
HAL Id: hal-01354873
https://hal.science/hal-01354873

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA design and implementation of a matrix multiplier
based accelerator for 3D EKF SLAM

Daniel Tortei, Jonathan Piat, Michel Devy

To cite this version:
Daniel Tortei, Jonathan Piat, Michel Devy. FPGA design and implementation of a matrix multiplier
based accelerator for 3D EKF SLAM. International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Dec 2014, Cancun, Mexico. �10.1109/ReConFig.2014.7032523�. �hal-01354873�

https://hal.science/hal-01354873
https://hal.archives-ouvertes.fr

978-1-4799-5944-0/14/$31.00 c©2014 IEEE

FPGA design and implementation of a matrix
multiplier based accelerator for 3D EKF SLAM

Daniel Törtei Tertei1,2,3, Jonathan Piat1,2 and Michel Devy1

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

3Faculty of Technical Sciences, Department of Computing and Automation, 21000 Novi Sad, Serbia
Email: {dtertei, jpiat, devy}@laas.fr

Abstract—In hw/sw co-design FPGAs are being used in order
to accelerate existing solutions so they meet real-time constraints.
As they consume less power than a standard microprocessor
and provide powerful parallel data processing capabilities, they
remain a highly optimizable tool and object of research within
an embedded system. In this paper we present an efficient
architecture for matrix multiplication accelerator conceived as
a systolic array co-processor to IBM’s PPC440 processor on
Virtex5 XC5VFX70T FPGA. Our design is afterwards synthe-
sized and wired as a large-scale matrix multiplier required for
an embedded version of a visual Simultaneous Localization and
Mapping (SLAM) algorithm based on Extended Kalman Filter
(EKF). This algorithm is implemented entirely as a System On a
programmable Chip (SoC) design on the FPGA; an EKF epoch
is executed at least 7.3 times faster than the pure software
implementation, maintaining and correcting 20 points in the
map. This optimization permits an EKF block throughput to be
increased from 6.07Hz to 44.39Hz, which exceeds our real-time
constraint of 30Hz.

INTRODUCTION

A standard visual SLAM algorithm is required on a mobile
system (here a robot) moving in an initially unknown environ-
ment. Simultaneously, it builds a map of this environment,
estimating the positions of landmarks observed in images, and
it estimates the robot position. All positions are expressed
in a selected world reference frame which is generally the
initial robot position. The robot must be equipped with a
camera and besides it may also have proprioceptive sensors
used to estimate its motion: odometry, Inertia Measurement
Unit (IMU). . . For outdoor applications, the SLAM algorithm
can take advantage of position estimates given by a Global
Positioning System (GPS).

For systems of limited size, typically for low cost aerial
robots, a state-space based predictive algorithm such as Ex-
tended Kalman filter (EKF) [1] is most often applied for pose
estimation. EKF runs in a two–part loop: i prediction of the
robot position from the motion estimates and ii correction
of the robot and landmarks positions with respect to the
world reference frame. An additional loop, iii initialization
of landmarks [2] is required due to physical displacement
of the platform. In order to construct a reliable map of a
complex environment, it is preferable to have many landmarks
memorized in the map after loop iii as in that way, SLAM
becomes more robust. On the other hand, introducing more
landmarks increases the algorithm’s computational complexity,
having as a consequence in loop ii larger scale matrix-matrix
multiplications.

Level of autonomy in autonomous driving systems and
mobile robotics - such as [3] - is limited by power consumption
of the platform used, which is most of the time a standard
microprocessor-based hardware acrhitecture. As a solution to
that issue, efficient embedded systems must be designed as to
provide high computational power at lower power consump-
tion rates [4]. Modern reconfigurable devices such as Field-
Programmable Gate Arrays (FPGAs) consist of a large number
of configurable slices, reconfigurable fabrics and embedded
Digital Signal Processing (DSP) blocks that can be used for
floating point applications. Compared to a standard PC and
GPU-based platforms, computationally extensive algorithms
may be also parallelized on FPGAs in floating-point precision
[5]. Although there are as well embedded GPUs on the
market today with similar power consumption to an FPGA,
algorithm-specific memory management techniques along with
reconfigurability give FPGAs an edge over embedded GPUs
in terms of computational efficiency.

