Hélène Juillard 
  
Guillaume Chauvet 
  
Variance estimation under monotone non-response for a panel survey

 for several times, we consider an expansion estimator accounting for initial non-response and attrition, and propose a suitable variance estimator. It is then extended to cover most estimators encountered in surveys, including calibrated estimators, complex parameters and longitudinal estimators. The properties of the proposed variance estimator and of a simplified variance estimator are estimated through a simulation study. An illustration of the proposed methods on data from the ELFE survey is also presented.

Introduction

Surveys are not only used to produce estimators for one point in time (crosssectional estimations), but also to measure the evolution of parameters (longitudinal estimations), and are thus repeated over time. [START_REF] Kalton | Design for surveys over time[END_REF] distinguishes three broad families of sampling designs for such surveys: the repeated cross-sectional surveys, in which estimations are produced through samples selected independently at each time; the panel surveys, in which measures are repeated over time for units in a same sample; the rotating panel surveys, which correspond to panel surveys with a sub-sample of units being replaced at each time by another incoming sub-sample. In this paper, we are interested in estimation and variance estimation for panel surveys.

Among the panel surveys (a.k.a. longitudinal surveys, see [START_REF] Lynn | Methods for longitudinal surveys[END_REF], cohort surveys are particular cases where the units in the sample are linked by a common original event, such as being born on the same year for children in the ELFE survey (Enquête Longitudinale Française depuis l'Enfance), which is the motivating example for this work. ELFE is the first longitudinal study of its kind in France, tracking children from birth to adulthood [START_REF] Pirus | Constructing a cohort: Experience with the French Elfe project[END_REF]. Covering the whole metropolitan France, it was launched in 2011 and consists of more than 18,000 children whose parents consented to their inclusion. It will examine every aspect of these children's lives from the perspectives of health, social sciences and environmental health. The ELFE survey suffers from unit non-response, which needs to be accounted for by using available auxiliary information, so as to limit the bias of estimators. Though the ELFE survey will be used for illustration in this paper, nonresponse occurs in virtually any panel survey so that the proposed methods are of general interest; see for example [START_REF] Laurie | Strategies for reducing nonresponse in a longitudinal panel survey[END_REF] for the treatment of non-response of the British Household Panel Survey, or [START_REF] Vandecasteele | Attrition in panel data: The effectiveness of weighting[END_REF] for the European Community Household Panel.

Non-response is currently handled by modeling the response probabilities [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF] and by reweighting respondents with the inverse of these estimated probabilities. A panel sample may suffer from three types of unit non-response [START_REF] Hawkes | Modelling nonresponse in the national child development study[END_REF]: initial non-response refers to the original absence of selected units; wave non-response occurs when some units in the panel sample temporarily do not answer at some point in time, while attrition occurs when some units in the panel sample permanently do not answer from some point in time. Wave non-response was fairly uncommon in the first waves of the ELFE survey which were at our disposal. We therefore simplify this set-up by assuming monotone non-response, where only initial non-response and attrition occur.

There is a vast literature on the treatment of unit non-response for surveys over time, see [START_REF] Ekholm | Weighting via response modeling in the Finnish household budget survey[END_REF], [START_REF] Fuller | Regression weighting in the presence of nonresponse with application to the 1987-1988 national food consumption survey[END_REF], [START_REF] Rizzo | A comparison of some weighting adjustment methods for panel nonresponse[END_REF], [START_REF] Clarke | An application of non-ignorable non-response models for gross flows estimation in the British labour force survey[END_REF], [START_REF] Laaksonen | Survey estimation under informative nonresponse with follow-up[END_REF], [START_REF] Hawkes | Modelling nonresponse in the national child development study[END_REF], [START_REF] Rendtel | Weighting and calibration for household panels[END_REF], [START_REF] Laaksonen | Weighting for two-phase surveyed data[END_REF], [START_REF] Slud | Evaluation and selection of models for attrition nonresponse adjustment[END_REF], [START_REF] Zhou | An efficient method of estimation for longitudinal surveys with monotone missing data[END_REF]. Variance estimation for longitudinal estimators is considered in [START_REF] Tam | On covariance from overlapping samples[END_REF], [START_REF] Laniel | Variances for a rotating sample from a changing population[END_REF], [START_REF] Nordberg | On variance estimation for measures of change when samples are coordinated by the use of permanent random numbers[END_REF], [START_REF] Berger | Variance estimation for measures of change in probability sampling[END_REF], [START_REF] Skinner | Design effects in the analysis of longitudinal survey data[END_REF], [START_REF] Qualité | Variance estimation of changes in repeated surveys and its application to the Swiss survey of value added[END_REF] and [START_REF] Chauvet | Linearization versus bootstrap for variance estimation of the change between Gini indexes[END_REF], but with focus on the sampling variance only. Variance estimation in case of non-response weighting adjustments on cross-sectional surveys is considered in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF]. To the best of our knowledge, and despite the interest for applications, variance estimation accounting for nonresponse for panel surveys has not been treated in the literature, with the exception of [START_REF] Zhou | An efficient method of estimation for longitudinal surveys with monotone missing data[END_REF].

