
HAL Id: hal-01354883
https://hal.science/hal-01354883v1

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA design of EKF block accelerator for 3D visual
SLAM

Daniel Tortei, Jonathan Piat, Michel Devy

To cite this version:
Daniel Tortei, Jonathan Piat, Michel Devy. FPGA design of EKF block accelerator for 3D vi-
sual SLAM. Computers and Electrical Engineering, 2016, �10.1016/j.compeleceng.2016.05.003�. �hal-
01354883�

https://hal.science/hal-01354883v1
https://hal.archives-ouvertes.fr


FPGA design of EKF block accelerator for 3D visual
SLAM

Daniel Törtei Terteia,b,c, Jonathan Piata,b,∗, Michel Devya,∗

aCNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, UPS, LAAS, F-31400 Toulouse, France

cFaculty of Technical Sciences, Department of Computing and Automation, 21000 Novi
Sad, Serbia

Abstract

This paper deals with the evaluation of a dedicated architecture to be integrated
in an embedded system mounted typically on a micro-aerial vehicle or on smart
devices moved by an operator. This system performs an Extended Kalman Filter
(EKF) based visual odometry algorithm: here we present an efficient hardware
architecture conceived as a systolic array co-processor for EKF loop acceleration.
Due to severe constraints on the power consumption, the real-time performance
and the physical characteristics of the system (compacity, weight...), this al-
gorithm is implemented entirely as a System On a programmable Chip (SoC)
on the Zynq-7020 device. This heterogeneous platform1 consumes less power
than a standard microprocessor and provides powerful parallel data processing
capabilities: applying hardware/software (hw/sw) co-design allows to guarantee
real-time throughput with a very low power-per-feature rate.

Keywords: visual EKF-SLAM, SoC, FPGA, co-processor, AHP

1. Introduction

More and more applications require the mobility of a system (a robot, a
vehicle, a drone, an operator with a tablet or a smartphone,. . . ) equipped with
several sensors. As soon as such a system moves in an environment, it must
be endowed with several functions able to provide its position with respect to a5

known reference frame, to detect obstacles in order to avoid collisions (for robot
navigation) or to recognize some known objects (for augmented reality). Our
contribution concerns only the localization functionality.

Many solutions exists in the litterature, depending on the available sensory
modalities, on the locomotion system, on the a priori knowledge learnt on the en-10

∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Email addresses: dtertei@laas.fr (Daniel Törtei Tertei), jpiat@laas.fr (Jonathan

Piat), mdevy@laas.fr (Michel Devy)
1processor + reconfigurable hardware

Preprint submitted to Computers and Electrical Engineering December 13, 2015



vironment, and overall, on the available resources (energy, memory, computing
power . . . ). Many robots (e.g. AGV for industrial environments) and vehicles
(e.g. the Google car) are equipped with laser range finders in order to perceive
the environment; here it is proposed to use only vision, i.e. a low-cost sen-
sor that could be embedded both on autonomous robots and on smart devices15

moved by humans.
A standard Visual Odometry (VO) algorithm is exploited for the localiza-

tion of our system moving in an initially unknown environment. Such a function
builds a local map of its environment in the form of positions of landmarks ob-
served in images, estimates the local motion made by the system, and then,20

cumulating these motions, estimates the system position with respect to a spe-
cific reference frame, generally the initial position when the VO algorithm has
been started. Landmarks are presumed to be static. Our mobile system must
be equipped with a camera and besides it may also have proprioceptive sen-
sors in order to give other measurements on the motions: wheel odometry for25

a robot, Inertia Measurement Unit (IMU) for a device worn by an operator or
for a drone. . .

A VO algorithm is very similar to a Visual Simultaneous Localization and
Mapping approach (VSLAM), but the localization in VO is only estimated from
a local map, i.e. a map built on a given horizon time, defined for example by the30

M last acquired images or by the N last detected landmarks; as the localization
is computed from local information, it will be impacted by a drift growing with
the time. With a Visual SLAM algorithm, it is possible to build a global map,
even on large environments: if the mobile system returns in a known area and
succeeds in matching observed features with mapped landmarks, cumulative35

errors may be corrected using a loop closure function. VO and VSLAM could
be based either on Filtering - EKF, Rao-Blackwellized Particle Filter. . . - or
on Optimization (global or incremental, iterative or direct. . . ). It is known [1]
that the localization given by Optimization methods is more accurate than
for Filtering ones, but it requires more computing power, and moreover, for40

large environments, the map size could be huge, so that some map management
strategy has to be applied.

It is the reason why, for systems of limited size, an EKF-based VO algorithm
is most often applied for position estimation; moreover it is easier to take into
account measurements acquired from asynchronous multiple modalities (several45

cameras, gyros, accelerometers. . . ). Drifts could be corrected from time to time
either fusing with a priori knowledge given to the system (e.g. Open Street Map
in urban scenes, or a building map for indoor scenes) or with a global position
provided by a GPS receiver in outdoor environments.

In spite of the increasing computing power on compact embedded system,50

EKF-based VO’s computational complexity still may be too important with only
a software implementation, mainly due to image processing in order to extract
features from images and due to large scale matrix-matrix multiplications when
applying the filter on large state vectors. The real-time constraint for typical
applications of drones, robots or augmented reality on smart devices, involves55

to update the system position at least at 30Hz(33.33ms). Moreover improving

4



the frequency allows to enter a virtuous cycle: faster is the VO process, easier
and more robust is the feature-landmark matching. Another issue is autonomy
of the mobile system: standard processors, such as Intel’s quad core i7, consume
much power, which limits the level of autonomy.60

As a solution to these issues, an embedded system has to be designed which
would ensure high computational efficiency at low power consumption rates.
Modern reconfigurable devices such as Field-Programmable Gate Arrays (FP-
GAs) may answer to that question. Their reconfigurable fabric consists of a large
number of configurable slices, and besides they come with embedded Digital Sig-65

nal Processing (DSP) blocks that can be used for floating point applications.
Compared to a standard processor, computationally extensive algorithms may
be parallelized and thus executed several times faster on FPGAs in floating
point precision [2]. While Graphical Processing Units (GPUs) also make use of
the parallelization techniques, the main advantage of FPGAs over both GPUs70

and general purpose central processing units (GPCPUs) remains in significantly
lower power consumption.

