density condensate (region I: k ≡ |k| < 1.7
µm−1). The initial expansion of the condensate is driven
by inter-particle interactions, resulting in an asymptotic
distribution different from the in-trap momentum dis-
tribution. This dynamics is fully captured by a mean-
field treatment, the scaling solution [19, 20] calculated in
the Thomas Fermi approximation, as shown in Fig. 2(b).
We have checked that a numerical solution of the time-
dependent Gross-Pitaevskii equation for the pure con-
densate, beyond the Thomas Fermi approximation, yields
negligible corrections [18].

Beyond the anisotropic mean-field distribution we ob-
serve high-momentum tails (k > 1.7 µm−1) with spher-
ical symmetry [18]: we attribute these components (re-
gions II and III in Fig. 2(b)) to the depletion of the con-
densate. The isotropic character of the atomic distribu-
tion in the tails indicates that the anisotropic mean-field
potential describing the interactions in the condensate
does not play a significant role in the expansion of par-
ticles belonging to regions II and III. Thus we assume
in the following that the high-momentum components of
the tails, corresponding to a kinetic energy larger than
the chemical potential of the condensate, quickly escape
the condensate and are not affected by the mean-field
potential during the expansion. The tails are visible over
three decades in density, allowing us to perform a detailed
study of their momentum dependence. We observe two
distinct regions: a middle region without a well-defined
power-law variation (region II), and a high-momentum
region with density varying as k−α (region III). A power-
law fit to the data in region III yields α = 4.2(2).

A quantitative description of the condensate depletion
close to zero temperature is provided by Bogoliubov’s mi-
croscopic theory, which yields a beyond mean-field model
taking into account quantum and thermal excitations
[6, 7]. In the many-body Hamiltonian, this approximated
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FIG. 2. 1D momentum profiles obtained from cuts of the 3D
data n∞(k). (a) Profiles along the radial (blue) and longi-
tudinal (purple) directions. In linear scale, the tails are not
visible (b) Log-log scale plot of the radial profile. The solid
line is the scaling solution for the condensate in the Thomas-
Fermi approximation (region I: k < 1.7 µm−1); the dotted
line is a Bose distribution fitting the thermal wings (region
II: 1.7 < k < 4.3 µm−1); the dashed line is a k−4 power-law
fitting the high-momentum tails (region III: k > 4.3 µm−1).
Solid lines are a smoothed average of the density data, and the
lightly shaded band is the running standard deviation. The
dark count rate corresponds to a level less than ∼ 10−2µm3,
which is one order of magnitude below the lowest data point.
The plotted range of momenta is limited by the physical size
of the detector.

approach retains only quadratic terms in the particle op-
erators ak, where ak is the operator annihilating a parti-
cle with momentum h̄k. The simplified Hamiltonian can
then be diagonalized by introducing the quasi-particle
operators bk defined by the Bogoliubov transformation
bk = ukak + v−ka

†
−k [6, 7].

At zero temperature, the many-body ground state is
the vacuum of quasi-particles, defined as 〈b†kbk〉 = 0 for
any k 6= 0. It corresponds to a non-zero population of
excited single-particle states, 〈a†kak〉 = |vk|2 for k 6= 0.
This is the quantum depletion of the Bose condensate,
which has no classical analog, and can be seen as arising
from the interplay of Bose statistics and interactions. At
non-zero temperature, the particle occupation number of
non-zero momentum k can be expressed analytically in
terms of the quasi-particle occupation number:

n(k) = 〈a†kak〉 = (|uk|2 + |vk|2)〈b†kbk〉+ |vk|2 (2)

with the occupation number of quasi-particles given by a
Bose-Einstein distribution,

〈b†kbk〉 =
1

exp(ε(k)/kBT )− 1
(3)

where ε(k) is the Bogoliubov dispersion relation, kB is
Boltzmann’s constant and T is the temperature. The in-
terpretation of Eq. 2 is clear: the first term, proportional
to 〈b†kbk〉, represents the thermal depletion; the second
term is associated with the quantum depletion.