The EKF-based visual SLAM algorithm makes use of
many matrix operations. So this paper presents mainly an
efficient architecture of a matrix multiplication accelerator
intended to be used in visual EKF-based mobile systems.

A. Related work and motivation

RT-SLAM [3] is a state of the art visual bearing-only
SLAM algorithm with one camera to observe the environment
and inertial sensors to estimate motion. It’s map contains
up to 20 Anchored Homogeneous Point (AHP)-parameterized
landmarks [6]. Combined active search strategy and one-point
RANSAC [7] are used to observe and match the landmarks.
Iin this case, the real-time constraint considers a monocular
SLAM with 20 consecutive landmark corrections. It’s C++
implementation runs at 60Hz on a PC with an Intel i7 processor
(only one core is used). Authors in [8] propose a simpli-
fied 3D SLAM algorithm with constant speed robot motion
function (no inertia data) and Inverse-Depth Point landmark
parameterization [9]. They present in [10] a coupled Virtex5
- Virtex6 FPGA [11] embedded architecture for C-SLAM that
runs at 24Hz when having 20 IDP landmarks in the map and
correcting half of them in each frame.

Our visual 3D SLAM algorithm is a monocular inertial
SLAM with GPS and IMU odometry that observes and corrects
20 AHP points. Active search strategy is used as well to match
the observed points and initialize new ones. As it is shown that
pose estimation can make up to 84% of execution time of an
EKF-based SLAM algorithm [12] and after the previous works

michel
Texte surligné

on the subject, our work is envisaged to improve the filtering
part of the SLAM.

In Section I an analysis of EKF-SLAM complexity is given
in order to deduce it’s computational bottleneck. In Section
II we introduce theoretical lower bounds on the latency of
any multiplication algorithm with regard to its feasibility on
an FPGA. A hardware architecture is proposed in Section III
which is afterwards evaluated in terms of latency, resource
usage and power consumption in Section IV. Experimental
results are given in Section V followed by a discussion. Finally,
Section VI concludes the paper.

I. EKF-SLAM COMPLEXITY

It is shown that computational requirements for an EKF
algorithm depend on the number of features N retained in the
map: LEKF = O(N2) [13]. Equations of the EKF are given
below.
Prediction loop:

x̂(t) = f(x̂(t−1), $(t)) (1)

P
(t)
1 = F (t)

x P
(t−1)
1 F (t)T

x + F (t)
ω QF (t)T

ω (2)

P
(t)
2 = F (t)

x P
(t−1)
2 (3)

Correction loop:

Z(t) = H(t)P
(t)
3 H(t)T +R (4)

K(t) = P
(t)
4 H(t)T (Z(t))−1 (5)

x̂(t) = x̂(t) +K(t)(y(t) − h(x̂(t−1))) (6)

P (t+1) = P (t) −K(t)Z(t)K(t)T (7)

After each frame acquisition we choose the best twenty
landmarks found by active search algorithm. Then we do a
prediction step over P : 1 - 3. Matrices P1, P2, P3 and P4

are sub-matrices of the cross covariance matrix P - Table I,
extracted in such a manner because of P ’s sparsity. Number
of corrected landmarks is set to 20 and thus we run twenty
correction loops in an EKF epoch, each with respect to features
of a single observed landmark (see Table I). The entire P
matrix is updated after each correction loop, as given in
equations 4 - 7. Matrix dimensions according to a visual EKF-
based SLAM algorithm are given in Table I. From Table I we
deduce Table II which shows the total amount of Floating-
Point Operations (FLOPs) that are executed in an EKF block
in function of the number of retained landmarks N in the visual
map.