Embedded GPUs have as well emerged on the market today with similar
power consumption to an FPGA [3]. However, they are designed as to improve
computational performances on highy demanding image processing applications.75

Thus FPGAs with their algorithm-specific memory management capabilities
owing to reconfigurability still remain a better choice over embedded GPUs in
terms of computational efficiency of a custom application.

So this paper presents mainly an efficient SoC architecture for EKF-based
Visual Odometry applications. Using hw/sw co-design we intend to fully port80

VO functionality of our visual SLAM application into embedded domain. As
this localization algorithm relies on heavy matrix multiplication computations,
it is focused on a matrix multiplication accelerator conceived as a systolic array
co-processor for a hard core ARM CortexA9 processor integrated in a Zynq-7020
FPGA.85

1.1. State of the art and motivation

In literature, methods that use Visual SLAM for localization may be clas-
sified according to several criteria. Here, only Filtering-based (and specif-
ically EKF-based) methods are considered, like in [4, 5], because they are
more adapted for embedded systems with limited resources. Several real-time90

optimization-based methods have been proposed, but either they are not ro-
bust [6], or they require a huge computing power [7] or they are specific for
drone applications [8].

Then according to features extracted from images, most methods exploit
only interest points (Harris, SIFT, SURF, BRIEF, ORB. . . ); [9] compares95

several methods proposed for point detection and characterization. Some au-
thors [10] exploit heterogeneous landmarks; here only Harris points are used.

Finally according to the sensor configuration, the SLAM function could ac-
quire images from monocular, bi-cam or stereovision sensors. These last one
allows to acquire depth images, but only on the sensor vicinity e.g. about 8m.100

5



For a 40cm stereo baseline; 3D landmarks are directly created as Euclidean
points; points far from the sensor are never considered. Monocular or bearing-
only SLAM uses a single camera, so that only 2D features can be observed;
from such a feature it is not possible to directly add a 3D landmark in the map;
either the initialization of this landmark is delayed [11], waiting for other obser-105

vations from different view points so that a 3D point could be triangulated, or
this initialization could be undelayed using a specific parametrization [12, 13],
allowing to exploit landmarks far from the camera, e.g. a peak on the horizon
line. Bicam-SLAM combines the two approaches, allowing to create landmarks
both from features matched between the two images, and from features that110

are only perceived by one camera. Here only monocular SLAM with undelayed
landmark initialization is used, so that our method could be executed on an
embedded system limited in size and resources - such as a smartphone.

RT-SLAM [14] is a generic Open Source software implementation of our
state of the art visual bearing-only SLAM algorithm, based only on one cam-115

era to observe the environment, and on an IMU to estimate motions. The
map contains Anchored Homogeneous Point (AHP) landmarks [12] which is a
seven-dimensional landmark parametrization. AHP landmark parameterization
is shown to increase filter’s consistency, achieving more robust and accurate lo-
calization and mapping. A predefined number of landmarks from the map is120

observed and positions are corrected after each frame acquisition. The choice
is made by applying the one-point Random Sample Consensus (RANSAC) [15].
Active search strategy is used for initialization of new ones. Authors [14] report
real-time performance at 60Hz when having 20 consecutive landmark correc-
tions and 5 initializations per EKF loop on an Intel i7 processor (only one core125

is used).
C-SLAM [16] presents a C programming language version of RT-SLAM that

implements a simplified SLAM application respecting the DO-178 norm required
on airborn system. It uses a constant speed robot motion function (no inertia
data) and Inverse-Depth Point landmark parameterization [13]. C-SLAM was130

implemented in [17], on an embedded architecture based on a Virtex5-Virtex6
FPGA couple [18]; it runs at 24Hz when having 20 IDP landmarks in the map
and correcting 10 of them in each frame. The advantage gained by this archi-
tecture lies on the co-design possibility, with a hardware-level implementation
of image processing functions at pixel frequency: Harris point extraction, active135

search strategy . . .
Our SLAM is an upgraded version of C-SLAM. It is a monocular SLAM

fusing IMU data for motion prediction, correcting 20 AHP interest points. Ac-
tive search strategy is used as well to match the observed points and initialize
new ones (5 per frame). This number is obtained by experimentation for one140

application on a robotic platform: C-SLAM behaviour was satisfactory when
having set parameters in this manner. IMU data are used in order to reduce
uncertainty on landmarks tracking during interest points matching. With this
(algorithmic) optimization and for speed issues, one-point RANSAC is replaced
by random choice when initializing new points in the map.145

Our approach is as follows: a SLAM algorithm may be divided into two

6



parallel processes [19], namely vision (front-end) and filtering (back-end). These
two processes are executed in pipeline, so that we have a latency of one image
period, i.e. the system position is updated at T +2∆T , with landmarks observed
in the image acquired at time T . In [20] it is shown that pose estimation can150

make up to 84% of execution time of an EKF-based SLAM algorithm: so, we
concentrate on acceleration of the filtering part of the SLAM. We propose an
EKF matrix multiplication SoC that is full-compliant to floating point IEEE
754 single precision standard [21] and which permits an EKF loop throughput
of 30 Hz with a maximum of 52 AHP points in the map (while observing and155

correcting 20).
A power-efficient FPGA-based embedded EKF block accelerator is also pro-

posed in [22]. Their SLAM is a 2D EKF-SLAM application that satisfies real-
time constraints (14Hz of execution time in their case) with approximately
1.8k landmarks contained in their map which are represented in Euclidean160

parametrization (two-dimensional state size). All of them are observed and
corrected. They do not report on initialization and matching techniques and
neither mention whether they use sensors besides a camera. It is the only FPGA-
based solution (besides ours) in literature that proposes a visual EKF-SLAM
block embedded accelerator to our knowledge. However, given the dimensional-165

ity of our problem (AHP parametrization) and system complexity (3D mapping,
sensors) it is hardly comparable.