The particle occupation number |vk|2 corresponding to
the quantum depletion varies as k−1 for kξ � 1, and as
k−4 for kξ � 1, where ξ is the healing length of the con-
densate. The small k behavior is related to the Heisen-
berg inequality associated with the particle and the den-
sity operators [21]. The large k behavior arises due to
the two-body contact interaction and is related to Tan’s
contact constant, a universal quantity that connects con-
tact interactions to the thermodynamics of a many-body
system [22, 23]. By contrast, the depletion associated
with the thermal excitations varies differently with k due
to the additional term 〈b†kbk〉. In particular, it decays ex-

ponentially for kλdB � 1, where λdB =
√
h2/2πmkBT

is the de Broglie wavelength. These differences provide
a means to unambiguously distinguish the quantum de-
pletion from the thermal depletion.

The presence of an inhomogeneous trap does not mod-
ify the prediction for the condensate depletion at mo-
menta large compared to the inverse system size 1/R '
0.08 µm−1, where the results of Bogoliubov theory can be
averaged using the local density approximation (LDA).
For a harmonically trapped gas, a LDA calculation keeps
the large-momentum k−4 scaling of the homogeneous
model [18]. On the other hand, the thermal depletion dis-
tribution in a harmonic trap approaches a polylog func-
tion at high temperature [3].

To identify the contributions in regions II and III, we
have investigated the tails of the measured distribution
n∞(k) as a function of temperature. Fig. 3 presents the
radial distributions k4 × n∞(k) for clouds subjected to
a controlled heating sequence [18]. Assuming the LDA
average of Eq. 2, we fit the tails in Fig. 3 (k > 2µm−1)
with the function k4 × nfit(k) where

nfit(k) =
Nth g3/2[exp(−k2λ2

dB/4π)]

1.202 (2π/λdB)3
+

C∞
(2π)3k4

(4)

with Ta (via λdB = h/
√

2πmkBTa), Nth and C∞ are fit-
ting parameters. The first term in Eq. 4 is the polylog
function describing a thermal component with an atom
number Nth and an apparent temperature Ta [24]. The
second term corresponds to a distribution decaying as
1/k4. The function nfit(k) is an excellent fit to the ex-
perimental profiles (see Fig. 3). As the gas is heated, the
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FIG. 3. Measured k4n∞(k) plotted as a function of k and at various temperatures. Solid blue lines are a smoothed average of
the density data, and the lightly shaded blue band shows the running standard deviation. The dashed line is a fit using Eq. 4
which involves two terms: the thermal depletion (also shown as a dotted line) and the quantum depletion revealed by the k−4

scaling at large k. The fitting procedure yields the temperature Ta, the thermal atom number Nth and the asymptotic constant
C∞. Noted in each subplot are Ta, the ratio of the thermal energy and the chemical potential kBTa/µ and fth = Nth/N .

temperature Ta and the thermal fraction fth = Nth/N in-
crease. The variation of fth with Ta/Tc (Tc being the crit-
ical temperature of condensation) is in excellent agree-
ment with the semi-classical prediction [3], confirming
our identification of region II with the thermal depletion.
Although they represent less than ∼ 0.5 % of the total
atom number, the k−4 tails are clearly visible beyond the
thermal component (see Fig. 3), and thus associated with
a zero-temperature effect [25]. In the weakly interacting
regime we investigate, condensate lifetimes are on the
order of seconds. We have measured identical k−4-tails
when holding the atoms for an extra second in the trap,
showing that the gas is at equilibrium before the release.

The presence of k−4-tails in a cloud released from
a trap was previously reported in strongly interacting
Fermi gases [12] but was not found with bosons [26]. The
observation of the k−4-tails in a Fermi gas required ramp-
ing the interaction strength to zero before the expansion
[12], on a time scale shorter than that associated with
many-body effects. Recent theoretical work concluded
that the k−4-tails should adiabatically vanish during the
expansion of a Bose gas when the strength of interaction
is kept constant [13]. These considerations indicate that
in order to associate the observed k−4-tails in n∞(k) with
the quantum depletion in the trapped cloud, we must in-
voke a non-adiabatic process. Since the scattering length
in the mJ = 0 state is expected to be smaller than that
in the mJ = +1 state [18, 27], a non-adiabatic trans-
fer between these two states at the optical trap turnoff

might explain our observation, but we have not yet found
any evidence of this possibility in the experiment. On
the other hand, there is no many-body treatment of the
expansion of an interacting Bose gas. We thus cannot
exclude the possibility that the tails result from a modi-
fication of the beyond mean-field momentum distribution
during the time-of-flight dynamics.