Fact is that the most computationally expensive equations
occur in the correction loop which makes 85% of all the FLOPs
when N = 20 while only computing KZKT makes up to 64%
of time spent on all the equations in the EKF block. Highly
correlated response is obtained after we run a code profiling
tool [14] over the implemented EKF-SLAM code (which will
be more detailed in section V). Thus, a significant speed-up can
be made by leveraging the KZKT tri-matrix multiplication in
hardware and focusing on a design that efficiently manages
operations around the cross-covariance matrix of the entire
visual SLAM. The main reason of choosing to accelerate this
specific part of EKF-SLAM instead of implementing the whole
EKF block on the FPGA - as one related work suggests [15]

Table I: Description and matrices dimensions according to
our implementation of the EKF algorithm. N is the number
of landmarks retained in the map, 7 is the number of AHP
parameters of a landmark in the map, 6 is the number of GPS
and IMU related variables, c is the number of corrections made
in each EKF epoch and r is the state-space size of the robot.

Symbol Dimension Description
x̂ (7N + r) × 1 Robot and feature posi-

tions
f - Prediction function
P (7N + r) × (7N + r) Cross covariance matrix
P1 r × r Cross covariance matrix

with respect to robot po-
sition

P2 r × 7N Cross covariance matrix
with respect to all land-
marks

P3 (c + 1)7 × (c + 1)7 Cross feature-robot co-
variance matrix

P4 (7N + r) × (c + 1)7 Cross feature-feature and
robot-robot covariance
matrix

Fx r × r Jacobian to system state
Fω r × 6 Jacobian to system state

perturbation
Q 6 × 6 Permanent perturbation
Z 2c × 2c Covariance innovation
H 2c × (c + 1)7 Jacobian
R 2c × 2c Measurement noise
K (7N + r) × 2c Filter gain
y 2c × 1 Measured output
h - Observation function

Table II: Number of floating-point operations required for
execution of equations in the EKF algorithm when c = 1 and
r = 19. Equations 4 - 7 are executed 20 times for each of 20
landmark corrections.

Equation no. FLOP
1 361
2 32300
3 4921N
4 868
5 420N + 1140
6 49N + 135
7 196N2 + 1106N + 1558

Total 3920N2 + 36421N + 106681

- is because our entire SLAM algorithm is envisaged to run
as a System on a programmable Chip (SoC) configuration on
an FPGA which makes the area for possible acceleration logic
limited in terms of resources. Our approach is to conceive a
scalable solution that accelerates the most demanding parts of
software.

II. MATRIX MULTIPLICATION TRADEOFFS ON FPGAS

On a reconfigurable computing system the main tradeoff is
between optimal speed and resource utilization. When consid-
ering matrix multiplication algorithms on FPGAs, we have to
take into account their specific constraints as to latency L, total
storage size in words M and memory bandwidth requirement B

denoted by number of I/O operations performed in each cycle.
Based on a multiplication of two squared matrices of order
n, authors in [16] explain these tradeoffs focusing on lower
bound on achievable latency:

L ≥ max(L1, L2) ≥ max

(
n3

p
,

n3

√
MB

)
, (M ≤ n2) (8)

where p is the number of Processing Elements (PE), L1 is the
latency according to computation time and L2 is the latency
dependent on I/O bandwidth. Furthermore, they conclude that
an optimal latency is in this case of order O(n2) when having
p = O(n) PEs and M = O(n2) available storage size in
words. However, for large scale matrices the latency is of order
O(n

3

p). This is due to the fact that having FPGAs with limited
resources it is hardly possible to instantiate that many PEs.
A recent work [17] describes an architecture of linear array
PEs, similar to those in [16], but achieving an optimal latency
of order O(n2) by exploiting full duplex communication with
the host processor and at the cost of having it involved during
addition of intermediary values.

III. ARCHITECTURE OF THE CO-PROCESSOR

In this section we start by describing our motivation behind
a Systolic Array (SA) based platform for matrix multiplication.
A computational flow is given following the dimensionality
of our problem. Afterwards, the co-processor is put into the
context of the SoC design as an Intellectual Property (IP)
module.