Finally, some authors proposed FPGA implementations of matrix multi-
plication or inversion, using different strategies [23, 24, 25]; the Parallel in-
put/Multiple Output strategy proposed in this last paper, is very similar to our170

systolic array architecture.

1.2. Previous work and contributions

Our previous work on the subject is published in [26] - an EKF accelera-
tor which is a PLB peripheral to PPC440 hard core embedded processor on a
Virtex5 FPGA. It does not take into account the symmetry in cross-covariance175

matrix - related computations (authors in [22] do not mention that fact either).
That impovement leads to significant improvements in design to both latency
and required on-chip memory usage, which will be discussed here.

Contributions of this paper are:180

• Genericity of the accelerator regarding system state size (other sensors
may be added/removed), feature state size (up to seven-dimensional) and
number of landmarks (up to 52 AHP points)

• Implementing the new design as an AXI4 bus peripheral on power-efficient
Zynq-7020 FPGA185

• Taking into account the cross-covariance matrix symmetry to reduce com-
putational time (in both software and hardware) and on-chip memory
storage

7



The paper is organized as follows: in Section 2 an analysis of visual EKF-
SLAM complexity is given in order to deduce it’s computational bottleneck. In190

Section 3 we address relevant designing issues as to theoretical lower bounds
on the latency of any multiplication algorithm and the computational model
mapping based on systolic array technique (with regard to their feasibility on
an FPGA). Our SoC solution to EKF block acceleration is presented in Section
4. In the following section - 5 - it is put under evaluation in terms of latency, re-195

source usage and power consumption. Experimental results (measured latencies
and maximum supported number of AHP landmarks in the map) with future
work are given in Section 6. Finally, Section 7 concludes the paper.

2. Visual EKF-SLAM analysis

Goal of this section is to establish a theoretical background in order to iden-200

tify the computational bottleneck of an EKF function used for visual SLAM
algorithm in our case. General conclusions may be induced by varying param-
eters in Table 1.

A state-space based predictive algorithm based on EKF [12] runs in a three-
steps loop: i) prediction of robot’s position from the motion estimates, ii) correc-205

tion of the robot’s and landmarks’ positions with respect to the world reference
frame (by tracking chosen landmarks), and iii) initialization of landmarks [27].

Let us recall that here that our SLAM is implemented without loop closure,
so the system position is updated from a local map, with a limited size. Land-
marks are removed and replaced by new ones in several situations. (1) They210

are never matched, due to environmental changes (illumination, occlusions . . . ).
(2) They have been selected on the surface of a dynamic object. (3) Due to the
camera motion, they are overpassed, so they could not be observed during the
next motions. Possible losses of landmarks may severely influence the quality of
motion estimation. Thus, it is preferable to have many landmarks memorized215

in the map after loop iii) and to choose a subset of these upon which position
corrections are going to be made in loop ii). Also, parametrization (dimension-
ing) of landmarks plays a significant role in their quality [12], yielding robuster
behaviour with higher landmark state size.

Introducing larger number of higher-dimensional landmarks increases visual220

EKF-SLAM’s computational complexity, having as a consequence in loop ii)
larger scale matrix-matrix multiplications.

It is shown that computational requirements for an EKF algorithm depend
on the number of features N retained in the map: LEKF = O(N2) [28]. Equa-
tions of the EKF are given below2.
Prediction loop:

x̂(t) = f(x̂(t−1), $(t)) (1)

2In equations 2 and 7 we perform matrix calculations only on P1 and P matrices’ upper
triangles respectively, as the cross-covariance matrix P is symmetrical

8



P
(t)
1 = F (t)

x P
(t−1)
1 F (t)T

x + F (t)
ω QF (t)T

ω (2)

P
(t)
2 = F (t)

x P
(t−1)
2 (3)

Correction loop:

Z(t) = H(t)P
(t)
3 H(t)T + R (4)

K(t) = P
(t)
4 H(t)T (Z(t))−1 (5)

x̂(t) = x̂(t) + K(t)(y(t) − h(x̂(t−1))) (6)

P (t+1) = P (t) −K(t)Z(t)K(t)T (7)

After each frame acquisition, the front-end process furnishes interest points
found by a feature detector. Active search algorithm is used to find correspon-
dences with observed landmarks in the past frame. In our case, we observe225

and search for correspondencies between 20 interest points. Matched points
are passed through in the camera reference frame. They are afterwards repa-
rameterized to richer AHP representation, which is the data type upon which
our Kalman filter works. This information is stored in robot state vector x̂
and is updated in the process within Jacobian (H ) and cross-covariance (P)230

transformations - Table 1.
Given this data, an EKF loop is executed as follows: first, a prediction

step is performed in order to update the corresponding elements in P : 1 -
3. Matrices P1, P2, P3 and P4 are sub-matrices of the cross covariance matrix
P . Secondly, multiple correction loops are run, each with respect to a single235

observed landmark: equations 4 - 7 (in our case 20 times). In correction loop
the filter’s gain is calculated, upon which landmarks’ and robot’s positions are
being updated (along with the the entire cross-covariance matrix). It is done in
equation 6 where IMU odometry and GPS data are integrated in measurement
process yt (localization). Upon observed, matched and corrected landmarks240

all landmarks in the map are reparameterized from AHP to three-dimensional
Euclidean representation (3D mapping). After correction loops, we are able to
reduce the search space for landmarks which we are observing in the following
frame.