In order to further investigate the origin of the k−4-
tails, we have studied their dependence upon the con-
densate density. The fitting parameter C∞ of Eq. 4 is
equal to the Tan contact constant [22, 23], which, for
a harmonically trapped gas, is found equal to CLDA =
(64π2/7)a2

sN0n0 in the LDA approximation [18]. The
experimental results are plotted in Fig. 4 where the error
bars reflect the uncertainty on C∞ from the fit, as well
as those on the calibration of N0 and n0 [18]. The fitted
contact constant C∞/N0 per condensed particle is found
proportional to n0, as expected. The measured values
of C∞, however, are about 6.5 times larger than the ex-
pected value CLDA. Note that in order to increase the
density n0 we increase the trapping frequency, which re-
sults in a decrease of the density of the central, dominant
part of the distribution n∞(k) measured after TOF. The
observed proportionality between C∞/N0 and n0 in spite
of the variation of n∞(k ' 0) rules out several possible
spurious effects in the response of the MCP.

In conclusion, the measurement of the momentum dis-
tribution of a weakly interacting Bose gas released from
a trap has allowed us to observe two components in the
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high momentum tails beyond the mean-field distribution.
The first one is due to thermal depletion, and although
some questions remain open, there are several observa-
tions which suggest associating the second one with the
quantum depletion. The single-atom detection method
of metastable Helium gases is also able to provide signals
of atom-atom correlations in momentum, a feature we in-
tend to use in future investigations of momentum-space
signatures of many-body effects.
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Supplemental Materials:

Momentum-Resolved Observation of Thermal and Quantum Depletion in a Bose Gas

R. Chang, Q. Bouton, H. Cayla, C. Qu, A. Aspect, C. I. Westbrook and D. Clément

Production of gaseous condensates and detection after time-of-flight

Our condensates are produced in the 23S1, mJ = +1 internal electronic state in a crossed dipole trap which is
described in [15]. This metastable state has a lifetime of 8000 seconds. To measure the asymptotic momentum
distribution n∞(k) of the gas, we switch off the optical trap in 2 µs, allowing the cloud to undergo expansion while
falling under the influence of gravity. The Micro-Channel Plate (MCP) detector and electronics are described in detail
in [16]. The estimated detection efficiency is 25%. The spatial resolution in the plane of the detector is measured to
be equal to ' 100 µm and the time resolution along the vertical axis is 10 µs.

The electronic detector is positioned 55 cm below the trapped gas giving a TOF value of 330 ms. To ensure
that the gas expansion is un-perturbed by residual magnetic field gradients present during the TOF, atoms are
transferred to the magnetically insensitive mJ = 0 state. This transfer is achieved with a radio-frequency (RF)
which causes transitions between the magnetic sublevels whose energies have been split by a magnetic bias field with
∆E = EmJ=+1 − EmJ=0 ' h × 10 MHz. To transfer the atoms independently of their velocity, we use a RF sweep
with central frequency 10 MHz and span of ±500 kHz, applied on the atoms after a 2 ms TOF. The RF sweep is 1 ms
long at constant RF power. After the RF sweep, we apply a magnetic gradient to push the atoms remaining in the
mJ = ±1 states away from the detector. The RF power, combined with the removal of the mJ = ±1 states, allows
us to control the flux of atoms (mJ = 0) striking the detector. We typically operate between 15 and 45% RF transfer
efficiency (see 1D density profiles). The scattering length in the mJ = +1 is amJ=+1

s ' 142a0, where a0 is the Borh
radius. In the mJ = 0 state, it has never been measured so we have inferred its value from the predictions of [27] with
the knowledge of amJ=+1

s to extract the contribution of the quintet potential. We find amJ=0
s ∼ 100a0, much smaller

than amJ=+1
s . Note that an experimental measurement might reveal corrections to this approximate value.