The paper is organized as follows. Basic notations are given in Section 2. In Section 3, we define the expansion estimator for a total and a corresponding variance estimator when the response probabilities are assumed to be known at each time. Though this case appears unrealistic in most applications, it is common practice in some surveys that the response probabilities are assumed to be known without error to simplify variance estimation. Consequently, the simplified set-up in Section 3 enables to propose a first simplified variance estimator. In Section 4, we consider the usual case when the response probabilities are unknown. A parametric model is postulated leading to estimated response probabilities and to a reweighted estimator, and a variance estimator is derived by following the approach in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF]. Some illustrations on the particular important case of the response homogeneity groups are also given. The proposed variance estimator is extended to cover calibrated estimators and complex parameters in Section 5. Longitudinal estimation is discussed in Section 6, and the proposed variance estimator is used to cover such cases. The variance estimators are compared in Section 7 through a simulation study, and an illustration on the ELFE data is proposed in Section 8. We draw some conclusions in Section 9. Some technical conditions useful to derive the properties of some estimators that we consider and the proofs are given in Appendix.

Notation

We are interested in a finite population U . A sample s 0 is first selected according to some sampling design p(•), and we assume that the first-order inclusion probabilities π i are strictly positive for any i ∈ U . This first sampling phase corresponds to the original inclusion of units in the sample. For example, the 2011 ELFE survey involved the selection of a sample of babies according to a cross-classified sampling design (CCS), where a sample of maternity units and a sample of days were selected independently, the survey being performed in the maternity units selected on the days selected [START_REF] Juillard | Estimation under cross-classified sampling with application to a childhood survey[END_REF]. Also, we note π ij for the probability that units i and j are selected jointly in the sample, and

∆ ij = π ij -π i π j .
We consider the case of a panel survey in which the sole units in the original sample s 0 are followed over time, without reentry or late entry units at subsequent times to represent possible newborns. We are therefore interested in estimating some parameter defined over the population U , for some study variable y taking the value y i for the unit i. The units in the sample s 0 are then followed at subsequent times δ = 1, . . . , t, and the sample is prone to unit non-response at each time. We note r δ i for the response indicator for unit i at time δ, and s δ for the subset of respondents at time δ.

We assume monotone non-response resulting in the nested sequence

s 0 ⊃ s 1 ⊃ ... ⊃ s t .
(2.1)

For δ = 1, . . . , t, we note

p δ i = P r (i ∈ s δ |s δ-1 ) (2.2)
for the response probability of some unit i to be a respondent at time δ.

We assume that the non-response mechanisms are ignorable, in the sense that the response probability p δ i at time δ can be explained by the variables observed at times 0, . . . , δ -1. Also, we assume that at any time δ the units answer independently of one another, and we note

p δ ij = P r (i, j ∈ s δ |s δ-1 ) = p δ i p δ j (2.3)
for the probability that two distinct units i and j answer jointly at time δ.