In Table 1, N stands for the total number of landmarks retained in the local245

map, d is the dimension of AHP feature state size (which is seven), six is the
number for GPS and IMU related variables and r is the state-space size of our
robot (which is nineteen). All twenty landmarks in the map are observed. From
that table we deduce Table 2 which shows the total amount of floating-point
operations that are executed in an EKF block in function of the number of250

retained landmarks N in the visual map.
Highest share of the execution time belongs to equation 7. Here, the up-

per triangle of the square P matrix is updated during correction. This fact

9



Table 1: Description and matrices dimensions according to our implementation of the EKF
algorithm.

Symbol Dimension Description

x̂ (dN + r)× 1 Robot and feature positions
f - Prediction function
P (dN + r)× (dN + r) Cross covariance matrix
P1 r × r Cross covariance matrix with respect to robot position
P2 r × dN Cross covariance matrix with respect to all landmarks
P3 2d× 2d Cross feature-robot covariance matrix
P4 (dN + r)× 2d Cross feature-feature and robot-robot covariance matrix
Fx r × r Jacobian to system state
Fω r × 6 Jacobian to system state perturbation
Q 6× 6 Permanent perturbation
Z 2× 2 Covariance innovation
H 2× 2d Jacobian
R 2× 2 Measurement noise
K (dN + r)× 2 Filter gain
y 2× 1 Measured output
h - Observation function

Table 2: Number of floating-point operations in an EKF loop taking into consideration
symmetry of the cross-covariance matrix. Equations 4 - 7 are executed c = 20 times, for

each observation

Equation no. FLOP Execution time [%]

1 361 0.02
2 17000 1.21
3 4921N 6.99
4 c × 868 1.23
5 c × (420N + 1140) 13.54
6 c × (49N + 135) 1.58
7 c × (102N2 + 576N + 811) 75.43

Total 2040N2 + 25821N + 76441 100

is confirmed after having run a code profiling tool [29] over the implemented
EKF-SLAM code (which will be more detailed in section 6). Thus, a significant255

speed-up can be made by leveraging the P −KZKT operation in hardware. As
the P matrix of a Filtering-based visual SLAM application is frequently evoked
for pose estimation and state update, special care needs to be made on data
communication with the rest of the system. It is why we propose to store it on
high-speed on-chip memory. In that way we could keep the FLOPs number in260

equation 7 close to a constant value and thus rendering it independent of N2 in
terms of processor execution time.

3. Design considerations

This section will start with floating-point matrix multiplication considera-
tions on an FPGA device (latency, I/O bandwidth and storage). Afterwards,265

10



after having introduced a Systolic Array (SA) - based processing system on
an FPGA, a processing element (PE) - based computational flow for EKF’s
equation 7 will be given.

3.1. Matrix multiplication tradeoffs on FPGAs

On a reconfigurable computing system the main tradeoff is between opti-
mal speed and resource utilization. Higher design speeds may be achieved at
the cost of a higher resource usage. On the other hand, the limited number of
configurable slices should be used for parallel logic implementation. Consider-
ing applications of matrix-matrix multiplication algorithms on programmable
hardware of limited size, such as FPGAs, we have to take into account specific
constraints on latency L, total storage size in words M and memory bandwidth
requirement B denoted by number of I/O operations performed in each cycle.
Based on a multiplication of two n-squared matrices, authors in [30] explain
these tradeoffs in reference to lower bound on achievable latency:

L ≥ max(L1, L2) ≥ max

(
n3

p
,

n3

√
MB

)
, (M ≤ n2) (8)

where p is the number of theoretical Processing Elements (PE) that may be270

executed in parallel, L1 is the latency according to computation time and L2 is
the latency dependent on I/O bandwidth. Furthermore, they conclude that an
optimal latency is in this case of order O(n2) when having p = O(n) PEs and
M = O(n2) available storage size in words. However, for large scale matrices

the latency is of order O(n3

p ). This is due to the fact that having FPGAs with275

limited resources it is hardly possible to instantiate that many PEs in parallel.
A recent work [31] describes an architecture of linear array PEs, similar to those
in [30], but achieving an optimal latency of order O(n2) by exploiting full-duplex
communication with the host processor (no on-chip memory storage) and at the
cost of having it involved during addition of intermediary values. Our design280

will focus on minimal latency of matrix multiplications in EKF equation 7 and
on-chip memory storage.

3.2. Notion of systolic arrays on an FPGA

As previously explained, and especially due to available resources on the
Zynq-7020 device, we chose to optimize the tri-matrix multiplications. Pipelined285

designs present a suitable solution when it comes to allocating resources given
the specific problem size of our computational model. By identifying compu-
tational kernels (i.e. floating point multiplication, addition and subtraction)
a problem-specific computational unit called PE may be conceived. Systolic
array (SA) is a form of a pipelined design consisting of a multi-dimensional290

grid of interconnected PEs. Main sequential operation is being optimized (e.g.
equation 7 in our case) by restructuring its executional flow so that it may be
executed on parallel PEs. Besides, a central logic, called Sequencer, controls the
data flow in the grid. Advantage of a SA based computation over sequential or
multi-threaded is that the its grid is able to generate new results after each clock295

11



cycle. In consequence, by exploiting structural properties of an SA we are able
to lower the dimension of the computational model (which is three-dimensional
for n-squared matrices multiplication) and obtain a better throughput at the
cost of more complex control logic of data flows.