A. Notion of systolic arrays on an FPGA

Systolic designs present a suitable solution when it comes
to allocating resources given the specific problem size of
our computational model. By identifying basic operations
(floating-point multiplication and addition) we conceive a
problem-specific computational unit called Processing Element
(PE). Systolic array is an an N-dimensional grid of PEs
that are fitted temporal data flows. Fitting is controlled by
sequencers so that data streams entering the ports of the array
are being processed in a pipeline. So, by exploiting structural
properties of an SA we are able to lower the dimension of the
computational model (which is three-dimensional for matrix-
matrix multiplications) and obtain an optimal throughput at
the cost of more complex control logic of data flows. Authors
in [18] present useful mapping techniques inherent to an
FPGA-based design. Because of speed issues, PEs are often
organized in a linear list structure - a special case of a one-
dimension systolic array in which they interconnect by short
connection wires. In general, broadcasting data on a larger grid
in an FPGA using a higher dimensional SA structure is not
recommended because of speed degradation due to the size
and routing complexity of FPGA-based floating-point units.

B. Computational model mapping

The tri-matrix multiplication is performed by taking into
account the identity:

KZKT = (ZTKT)TKT (9)

as in that way the larger matrix K has to be transposed only
once during the computation in order to avoid using buffers.

We instantiate1 two floating-point multipliers and a floating-
point adder that form our PE (Figure 1-C). Computational
flow is mapped onto four PEs that are not interconnected due
to dimensionality of the problem: A : (2, 2) × (2, 159) and
B : (159, 2)×(2, 159) as an individual PE structure computes a
new result cuv each clock cycle. Main multiplication operation
is itself performed in two matrix-matrix multiplication stages:
A : ZTKT (Figure 1-A) and B : (ZTKT)TKT (Figure 1-B).
Thus we do not have any additional internal buffers and drivers
instantiated in our SA which allows higher overall speed of the
design. Main sequencer is a state-machine control logic unit
which pre-buffers the input stream onto PEs - Figure 2. Its task
is to provide the SA with input data at each clock cycle in order
to maximize its throughput. For stage A it fetches matrices
ZT from First In First Out 1 (FIFO1)2 and KT from FIFO2.
During both stages A and B elements of KT are fetched
and stored in a circular fashion using asynchronous read/write
operation in FIFO2 structure. After initial SA latency it stores
the result in FIFO1. At stage B it fetches input matrices from
both FIFOs, loads them onto PEs, and after the results are
being computed it stores them directly into four tri-port 1W/2R
Block Random Access Memories (BRAMs)3. Along and after
tri-matrix multiplication we need to perform two additional
operations:

P (t) −K(t)Z(t)K(t)T (10)

P
(t+1)
l = P (t+1)

u (11)

which will be more detailed in subsection III-C. The first is
the floating-point subtraction and the second is a memory copy
operation that updates the lower triangle of the P matrix as it
has to be symmetric.

C. Co-processor as an embedded module in SoC

On Figure 3 we present the entire SoC with the co-
processor attached as a Processor Local Bus (PLB) peripheral
4. It functions as follows:

1) Processor PPC440 loads matrices K and Z onto a fast on
chip memory unit - the default dual port 1W/1R BRAM
- via its local bus from the external DDR2 SDRAM.

2) PPC440 sends a "go" signal to the IP.
3) Input sequencer loads matrices K and Z from the BRAM

and stores them into IP’s local FIFO structures. As they
are read in element-by-element, they are transposed at the
same time.

4) Main sequencer buffers ZT and KT and loads them onto
four PEs in each clock cycle.

5) After initial delay, four PEs give each clock cycle 2
columns (4 elements) of the resulting ZTKT matrix,
and they are stored by main sequencer into FIFO1.
Nothing is stored into FIFO2 as the KT matrix is
going to be reused again in second matrix multiplication
(ZTKT)TKT .

1We make use of Xilinx IP Core Generator v13.1 to instantiate the floating-
point arithmetic units.

2FIFOs are instantiated using Xilinx IP Core Generator v13.1 and imple-
mented as dual-port BRAMs. Each FIFO structure contains 4 FIFOs of depth
of 128 32-bit words.

31W/2R BRAMs are instantated on the FPGA. Read operation is done by
multiplexing the BRAM controller’s bus

4The system is designed using Xilinx Platform Studio v13.1

Figure 1: Our tiling of a systolic array with corresponding processing element structure, accommodated to our problem size I:
n = m = 2, s = 159, and II: n = s = 159, m = k = 2. In both cases e = ceil(m/2) and p = 4 because we are instantiating two
multiplying units in a PE and the SA consists of four PEs, respectively.