The MCP detector provides a three-dimensional histogram of atom numbers (see Fig. 1(b)). The position of an
atom labelled with integer j is given by two-dimensional spatial coordinates (Yj , Zj) in the plane of the MCP and
the time of arrival tj . Similarly we note (Y0, Z0, t̄ = t0) the coordinates of the center of the cloud whose time of
arrival defines the TOF t̄ used throughout this work. In the frame centered on the falling could, the position r of
the atom is r = (gt̄/2tj × (t̄2 − t2j ), Yj − Y0, Zj − Z0), accounting for the acceleration g of gravity. The use of the

ballistic relation yields the asymptotic momentum distribution n∞(k) = (h̄t̄/m)3 n(r = h̄kt̄/m, t̄) (Eq. 1 in the main
text). The momentum-space resolution is 0.03 µm−1 along directions y and z (in the MCP plane), and 0.01 µm−1

along x (orthogonal to the MCP plane). The distributions studied here consist of the the average of roughly 1500
experimental shots. Individual shots have been re-centered to account for slight fluctuations in cloud center-of-mass
after the TOF.

The condensate atom number N0 and density n0 are calibrated by comparing the 3D density profiles on the MCP
detector with the predictions of the scaling solution for our trap frequencies [19, 20]. The uncertainty on these values
is evaluated to be 20%.

1D density profiles

From the three-dimensional asymptotic momentum density n∞(k), one-dimensional profiles are generated for the
radial and longitudinal cloud directions. Longitudinal profiles are cuts along the z direction (at kx ' ky ' 0) with
a small integration along the two transverse x and y directions (see below). Radial profiles in the x − y plane are
generated from an angular average over azimuthal angles |φ| > 45◦, where φ = arctan(kx/ky) (at kz ' 0). This choice
of azimuthal angles avoids a defect located on the surface of the micro-channel plate.

Since the experimental signals contain both a high-density condensate and low-density tails with a 4 decade sep-
aration in scales, it is necessary to divide the measurement of the density profile into two steps. To measure the
condensate momentum components we first use a low RF transfer efficiency (typically 15%). In this low particle flux
regime the MCP is far from electronic saturation, but the low-density tails are hard to detect. Secondly to measure
the high-momentum tails, we use a high RF transfer efficiency (typically 45%). At high flux of detected particles,
the dense condensate locally saturates the MCP, while the low-density wings remain unperturbed. We have verified
that the two runs provide identical density profiles at intermediate k where local saturation is not a problem for the
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FIG. S1. Observed momentum distributions along various directions, showing the anisotropic condensate distribution and
the isotropic components associated with the thermal and the quantum depletion. The vertical dot-dashed line delimits the
condensate (low momenta k) and the condensate depletion. (a) Illustration of the anisotropic momentum distribution of the
condensate in the far-field regime (pancake-shaped distribution). The arrows represent the directions along which we plot the
1D momentum profiles with a small angular average (±10◦ degrees) in the panels (b)-(g). (b)-(d) Blue dots are the measured
1D momentum profiles in the kz = 0 plane. (e)-(g) Green dots are the measured 1D momentum profiles in the ky = 0 plane.
In each subplot, the solid line is the radial 1D momentum profile plotted in Fig. 2 of the main text (obtained from a large
angular average, see above).

high-flux runs and there is sufficient signal in the low-flux runs. The 1D profile for the condensate (low-flux data) has
a transverse integration of ± 0.1 µm−1. The profile for the tails (high-flux data) has transverse integration of ± 0.8
µm−1. The two-step measurement and transverse integration ensures sufficient signal in the high-momentum tails,
while accurately capturing the condensate profile at low-momenta.

In order to illustrate the observed symmetry in region II and III, we plot measured 1D profiles with a small angular
average on φ (±10◦ degrees) along different directions separated by 30◦degrees in Fig. S1. The radial 1D profile shown
in Fig. 2 (obtained from a large angular average) is reported as a black line in each subplot. The anisotropy of the
condensate distribution appears clearly while the momentum profiles in region II and III have a spherical symmetry.