3 Estimation with known response probabilities

Expansion estimator

We are interested in estimating the total Y = i∈U y i . In a situation of full response, the Horvitz-Thompson estimator

Ỹ0 = i∈s 0 y i π i (3.1)
is design-unbiased for Y . In the situation of unit non-response, the subsample s t only is observed at time t. Assuming that the response probabilities at each time are known, the expansion estimator at time t is

Ỹt = i∈st y i π i p 1→t i with p 1→t i = t δ=1 p δ i . (3.2)
Under some conditions on the variable of interest, the sampling design and the response mechanisms, the expansion estimator Ỹt is design-unbiased and consistent for Y , see Appendix B. Here and elsewhere, the subscript δ will be used when the sample observed at time δ is used for estimation. The superscript δ will be used when we account for non-response at time δ, like for the probability p δ i of unit i to be a respondent at time δ.

Variance computation

At time t, we have

V ( Ỹt ) = V E( Ỹt |s t-1 ) + EV ( Ỹt |s t-1 ) (3.3) = V ( Ỹt-1 ) + EV ( Ỹt |s t-1 ). (3.4)
Using a proof by induction, we obtain

V ( Ỹt ) = V ( Ỹ0 ) + E t δ=1
V ( Ỹδ |s δ-1 ) .

(3.5)

The first term in the right-hand side of (3.5) is the variance due to the sampling design, that we note as V p ( Ỹt ), and that may be rewritten as

V p ( Ỹt ) = i,j∈U ∆ ij y i π i y j π j . (3.6)
The second term in the right-hand side of (3.5) is the variance due to nonresponse, that we note as V nr ( Ỹt ) and that may be rewritten as

V nr ( Ỹt ) = E t δ=1 V nrδ ( Ỹt ) (3.7) with V nrδ ( Ỹt ) = i∈s δ-1 p δ i (1 -p δ i ) y i π i p 1→δ i 2 .
(3.8)

Variance estimation

At time t, an estimator for the variance due to the sampling design V p ( Ỹt ) is

V p t ( Ỹt ) = i,j∈st ∆ ij π ij 1 p 1→t ij y i π i y j π j , (3.9) 
where p 1→t ij ≡ t δ=1 p δ ij . This estimator is unbiased for V p ( Ỹt ), provided that π ij > 0 for any units i = j ∈ U . An unbiased estimator for the variance due to non-response V nr ( Ỹt ) is

V nr t ( Ỹt ) = t δ=1 V nrδ t ( Ỹt ) (3.10) with V nrδ t ( Ỹt ) = i∈st p δ i (1 -p δ i ) p δ→t i y i π i p 1→δ i 2 .
(3.11)

By using the writing

V nrδ t ( Ỹt ) = i∈st y i π i 2 × 1 p 1→t i × 1 p 1→δ i - 1 p 1→δ-1 i ,
(3.12)

and by summing for δ = 1, . . . , t, the estimator for the variance due to nonresponse simplifies as .13) This leads to the global variance estimator at time t

V nr t ( Ỹt ) = i∈st 1 -p 1→t i (p 1→t i ) 2 y i π i 2 . ( 3 
Vt ( Ỹt ) = V p t ( Ỹt ) + V nr t ( Ỹt ). (3.14)
This variance estimator can be shown to be unbiased and consistent for V ( Ỹt ), see Appendix C.

Application to Response Homogeneity Groups

For the purpose of illustration, we consider the model of Response Homogeneity Groups (RHG) which is often used in practice. More precisely, we assume that at each time δ = 1, . . . , t, the sub-sample s δ-1 may be partitioned into C(δ -1) groups s c δ-1 , c = 1, . . . , C(δ -1), such that the response probability p δ i is constant inside a group. In such case, we simplify the notation as

p δ i = p δ c
for any i ∈ s c δ-1 .

(3.15)

Note that the number of groups, and the groups themselves, may vary over time.