Figure 2: Tri-matrix multiplication architecture.

6) After having computed ZTKT , main sequencer buffers
the elements for second multiplication and loads them
onto PEs.

7) After initial delay, PEs compute 4 column elements of
the resulting tri-matrix multiplication (ZTKT)TKT .

8) Before updating a corresponding column element in
P matrix (Eq 10), the intermediary module "cross-
covariance updater" pre-fetches its old value from cor-
responding BRAM and subtracts it from the new value.
It contains four floating-point subtractors.

9) Main sequencer stores the subtracted four results into four
BRAMs, each containing the (4s + j)mod4 th element,
where s is the current store cycle count and j is the
number of the current row in a mod4 cycle. There are 40
store cycles as the resulting square matrix is of dimension
159.

10) Also, out of the scope of the SA and as an additional
submodule of the IP, we added a symmetry-copy BRAM
controller that performs the equation 11.

11) The co-processor asserts a "done multiplication" signal.
By polling, PPC440 gets notified of the execution of the
operations in equation 7.

The resulting cross-covariance matrix P makes in total 102kB
and after having finished the computations, we do not send it
back via local processor bus into DDR2 SDRAM as it would
generate large communicational delays. Instead, we preset
pointer values in external memory on each corresponding
element of the resulting matrix in the four output BRAMs.

IV. DESIGN EVALUATION

A. Multiplier Latency

After the analysis in section II we have:

L > L0 + L1 + L2 (12)

L1 > max

(
n

p
,

n√
nB

)
(13)

Figure 3: Our SoC implementation of the 3D EKF-SLAM
algorithm.

L2 > max

(
n2

p
,

n2

√
n2B

)
(14)

L1 and L2 are latencies after ZTKT and (ZTKT)TKT matrix
multiplications respectively. L0 is the latency due to processor-
IP communication bandwidth. Concerning the matrix multi-
plication part in the IP we have M1 =

√
n and M2 =

√
n2

because we have loaded all the corresponding matrices into
two FIFO structures so that they could be fetched at each
clock cycle. Furthermore, B = 20 owing to buffered input
data and parallel storing of the results. We can clearly see that
L1 > 159

4 = 39.75 and L2 > 1592

4 = 6320.25 as we have
n = 159 and p = 4 processing elements. All delays greater
than 6360 clock cycles are due to L0 and because of pushing
the two input matrices onto FIFOs.

B. Resource usage

In Table III an overview over resource usage of the SA-
based multiplier versus IP is given. The one-dimensional SA
consists of 8 deeply pipelined multipliers and 4 adders. In
terms of logical resources, our systolic array makes less than
one fourth of the entire IP while the corresponding control
logic, in consequence, makes more than three fourths: input
sequencer, main sequencer, cross-covariance updater with four
floating-point subtractors, a buffer and internal buffers with
32-bit delay lines - Figure 2. For speed issues, embedded
multipliers (DSP48Es) are instantiated in each PE of the SA
and in cross-covariance updater submodule. In Table IV we
show the ratio of resource usage of the IP (with instantiated
on-chip memory) versus all the available resources on FPGA
XC5VFX70T. A 36k BRAM is used for the input BRAM.
Eight 18k BRAMs are used for instantiation of the FIFO
structures (4 × 18k per FIFO) and thirty-two 36k BRAMs
are used to form the four memory banks5 for storing 102kB

5A 32-bit 8192 word memory bank is implemented as 8 × 36k BRAM,
instantiated in Xilinx Platform Studio v13.1. Each memory bank holds one
fourth of the multiplication product, that is 6400 32-bit elements.

Table III: 1-D systolic array resource usage.

Resources Add Mult Array % IP
LUTs 238 100 1752 22.63

Slice registers 272 77 1704 18.15
DSP48Es 2 2 24 100
Latency 9 5 14 -

FMAX [MHz] 367 295 255 -

Table IV: IP resource usage with memory.

Resources IP and BRAMs % FPGA
LUTs 8686 22

Slice registers 10198 25
DSP48Es 32 25

BRAMs [Kb] 1548 29
FMAX [MHz] 119 -

of resulting data.