Mean-field momentum distribution of an interacting gas from time-of-flight

The condensate and its expansion is known to be well modeled by a mean-field interaction [3]. To verify that
the observed tails (regions II and III in Fig. 2(b)) are not an artifact of the condensate, we compare our data
to the complete 3D mean-field solution. The mean-field Gross-Pitaevskii (GP) solution beyond the Thomas-Fermi
approximation may lead to the appearance of additional momentum components after TOF. These would result
from slight modifications of the Thomas-Fermi real-space density occurring on the length scale (a4

ho/R)1/3, which
fixes the characteristic thickness of the boundary [3] (here aho and R are, respectively, the oscillator length and the
Thomas-Fermi radius and, for simplicity, we have assumed isotropic trapping).

The ground state is obtained by numerical simulation of the Gross-Pitaevskii equation in imaginary time, and the
expansion dynamics are performed through real time propagation. The system size used in the calculations limits the
simulated TOF. However, the distribution after 2.45 ms is observed to converge, indicating the complete conversion
of mean-field interaction energy into kinetic energy. The numerical results for the distribution after a TOF of 2.45
ms are presented in Fig. S2, using the ballistic relation as defined in Eq. 1. The simulations clearly show that the
mean-field Gross-Pitaevskii ground state is unable to reproduce the tails observed in the experiment.
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FIG. S2. Simulation of the expansion dynamics of a 3D Bose-Einstein condensate with the mean-field Gross-Pitaevskii equation.
The parameters describing the condensate in the numerics (including atom number and trapping frequencies) are those of the
experiment. The GP simulation is compared to the experimental data along the longitudinal (a) and radial (b) direction. It
shows an excellent agreement in the region I associated with the condensate but does not reproduce the experimental tails.
Numerical results and experimental distributions have been normalized to n∞(0, 0, 0) = 1.

Quantum depletion with local density approximation at T = 0

In uniform systems Bogoliubov’s approach yields a population of momentum state equal to

n(k) = |vk|2 =
h̄2k2/2m+mc2

2ε(k)
− 1

2
(S1)

where ε(k) =
[
h̄2k2c2 + (h̄2k2/2m)2

]1/2
is the Bogoliubov excitation spectrum. For a harmoncially trapped con-

densate in the Thomas-Fermi limit, the local speed of sound is c(r) = c0
√

1− (x/Rx)− (y/Ry)2 − (z/Rz)2 with

c0 =
√
gsn0/m the speed of sound at the trap center and gs = 4πh̄2as/m. In the LDA one finds

n(~k) =
1

(2π)3

∫
|v~k(~r)|2d~r (S2)

=
RxRyRz

(2π)2

[
−13

48
− 5k2ξ2

32
+

(
4 + 12k2ξ2 + 5k4ξ4

32
√

2kξ

)
arctan

(√
2

kξ

)]
(S3)

'
[kξ�1]

RxRyRz
105π2

1

k4ξ4
(S4)

where ξ = h̄/
√

2mc0 is the healing length.
Within the Bogoliubov approach in the LDA approximation, the Tan contact constant, defined as C/(2π)3 =

limk→∞n(k)k4, is equal to CLDA = (64π2/7)a2
sN0n0, with as the s-wave scattering length and N0 (resp. n0)

the condensate atom number (resp. the condensate density). For metastable Helium, the calculation gives
(CLDA/N0)/n0 ' 5.08× 10−15 m−2.

Controlled heating sequence

To increase the temperature of our ultracold gas, we perform a controlled heating sequence using a 3D optical
lattice. This sequence involves the adiabatic transfer of the gas from the optical dipole trap to the lattice in 30 ms,
followed by a series of non-adiabatic lattice pulses of duration 0.5 ms during which the amplitude of the lattice is set
to zero. The gas is then held in the optical lattice for 100 ms during which time it rethermalizes. Finally, we transfer
the atom cloud adiabatically back to the initial optical dipole trap in 30 ms. Increasing the lattice depth while keeping
the same sequence increases the final temperature of the gas at constant atom number and trapping frequencies.
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