If the expansion estimator is computed at time t = 1, the estimator in (3.13) for the variance due to non-response may be rewritten as

V nr 1 ( Ỹ1 ) = C(0) c=1 1 -p 1 c (p 1 c ) 2 i∈s 1 ∩s c 0 y i π i 2 , (3.16)
and the global variance estimator at time 1 is

V1 ( Ỹ1 ) = i,j∈s 1 ∆ ij π ij 1 p 1 ij y i π i y j π j + C(0) c=1 1 -p 1 c (p 1 c ) 2 i∈s 1 ∩s c 0 y i π i 2 .
(3.17)

If the expansion estimator is computed at time t = 2, the estimator in (3.13) for the variance due to non-response may be rewritten as

V nr 2 ( Ỹ2 ) = C(0) c=1 C(1) d=1 1 -p 1 c p 2 d (p 1 c p 2 d ) 2 i∈s 2 ∩s d 1 ∩s c 0 y i π i 2 .
(3.18)

A simple case occurs when the same system of RHGs is kept over time. In this case, the number of groups at each time is equal to C(0), and we obtain a nested sequence of sub-samples

s c 0 ⊃ s c 1 ⊃ ... ⊃ s c t for any c = 1, . . . , C(0). (3.19)
The variance estimator in (3.18) simplifies as

V nr 2 ( Ỹ2 ) = C(0) c=1 1 -p 1→2 c (p 1→2 c ) 2 i∈s 2 ∩s c 1 y i π i 2 , (3.20) with p 1→2 c = 2 δ=1 p c for c = 1, . . . , C(0).
4 Estimation with unknown response probabilities

Reweighted estimator

In practice, the response probabilities at each time are unknown and need to be estimated. We assume that at each time δ the probability of response is parametrically modeled as

p δ i = p δ (z δ i , α δ ) (4.1)
for some known function p δ (•, •), where z δ i is a vector of auxiliary variables observed for all the units in the subsample s δ-1 , and α δ denotes some unknown parameter. Following the approach in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF], we assume that the true parameter is estimated by αδ , which is the solution of the estimating equation

∂ ∂α i∈s δ-1 k δ i r δ i ln(p δ i ) + (1 -r δ i ) ln(1 -p δ i ) = 0, (4.2) 
with k δ i some weight of unit i in the estimating equation. Customary choices for these weights include k δ i = 1 and k δ i = π -1 i , see [START_REF] Fuller | Regression adjustment for non-response[END_REF], [START_REF] Beaumont | Calibrated imputation in surveys under a quasimodel-assisted approach[END_REF] and [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF].

The estimated response probability at time δ is

pδ i = p δ (z δ i , αδ ). (4.3)
The reweighted estimator at time t is

Ŷt = i∈st y i π i p1→t i with p1→t i = t δ=1 pδ i . (4.4)
It is obtained by substituting in (3.2) each unknown response probability p δ i with its estimator in (4.3).

Variance computation

Under some regularity assumptions on the response mechanisms and some regularity conditions on the p δ (•, •)'s, we obtain from Theorem 1 in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF] 

1 π i p1→t-1 i k t i π i p1→t-1 i p t i (h t i ) γ t (4.6) + r t i p t i (y i -k t i π i p1→t-1 i p t i (h t i ) γ t ) ,
and where for any δ = 1, . . . , t we denote by h δ i the value of

h δ i (α) = ∂ logit(p δ i )
/∂α evaluated at α = α δ , and

γ δ =    i∈s δ-1 k δ i p δ i (1 -p δ i )h δ i (h δ i )    -1 i∈s δ-1 1 -p δ i p1→δ-1 i h δ i y i π i . (4.7)
From (4.6), we obtain that

E Ŷlin,t |s t-1 = Ŷt-1 . (4.8)
Using a proof by induction, it follows from (4.5) and (4.8) that Ŷt is approximately unbiased for Y . Also, the variance of Ŷt may be asymptotically approximated by

V app ( Ŷt ) = V ( Ỹ0 ) + E t δ=1
V ( Ŷlin,δ |s δ-1 ) .

(4.9)

The first term in the right-hand side of (4.9) is the variance due to the sampling design, that we note as V p ( Ŷt ). It is identical to the variance due to the sampling design for the expansion estimator. The second term in the right-hand side of (4.9) is the variance due to non-response, that we note as V nr ( Ŷt ). From (4.6), this asymptotic variance is given by