Authors in [32] present useful mapping techniques inherent to an FPGA-300

based design. In order to avoid using large number of buffers due to routing
issues in a standard matrix-matrix multiplication algorithm, they propose a
modified locally recursive version upon which they map control logic onto their
two-dimensional SA. However, because of speed issues, PEs are often organized
in a linear list structure - a special case of a one-dimension systolic array in305

which they interconnect by short connection wires. In general, broadcasting
data on a larger grid in an FPGA using a higher dimensional SA structure is
not recommended because of speed degradation due to the size and routing
complexity of FPGA-based floating point units. In order to achieve efficient low
latency design we focus our efforts on implementing a 1-D SA.310

3.3. Computational model mapping

The computation model of a one-dimensional SA with four PEs adapted to
equation 7 of the EKF block may be described with the following pseudo-code:

Phase I: K × Z

1: for i = 0; i < 7N + 19; i+ = 4 do315

2: (load K matrix, in parallel for x = 0 : 3)
3: PEin(x) = {Ki+x,0,Ki+x,1}
4: (double-buffer Z matrix)
5: PEin(0) = {Z0,0, Z1,0}
6: PEin(1) = {Z0,1, Z1,1}320

7: PEin(2) = {Z0,0, Z1,0}
8: PEin(3) = {Z0,1, Z1,1}
9: (output PE function)

10: PEout(0) = Ki+x,0 × Z0,0 + Ki+x,1 × Z1,0

11: PEout(1) = Ki+x,0 × Z0,1 + Ki+x,1 × Z1,1325

12: PEout(2) = Ki+x,0 × Z0,0 + Ki+x,1 × Z1,0

13: PEout(3) = Ki+x,0 × Z0,1 + Ki+x,1 × Z1,1

14: end for

Phase II: P −KZ ×Kt

1: for i = 0, y = 0; i < 7N + 19; i+ = 4, y+ = 4 do330

2: (load KZ matrix, in parallel for x = 0 : 3)
3: PEin(x) = {KZi+x,0,KZi+x,1}
4: for j = y; j < 7N + 19; j+ = 4 do
5: (load Kt matrix, in parallel for x = 0 : 3)
6: PEin(x) = {Kt

0,j+x,K
t
1,j+x, Pi+x,j+x}335

7: (output PE function, in parallel for x = 0 : 3)
8: PEout(x) = Pi+x,j+x − (KZi+x,0 ×Kt

0,j+x + KZi+x,1 ×Kt
1,j+x)

9: end for
10: end for

12



Figure 1: Our tiling of the 1-D systolic array for visual EKF-SLAM matrix multiplications

Each PE consists of two floating-point multipliers and two floating-point340

adders - Fig. 1. During KZ multiplication, the second adder is disabled (en =
1). For the Phase II, floating-point subtraction is performed by negating the
most significant bit (MSB) of the second operand (in IEEE floating-point format
this negates the given number value) in addition operation. In this way, the
whole matrix subtraction process takes a latency of a single floating-point adder.345

In phase II in the inner loop the P matrix symmetry is taken into account
(j = y). This structure yields four floating-point matrix multiplication results
in parallel every clock cycle. As the innovation matrix Z is always square-two
dimensional for a given visual EKF-SLAM application, we argue that a PEs
conceived in this manner are optimal for those kinds of applications: there is350

no need for storage of intermediary values during matrix-matrix multiplications
(in both Phase I and II).

In the next section we explain in detail all the structural aspects of our EKF
block accelerator with its functional description.

4. Visual EKF-SLAM block accelerator355

Accelerator’s hardware architecture is given on Fig. 2.
The host processor (dual core ARM CortexA9) performs equations 1 - 6.

Accelerator’s main logical component is the Main sequencer, a state machine
generic to parameters N and r. The tri-matrix multiplication in equation 7 is

13



Figure 2: Tri-matrix multiplication architecture.

performed by taking into account the identity:

KZKT = (ZTKT )TKT (9)

as in that way the larger matrix K has to be transposed only once during the
computation. We instantiate3 two floating-point multipliers and two floating
point adders that form our PE kernel. Computational flow is mapped onto four
PEs that are not interconnected between themselves due to dimensionality of a360

visual EKF-SLAM. The lack of any additional internal buffer in our SA allows
for higher overall speed of the design. Although we may have instantiated more
PEs in the 1-D SA, the throughput already achieved of this design conforms to
our real-time constraints, which will be more detailed in section 6. Each First
In First Out (FIFO) structure contains 4 FIFOs of depth of ceil((7N + 19)/4)365

32-bit words4. P matrix is stored in four tri-port 2W/3R Block Random Access
Memories (BRAMs)5.

We refer to the computational model as given in pseudocodes in subsection
3.3 :

Phase I. Main sequencer pre-buffers the input stream onto PEs. Its task is370

to provide the SA with input data at each clock cycle in order to maximize the
operational throughput. For phase I, ZT and KT matrices are being popped
from FIFO1 and FIFO2, respectively. While popping, KT elements are also
being pushed in a circular fashion using asynchronous read/write operations in
FIFO2 structure, as they are reused later in phase II (which can be also seen375

from equation 9). After initial SA latency, main sequencer pushes the resulting
[ZT KT ]T matrix in FIFO1.

Phase II. [ZT KT ]T and KT matrices are fetched from relevant FIFOs and
loaded onto the SA. Multiplication result is stored directly into 2W/3R BRAMs.
It is necessary to make use of tri-port BRAMs, because in phase II we have380

3We make use of Xilinx IP Core Generator v14.2 to instantiate the floating-point arithmetic
units.

4FIFOs are instantiated using Xilinx IP Core Generator v14.2 and physically implemented
as dual-port BRAMs.