C. Power consumption

The FPGA power consumption is estimated using Xilinx
XPower Analyzer tool. Apart from device static power (leak-
age), our design consumes only 2.164 - 1.469 = 0.695 [W]
which is much less when compared to embedded GPUs or
microprocessors.

V. EXPERIMENTAL RESULTS AND DISCUSSION

After having synthesized our design on the FPGA
XC5VFX70T, it’s maximal operating frequency is 119MHz.
Thus its peak throughput is ((p×3)+4)FLOP×119MHz =
1.9GFLOPs. Coupled to EKF-SLAM block it’s operating
frequency is that of processor’s local bus (100MHz).

Using Gprof we obtain Table V which shows the cycles
duration in each EKF block equation. We differentiate between
the case when using and when not our accelerator in order to
measure its impact. Below the horizontal line are the equations
related to the correction loop, which is run twenty times in
an EKF epoch. Some equations take longer to execute with
acceleration because of host processor that is accessing parts of
matrix P . The overall speed-up introduced by our co-processor
is 44.39 / 6.07 = 7.31 times over - Table VI - in the EKF
block. The SA multiplier reduced 38 times the number of

Table V: EKF equations cycles.

Equation no◦ Accelerator No accelerator
1 10000 10000
2 254500 250000
3 816000 750000
4 400 400
5 30100 27100
6 11200 11200
7 10500 399000
10 10 210000
11 6400 125000

Table VI: Co-processor efficiency at 100MHz.

Acc. IP Optim. KZKT cycles EKF [Hz]
Yes O3 10500 44.39
No O3 399000 6.07

Table VII: Design scalability for F ≥ 30Hz.

N GFLOPs PEs %DSPs %LUTs %SRs %BRAMs
20-21 1.6 4 25 22 25 23
22-31 3.2 8 50 28 31 50
32-39 5 12 75 34 38 71
40-45 6.4 16 100 40 44 93

cycles for tri-matrix multiplications in equation 7. For code
optimization settings we set the GNU Compiler Collection
(GCC) optimization level to be the maximal - O3 - in order to
measure the least performance increase. Moreover, a Floating
Point Unit (FPU) is instantiated on the FPGA that speeds up
floating-point operations using a direct communication chanel
with PPC440 (as seen on Figure 3).

The input sequencer takes 2 × 2 + 159 × 2 = 322 clock
cycles and the computational latency is L1 + L2 ∼ 6535
clock cycles6 which leaves us for the host processor-accelerator
communication latency L0 ∼ 10500 − 6857 = 3643 clock
cycles. Computational latency is close to the predicted value
in subsection IV-A from which we confirm that the algorithm is
optimal according to the used processing power. The scalability
of the design is given in Table VII focusing on maximum
number of landmark corrections under the real-time constraint,
the needed design performance in GFLOPs and resource con-
straints. Performance would be met if we instantiated multiple
designs - each time 4 PEs anew - and thus slightly changed the
control logic. The estimation is based on varying the parameter
N as we keep correcting each time a single landmark (c = 1)
in a loop.

VI. CONCLUSION

In this paper we proposed a tri-matrix hardware based
accelerator that leverages matrix multiplications and updates
the cross-covariance matrix in the correction loop of a 3D
EKF-based SLAM algorithm. It has been entirely implemented
on Virtex5 XC5VFX70T FPGA, supporting 3D-SLAM map
sizes of 20 points represented with AHP parameters. With
acceleration, an EKF epoch with 20 landmark corrections is
executed at 44.39Hz. Moreover, the scalability of the design
permits a real-time visual SLAM with up to 45 observed
and corrected landmarks. Its performance per watt measure
[19] is 1.9 / 2.164 = 0.88 [GFLOPs/W] which would not
change substantially if we were to include additional logic
(see Table VII) in order to implement the whole EKF block as
an embedded design on a FPGA. Thus the achieved coefficient
of ≈ 0.88 is, to our knowledge, above all other, embedded or
not, state-of-the-art EKF block modules.

VII. ACKNOWLEDGEMENT

This work has been performed by Daniel Törtei Tertei,
paid by the FUI-AAP14 project AIR-COBOT, co-funded by

6Validated by ChipScope Pro Analyzer

BPI France, FEDER and the Midi-Pyrénées region.