V nr ( Ŷt ) = E t δ=1 V nrδ ( Ŷt ) , (4.10) 
where

V nrδ ( Ŷt ) = i∈s δ-1 p δ i (1 -p δ i ) y i π i p1→δ-1 i p δ i -k δ i (h δ i ) γ δ 2 . (4.11)
We now compare the variance due to non-response for the reweighted estimator with estimated response probabilities Ŷt , given in equation (4.10), and the variance due to non-response for the expansion estimator with known response probabilities Ỹt , given in equation (3.7). For each of its component δ = 1, . . . , t, the term V nrδ ( Ŷt ) in (4.11) includes a centering term

k δ i (h δ i ) γ δ , which is essentially a prediction of (π i p1→δ-1 i p δ i ) -1 y i by means of regressors h δ i .
This centering is due to the estimation of the response probabilities, and therefore does not appear in equation (3.7). It usually leads to a smaller variance than that of Ỹt ; see also [START_REF] Beaumont | Calibrated imputation in surveys under a quasimodel-assisted approach[END_REF], equation (5.7) and [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF], equation ( 17), for the case t = 1.

Variance estimation

At time t, an approximately unbiased estimator for the variance due to the sampling design V p ( Ŷt ) is

V p t ( Ŷt ) = i,j∈st ∆ ij π ij 1 p1→t ij y i π i y j π j , (4.12)
where p1→t ij ≡ t δ=1 pδ ij , and where

pδ ij = pδ i if i = j, pδ i pδ j otherwise.
(4.13)

Following equation ( 25) in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF], V nr ( Ŷt ) may be approximately unbiasedly estimated at time t by

V nr t ( Ŷt ) = t δ=1 V nrδ t ( Ŷt ) (4.14)
where

V nrδ t ( Ŷt ) = i∈st pδ i (1 -pδ i ) pδ→t i y i π i p1→δ i -k δ i ( ĥδ i ) γδ t 2 , (4.15) ĥδ i = h(z i , αδ ), (4.16) γδ t = i∈st k δ i pδ i (1 -pδ i ) pδ→t i ĥδ i ( ĥδ i ) -1 i∈st 1 -pδ i p1→t i ĥδ i y i π i . (4.17)
This leads to the global variance estimator at time t

Vt ( Ŷt ) = V p t ( Ŷt ) + V nr t ( Ŷt ). (4.18)
A simplified estimator of the variance due to non-response is obtained by ignoring the prediction terms k δ i ( ĥδ i ) γδ t for each of the δ = 1, . . . , t variance components. Mimicking the reasoning in Section 3.3, this leads to the simplified variance estimator

V nr t,simp ( Ŷt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i y i π i p1→δ i 2 = i∈st 1 -p1→t i (p 1→t i ) 2 y i π i 2 . (4.19)
This simplified variance estimator is computed as if in the reweighted estimator Ŷt , the response probabilities were known. It will tend to overestimate the variance due to non-response of Ŷt if the prediction term

k δ i (h δ i ) γ δ partly explains (π i p1→δ-1 i p δ i ) -1 y i .

Application to the logistic regression model

In the particular case when a logistic regression model is used at each time δ, the model (4.1) may be rewritten as

logit(p δ i ) = (z δ i ) α δ . (4.20)
We obtain ĥδ i = z δ i , and the estimator for the variance due to non-response is given by (4.14), with

V nrδ t ( Ŷt ) = i∈st pδ i (1 -pδ i ) pδ→t i y i π i p1→δ i -k δ i (z δ i ) γδ t 2 , (4.21) γδ t = i∈st k δ i pδ i (1 -pδ i ) pδ→t i z δ i (z δ i ) -1 i∈st 1 -pδ i p1→t i z δ i y i π i . (4.22)
If the reweighted estimator is computed at time t = 1, the estimator in (4.14) for the variance due to non-response may be rewritten as

V nr 1 ( Ŷ1 ) = V nr,1 1 ( Ŷ1 ) = i∈s 1 (1 -p1 i ) y i π i p1 i -k 1 i (z 1 i ) γ1 1 2 . (4.23)
If the reweighted estimator is computed at time t = 2, the estimator in (4.14)

for the variance due to non-response may be rewritten as

V nr 2 ( Ŷ2 ) = V nr,1 2 ( Ŷ2 ) + V nr,2 2 ( Ŷ2 ) = i∈s 2 (1 -p1 i ) p2 i y i π i p1 i -k 1 i (z 1 i ) γ1 2 2 + i∈s 2 (1 -p2 i ) y i π i p1 i p2 i -k 2 i (z 2 i ) γ2 2 2 .
(4.24)

Application to Response Homogeneity Groups

We consider the model of Response Homogeneity Groups introduced in Section 3.4. At each time δ = 1, . . . , t, the sub-sample s δ-1 is partitioned into C(δ -1) groups s c δ-1 , c = 1, . . . , C(δ -1). The response probabilities are assumed to be constant within the groups.