52W/3R BRAMs are obtained by multiplexing a read port of one of 2W/2R (true dual-
port) BRAM’s ports

14



Figure 3: Our SoC implementation of the 3D EKF-SLAM application

simultaneous read and write operations with different addresses from/to on-
chip memory (e.g. the elements of P are simultaneously fetched and stored the
inner for loop in pseudocode lines 6 and 8). As one 1W/1R port is used for
the store operation, the multiplexed 1R port is used for fetch operation. The
third 1W/1R address line functioanlity rests for the host processor (execution385

of other equations in EKF block that require parts of P matrix).
On Figure 3 we present the entire Zynq-7020 SoC with our co-processor re-

ferred to as Intellectual Property (IP). It is attached as an Advanced eXtensible
Interface (AXI) peripheral to a dual-core ARM processor6. The cross-covariance
matrix P makes in total ((7N + r)(7N + r) + (7N + r))2 bytes. Because it is390

stored entirely in the on-chip memory, pointer values are pre-set in program
memory on each corresponding element in the on-chip memory so the host may
access elements in P.

Communication with the host processor unfolds in three simple steps:

1. ARM loads matrices K and Z onto a fast on-chip memory (input buffer)395

via axiinterconnect bus from the external DDR3 SDRAM and sends a

6The system is designed using Xilinx Platform Studio v14.2

15



”go” signal to the IP.

2. Our co-processor performs operations in equation 7, during which host is
able to perform other tasks which don’t evolve state estimation or update.
During phase II, main sequencer stores the subtracted four results into400

four BRAMs, each containing the (4s + j)mod4 th element, where s is
the current store cycle count and j is the number of the current row in a
(7N + 19)mod4 cycle.

3. Co-processor asserts a ”done multiplication” signal. By polling, the host
verifies end of the execution of the operations in equation 7.405

5. Design evaluation

In this section we give a theoretical estimate on developed multiplier’s la-
tency which is later going to be compared with experimental results (in Section
6) in order to evaluate the efficiency of the proposed SA-based design in terms
of speed of execution. Afterwards we present an overview over resource and410

power consumption of the entire co-processor on the FPGA.

5.1. Multiplier Latency

After the analysis in section 3 we have:

L > L0 + L1 + L2 (10)

L1 > max

(
n

p
,

n√
nB

)
(11)

L2 > max

(
n2

2p
,

n2

√
2n2B

)
(12)

L1 and L2 are latencies after ZTKT and (ZTKT )TKT matrix multiplications
respectively. L0 is the latency due to processor-IP communication bandwidth.
Concerning the matrix multiplication part, we have M1 =

√
n and M2 =

√
n2

415

because we have loaded all the corresponding matrices into two FIFO structures
so that they could be fetched at each clock cycle. Furthermore, B = 20 owing
to buffered input data and parallel storing of the results. Thus we are able to

deduce that L1 > 7N+r
4 and L2 > (7N+r)2

8 as we have p = 4 processing elements.
All delays greater than L1+L2 clock cycles are due to L0 and because of pushing420

the two input matrices onto FIFOs.

16



Table 3: 1-D systolic array resource usage

Resources Add Mult Array % IP

LUTs 254 121 3000 41
Slice registers 271 72 2744 43

DSP48E1s 2 2 32 100
Latency 9 5 14 -

FMAX [MHz] 380 368 311 -

Table 4: Accelerator resource usage with on-chip memory: comparison with the previous
version

Resources Virtex5 Zynq-7020

LUTs 8686 7313
Slice registers 10198 6366

DSP48Es/DSP48E1s 32 32
BRAMs [Kb] 1548 756
FMAX [MHz] 119 198

5.2. Resource usage

In literature, efficient floating point units are implemented with several em-
bedded DSP blocks and Look Up Tables (LUTs ). In Table 3 an overview
over resource usage of the SA-based multiplier versus IP is given. The one-425

dimensional systolic array consists of 8 deeply pipelined multipliers and 8 adders.
In terms of logical resources, the systolic array makes use of 41% of the entire
IP while the rest is used by input sequencer, main sequencer, buffer and other
internal buffers with 32-bit delay lines. For speed issues, embedded multipliers
(DSP48E1s) are instantiated in each PE of the SA.430

In Table 4 we show the ratio of resource usage of the accelerator (with
instantiated on-chip memory) versus all the available resources on Zynq-7020
device. Our map containts in total 20 AHP landmarks. A 36k BRAM is used
for the input BRAM. Eight 18k BRAMs are used for instantiation of the FIFO
structures (4 × 18k per FIFO) and sixteen 36k BRAMs are used to form the435

four memory banks7 for storing 51kB of resulting data.
We conclude that the accelerator is efficient in terms of resource usage as it

consumes only 11% (6368 out of 53200) of the configurable logic on the FPGA,
leaving enough resources for other modules that might be required for the rest
of SLAM (acceleration of vision process). BRAM usage (23%) for storing the440

cross-covariance matrix is minimal due to symmetry-related optimization. The
speed issues are going to be detailed in Section 6. Comparing to our previous
work on Virtex5 device, the new version is more efficient in terms of resource
usage.

7A 32-bit 4096 word memory bank is implemented as 4 × 36k BRAM, instantiated in
Xilinx Platform Studio v14.2. Each memory bank holds one fourth of the P matrix

17



Table 5: Visual EKF-SLAM accelerator’s power distribution: comparison with the previous
version

On-chip resource Virtex5 [W] Zynq-7020 [W]

Clocks 0.165 0.029
Logic 0.003 0.019

Signals 0.015 0.031
BRAMs 0.149 0.065

DSPs 0.001 0.01
PLLs 0.132 0.059
CPU 0.229 1

Leakage 1.469 0.079
Total 2.164 1.292

5.3. Power consumption445

The FPGA power consumption is estimated using Xilinx XPower Analyzer
tool - Table 7. Most of the power drain is due to dual core ARM processors
(which run in low power mode at 667MHz) but even with that fact in terms
of power efficiency there is almost a one to two ratio in favor of Zynq-7020
implemented design.450

6. Experimental results

After having synthesized our design, it’s maximal operating frequency is
125MHz. Thus its peak throughput is ((p×4))FLOP×125MHz = 2GFLOPs.