REFERENCES

[1] H. Strasdat, J. Montiel, and A. Davison, “Real-time monocular slam:
Why filter?” in Proc. of IEEE International Conference on Robotics
and Automation (ICRA), May 2010.

[2] J. Solà, A. Monin, M. Devy, and T. Lemaire, “Undelayed initialization
in bearing only slam.” in Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2005, pp. 2499–2504.

[3] C. Roussillon, A. Gonzalez, J. Solà, J. Codol, N. Mansard, S. Lacroix,
and M. Devy, “RT-SLAM : A Generic and Real-Time Visual SLAM
Implementation.” in 8th International Conference on Computer Vision
Systems, Sophia Antipolis (France), September 2011.

[4] D. Göhringer, M. Birk, Y. Dasse-Tiyo, N. Ruiter, M. Hübner, and
J. Becker, “Reconfigurable MPSoC versus GPU: Performance, Power
and Energy Evaluation,” in Proc. of IEEE International Conference on
Industrial Informatics (INDIN), Lisbon, Jully 2011.

[5] K. Underwood and K. Hemmert, “Closing the Gap: CPU and FPGA
Trends in Sustainable Floating-Point BLAS Performance,” in Proc.
IEEE Symp. Field-Programmable Custom Computing Machines, April
2004.

[6] J. Solà, T. Vidal-Calleja, J. Civera, and J. Montiel, “Impact of landmark
parametrization on monocular EKF-SLAM with points and lines,”
International Journal on Computer Vision, 2011.

[7] M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography,” Communications of the ACM, June 1981.

[8] A. Gonzalez, J. Codol, and M. Devy, “A C-embedded Algorithm for
Real-Time Monocular SLAM.” in 18th International Conference on
Electronics, Circuits and Systems, Beyrouth, Liban, December 2011.

[9] J. Montiel, “Unified inverse depth parametrization for monocular slam.”
in Proc. Robotics: Science and Systems (RSS), 2006.

[10] D. Botero, J. Piat, M. Devy, and J. Boizard, “An fpga accelerator for
multispectral vision-based ekf-slam,” Proc. IROS Workshop on Smart
CAmeras for roBOTic applications (SCaBot), Vilamoura (Portugal),
October 2012.

[11] Xilinx. (2011) All Programmable FPGAs. [Online]. Available:
http://www.xilinx.com/content/xilinx/en/products/silicon-devices/fpga/

[12] B. Vincke, A. Elouardi, and A. Lambert, “Implementation of EKF-
SLAM on a Multi-Core Embedded System,” in IECON, Montreal,
Canada, October 2012.

[13] S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics,” MIT Press,
2005.

[14] J. Spivey, “Fast, accurate call graph profiling,” Oxford University
Computing Laboratory, September 2003.

[15] V. Bonato, E. Marques, and G. Constantinides, “A Floating-Point Ex-
tended Kalman Filter Implementation for Autonomous Mobile Robots,”
Journal of VLSI Signal Processing, July 2008.

[16] L. Zhuo and V. Prasanna, “Scalable and Modular Algorithms for
Floating-Point Matrix Multiplication on Reconfigurable Computing
Systems,” in IEEE Transactions on Parallele and Distributed Systems,
Vol. 18, No. 4, April 2007.

[17] Z. Jovanović and V. Milutinović, “FPGA accelerator for floating-point
matrix multiplication,” IET Computers and Digital Techniques, May
2012.

[18] A. Castillo-Atoche, D. Torres-Roman, and Y. Shkvarko, “Towards real
time implementation of reconstructive signal processing algorithms
using systolic array coprocessors,” Journal of Systems Architecture, pp.
327–339, May 2010.

[19] G. Afonso, R. Ben Atitallah, A. Loyer, J. Dekeyser, N. Belanger,
and M. Rubio, “A prototyping environment for high performance
reconfigurable computing,” in Proc. of IEEE International Workshop on
Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),
Montpellier, France, June 2011.

[20] “IEEE Standard for Binary Floating-Point Arithmetic,” IEEE, 1984.