This model is equivalent to the logistic regression model in (4.20), with

z δ i = 1 i ∈ s 1 δ-1 , . . . , 1 i ∈ s C(δ-1) δ-1 . (4.25)
Solving the estimating equation (4.2) leads to the estimated response probabilities

pδ i = i∈s c δ-1 k δ i r δ i i∈s c δ-1 k δ i for i ∈ s c δ-1 . (4.26)
That is, the response probability is estimated by the weighted response rate inside the RHG.

We first consider the case when the reweighted estimator is computed at time t = 1. In the estimator of the variance due to non-response given in (4.23), the vector γ1 1 simplifies as

γ1 1 = i∈s 1 ∩s 1 0 y i π i p1 1 i∈s 1 ∩s 1 0 k 1 i , . . . , i∈s 1 ∩s C(0) 0 y i π i p1 C(0) i∈s 1 ∩s C(0) 0 k 1 i . (4.27)
After some algebra, the variance estimator in (4.23) may be rewritten as

V nr 1 ( Ŷ1 ) = C(0) c=1 (1 -p1 c ) (p 1 c ) 2 i∈s 1 ∩s c 0 y i π i -k 1 i j∈s 1 ∩s c 0 y j π j j∈s 1 ∩s c 0 k 1 j 2 .
(4.28)

We now consider the case when the reweighted estimator is computed at time t = 2. We focus on the simpler case when the same system of RHGs is kept over time. In the estimator of the variance due to non-response given in (4.24), the vectors γ1 2 and γ2 2 simplify as

γ1 2 = i∈s 2 ∩s 1 1 y i π i p1 1 i∈s 2 ∩s 1 1 k 1 i , . . . , i∈s 2 ∩s C(0) 1 y i π i p1 C(0) i∈s 2 ∩s C(0) 1 k 1 i , (4.29) γ2 2 = i∈s 2 ∩s 1 1 y i π i p1 1 p2 1 i∈s 2 ∩s 1 1 k 2 i , . . . , i∈s 2 ∩s C(0) 1 y i π i p1 C(0) p2 C(0) i∈s 2 ∩s C(0) 1 k 2 i . (4.30)
After some algebra, the variance estimator in (4.24) may be rewritten as

V nr 2 ( Ŷ2 ) = C(0) c=1 (1 -p1 c ) p2 c i∈s 2 ∩s c 1 y i π i p1 c -k 1 i j∈s 2 ∩s c 1 y j π j j∈s 2 ∩s c 1 k 1 j 2 + C(0) c=1 (1 -p2 c ) i∈s 2 ∩s c 1 y i π i p1 c p2 c -k 2 i j∈s 2 ∩s c 1 y j π j j∈s 2 ∩s c 1 k 2 j 2 . (4.31)
If we further assume that k δ i is constant over times δ = 1, 2, and may thus be rewritten as k i , the expression in (4.31) simplifies as

V nr 2 ( Ŷ2 ) = C(0) c=1 (1 -p1→2 c ) (p 1→2 c ) 2 i∈s 2 ∩s c 1 y i π i -k i j∈s 2 ∩s c 1 y j π j j∈s 2 ∩s c 1 k j 2 . (4.32) with p1→2 c = 2
δ=1 pδ c for c = 1, . . . , C(0). This simplification of the variance estimator can be extended to the reweighted estimator computed at time t. Assuming that the RHGs are kept over time, and that k δ i = k i for any δ = 1, . . . , t, the variance estimator in (4.14) may be written after some algebra as

V nr t ( Ŷt ) = C(0) c=1 (1 -p1→t c ) (p 1→t c ) 2 i∈st∩s c t-1 y i π i -k i j∈st∩s c t-1 y j π j j∈st∩s c t-1 k j 2 (4.33) with p1→t c = t δ=1 pδ c for c = 1, . . . , C(0).