Using Gprof we obtain Table 6 and Figure 4 which show the cycles duration
in each EKF block equation. We differentiate between the case when using and455

when not our accelerator in order to measure the impact of its use purely in
terms of execution speed. Below the horizontal line are the equations related to
the correction loop, which is run twenty times in an EKF loop. Some equations
take longer to execute with acceleration, which is due to the sw/hw co-design;
as when using the co-processor, the entire P matrix is stored onto the on-chip460

memory in order to leverage the most demanding operations. We then pay the
price (though small) by having to transfer the data accros axi interconnect bus.
On the other hand, when not using the accelerator, the 51kB matrix is stored in
program memory and all the operations are done by the host processors which
takes a lot more time as it can be seen in this table. Thus, it is a profitable trade-465

off. With our design we made a 36-fold acceleration of EKF equation 7. On
Figure 4 the EKF block throughput is given in function of corrected landmarks
when using and when not the co-processor: for smaller maps (containing less
than 21 AHP points) all landmarks are observed and corrected; for bigger maps
there were made only 20 correction loops. We conclude that our design supports470

maps of up to 52 AHP landmarks with 20 corrections for an EKF block execution
under real-time constraints.

18



Table 6: EKF equations cycles measured with 125 MHz counter

Equation no◦ Accelerator No accelerator

1 6700 6700
2 89000 86600
3 507000 500000
4 270 270
5 18800 18000
6 7500 7500
7 6100 220000

Figure 4: Measured EKF block throughput.

In Table 7 power per feature benchmarking is presented for our 3D EKF
SLAM application (with 20 landmarks corrections). Maximum number of land-
marks is the number of AHP landmarks retained in the SLAM’s map that475

permit 30Hz EKF block period.

6.1. Measured multiplication latencies

For twenty landmark observations: the input sequencer takes 2×2+159×2 =
322 clock cycles and the computational latency is L1 + L2 ∼ 3752 clock cycles8

which leaves us for the host processors-accelerator communication latency L0 ∼480

8Validated by ChipScope Pro Analyzer

19



Table 7: Power per feature metric for visual EKF-SLAM with AHP points

Hardware platform max. no. landmarks Power [W] Power/feature

Intel i3 (2 × 1.8 GHz, 4GB RAM ) ∼ 100 34 0.34
Virtex5 SoC (400 MHz) 45 2.164 0.048

Zynq-7020 SoC (2 × 667 MHz) 52 1.292 0.024

6100−4074 = 2026 clock cycles. Computational latency is close to the predicted
value in subsection 5.1 from which we confirm that the desing performs close to
its theoretical optimum.

6.2. Future work

Having reduced the cycles number in EKF correction loop, new bottlenecks485

of the design become equations in the prediction loop : Eq. 2 and Eq. 3 (see
Table 6). Besides VHDL code optimization for higher execution speeds (FMAX),
the focus of the future work is to exploit the existing processing power (the PEs)
and FIFO structures (FIFO1 and FIFO2) so as to upgrade:

1. Structure of the SA to become a two-dimensional array by interconnecting490

existing PEs and

2. Its control logic.

7. Conclusion

In this paper we proposed an accelerator for a visual 3D EKF-SLAM appli-
cation (without loop closure) that uses high-dimensional landmark parametriza-495

tion for mobile platform localization. It is designed as an SoC on a Zynq-7020
device, yielding high performance metrics: minimal latency (close to theoreti-
cal optimum), low resource usage (11% of LUTs and 23% of on-chip memory)
and low power per feature (24mW per single seven-dimensional landmark state
size). It allows 30Hz throughput of an EKF block while containing 52 AHP500

parameterized points in SLAM’s local map, which is more than a three-fold im-
provement in comparison with the application running purely on ARM hosts.

As it consumes small amounts of resources, other accelerators (i.e. for feature
detection and/or feature matching) or soft-core processors (i.e. MicroBlaze) may
be implemented on the FPGA.505

These characteristics make our design suitable for implementation on embed-
ded systems of limited size, memory and computational resources which require
reliable localization functionality, such as micro-aerial vehicles and smartphones.

Acknowledgement

This work has been co-authored by Daniel Törtei Tertei, paid by the FUI-510

AAP14 project AIR-COBOT, co-funded by BPI France, FEDER and the Midi-
Pyrenees region.

20



References

[1] H. Strasdat, J. Montiel, A. Davison, Real-time monocular slam: Why fil-
ter?, in: Proc. of IEEE International Conference on Robotics and Automa-515

tion (ICRA), 2010.

[2] K. Underwood, K. Hemmert, Closing the Gap: CPU and FPGA Trends
in Sustainable Floating-Point BLAS Performance, in: Proc. IEEE Symp.
Field-Programmable Custom Computing Machines, 2004.

[3] NVIDIA, NVIDIA Jetson TX1 Supercomputer-on-Module Drives Next520

Wave of Autonomous Machines (2015).
URL http://devblogs.nvidia.com/parallelforall/

nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/

[4] G. Zhang, P. Vela, Optimally observable and minimal cardinality monoc-
ular slam, in: Proc. IEEE International Conference on Robotics and Au-525

tomation (ICRA), 2015.

[5] G. Bresson, T. Feraud, R. Aufrere, P. Checchin, R. Chapuis, Real time
monocular slam with low memory requirements, IEEE Intelligent Trans-
portation Systems Transactions and Magazine.

[6] G. Klein, D. Murray, Parallel tracking and mapping for small AR530

workspaces, in: Proc. 6th IEEE and ACM Int. Symp. on Mixed and Aug-
mented Reality, IEEE Computer Society, 2007.

[7] R. Mur-Artal, J. Montiel, J. Tardos, Orb-slam: a versatile and accurate
monocular slam system, IEEE Transactions on Robotics (ITRO).

[8] C. Forster, M. Pizzoli, D. Scaramuzza, Svo: Fast semi-direct monocular535

visual odometry, in: Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[9] G. Zhang, P. Vela, Good features to track for visual slam, in: Proc. IEEE
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.540

[10] T. Vidal-Calleja, C. Berger, J. Solà, S. Lacroix, Large scale multiple robot
visual mapping with heterogeneous landmarks in semi-structured terrain,
Robotics and Autonomous Systems 59 (9) (2011) 654–674.

[11] A. J. Davison, Real-time simultaneous localisation and mapping with a
single camera, in: Proc. Ninth IEEE International Conference on Computer545

Vision - Volume 2, ICCV ’03, 2003.

[12] J. Solà, T. Vidal-Calleja, J. Civera, J. Montiel, Impact of landmark
parametrization on monocular EKF-SLAM with points and lines, Inter-
national Journal on Computer Vision.

21

http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/
http://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines/


[13] J. Montiel, Unified inverse depth parametrization for monocular slam., in:550

Proc. Robotics: Science and Systems (RSS), 2006.

[14] C. Roussillon, A. Gonzalez, J. Solà, J. Codol, N. Mansard, S. Lacroix,
M. Devy, RT-SLAM : A Generic and Real-Time Visual SLAM Implemen-
tation., in: 8th International Conference on Computer Vision Systems,
Sophia Antipolis (France), 2011.555

[15] M. Fischler, R. Bolles, Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography,
Communications of the ACM.

[16] A. Gonzalez, J. Codol, M. Devy, A C-embedded Algorithm for Real-Time
Monocular SLAM., in: 18th International Conference on Electronics, Cir-560

cuits and Systems, Beyrouth, Liban, 2011.

[17] D. Botero, J. Piat, M. Devy, J. Boizard, An fpga accelerator for multispec-
tral vision-based ekf-slam, Proc. IROS Workshop on Smart CAmeras for
roBOTic applications (SCaBot), Vilamoura (Portugal).

[18] Xilinx, All Programmable FPGAs (2011).565

URL http://www.xilinx.com/content/xilinx/en/products/

silicon-devices/fpga/

[19] J. Piat, J. Piat, D. Marquez-Gamez, M. Devy, Embedded vision-based
SLAM: A model-driven approach, in: Proc. Conference on Design and
Architectures for Signal and Image Processing (DASIP), 2013.570

[20] B. Vincke, A. Elouardi, A. Lambert, Implementation of EKF-SLAM on a
Multi-Core Embedded System, in: IECON, Montreal, Canada, 2012.

[21] IEEE Standard for Binary Floating-Point Arithmetic, IEEE.

[22] V. Bonato, E. Marques, G. Constantinides, A Floating-Point Extended
Kalman Filter Implementation for Autonomous Mobile Robots, Journal of575

VLSI Signal Processing.

[23] E. Sarraf, M. Ahmed-Ouameur, D. Massicotte, Fpga design and imple-
mentation of direct matrix inversion based on steepest descent method,
in: Proc. 50th Midwest Symposium on Circuits and Systems (MWSCAS),
2007.580

[24] S. Qasim, A. Telba, A. AlMazroo, Fpga design and implementation of
matrix multiplier architectures for image and signal processing applications,
International Journal of Computer Science and Network Security (IJCSNS)
10 (2).

[25] S. Tiwari, S. Singh, N. Meena, Fpga design and implementation of matrix585

multiplication architecture by ppi-mo techniques, International Journal of
Computer Applications 80 (1) (2013) 19–22.

22

http://www.xilinx.com/content/xilinx/en/products/silicon-devices/fpga/
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/fpga/
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/fpga/
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/fpga/


[26] D. T. Tertei, J. Piat, M. Devy, FPGA design and implementation of a ma-
trix multiplier based accelerator for 3D EKF SLAM, in: Proc. Conference
on ReConFigurable Computing and FPGAs (ReConFig), 2014.590

[27] J. Solà, A. Monin, M. Devy, T. Lemaire, Undelayed initialization in bearing
only slam., in: Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2005, pp. 2499–2504.

[28] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press.

[29] J. Spivey, Fast, accurate call graph profiling, Oxford University Computing595

Laboratory.

[30] L. Zhuo, V. Prasanna, Scalable and Modular Algorithms for Floating-Point
Matrix Multiplication on Reconfigurable Computing Systems, in: IEEE
Transactions on Parallele and Distributed Systems, Vol. 18, No. 4, 2007.

[31] Z. Jovanovi, V. Milutinovi, FPGA accelerator for floating-point matrix mul-600

tiplication, IET Computers and Digital Techniques.

[32] A. Castillo-Atoche, D. Torres-Roman, Y. Shkvarko, Towards real time im-
plementation of reconstructive signal processing algorithms using systolic
array coprocessors, Journal of Systems Architecture (2010) 327–339.

23


	Introduction
	State of the art and motivation
	Previous work and contributions

	Visual EKF-SLAM analysis
	Design considerations
	Matrix multiplication tradeoffs on FPGAs
	Notion of systolic arrays on an FPGA
	Computational model mapping

	Visual EKF-SLAM block accelerator
	Design evaluation
	Multiplier Latency
	Resource usage
	Power consumption

	Experimental results
	Measured multiplication latencies
	Future work

	Conclusion