Calibrated estimators and complex parameters

In most surveys, a calibration step is used to obtain adjusted weights which enable to improve the accuracy of total estimates. Such calibrated estimators are considered in Section 5.1. Also, more complex parameters than totals are frequently of interest, and a linearization step can be used for variance estimation. This is the purpose of Section 5.2. The estimation of complex parameters with calibrated weights is treated in Section 5.3. In each case, explicit formulas for variance estimation and simplified variance estimation are derived, and the bias of the simplified variance estimator is discussed.

Variance estimation for calibrated total estimators

Assume that a vector x i of auxiliary variables is available for any unit i ∈ s t , and that the vector of totals X on the population U is known. Then an additional calibration step [START_REF] Deville | Calibration estimators in survey sampling[END_REF]) is usually applied to Ŷt . It consists in modifying the weights

d ti = π -1 i (p 1→t i
) -1 to obtain calibrated weights w ti which enable to match the real total X, in the sense that i∈st w ti x i = X.

(5.1)

The new calibrated weights are chosen so as to minimize a distance function with the original weights, while satisfying (5.1). This leads to the calibrated estimator Ŷwt = i∈st w ti y i .

(5.2)

Under some mild conditions on the chosen distance function, on the sampling design and on the response mechanisms, it can be shown that the calibrated estimator Ŷwt is approximately unbiased for Y .

The estimated residual for the weighted regression of y i on x i is denoted by

e i = y i -bt x i (5.3) with bt = i∈st 1 π i p1→t i x i x i -1 i∈st 1 π i p1→t i x i y i .
(5.4)

Replacing in (4.12) the variable y i with e i yields the estimator of the variance due to the sampling design

V p t ( Ŷwt ) = i,j∈st ∆ ij π ij 1 p1→t ij e i π i e j π j
.

(5.5)

Similarly, replacing in (4.14) the variable y i with e i yields the estimator of the variance due to the non-response

V nr t ( Ŷwt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i e i π i p1→δ i -k δ i ( ĥδ i ) γδ te 2 (5.6) γδ te = i∈st k δ i pδ i (1 -pδ i ) pδ→t i ĥδ i ( ĥδ i ) -1 i∈st 1 -pδ i p1→t i ĥδ i e i π i . (5.7)
The global variance estimator for Ŷwt is

Vt ( Ŷwt ) = V p t ( Ŷwt ) + V nr t ( Ŷwt ).
(5.8)

The simplified estimator of the variance due to non-response is

V nr t,simp ( Ŷwt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i e i π i p1→δ i 2 = i∈st 1 -p1→t i (p 1→t i ) 2 e i π i 2 .
(5.9)

Here again, this simplified variance estimator ignores the prediction terms k δ i ( ĥδ i ) γδ te . If all the auxiliary variables that are explanatory for y i are included in the calibration, which means that the underlying calibration model is appropriate, then e i is essentially a white noise. The explanatory power of ĥδ

i for e i is then expected to be small, as well as the prediction term k δ i ( ĥδ i ) γδ te . In such case, we expect the bias of the simplified variance estimator to be small. If it is believed that some important auxiliary variables are not included in the calibration, then there may remain in e i some significant part of y i that may not been explained by the sole x i . In such case, there may remain some explanatory power for ĥδ i on e i , and the bias of the simplified variance estimator may be non-negligible. The same problem may occur in case of domain estimation, when the calibration variables do not include any auxiliary information specific of the domain. In such case, the calibration model is not appropriate for domain estimation and the bias of the simplified variance estimator may be non-negligible.

Variance estimation for complex parameters

We may be interested in estimating more complex parameters than totals. Suppose that the variable of interest y is q-multivariate, and that the parameter of interest is θ = f (Y ) with f (•) a known function. At time t, substituting Ŷt into θ yields the plug-in estimator θt = f ( Ŷt ). Under some mild regularity conditions on the function f , on the sampling design and on the response mechanisms (see [START_REF] Deville | Variance estimation for complex statistics and estimators: linearization and residual techniques[END_REF][START_REF] Goga | Composite estimation and linearization method for two-sample survey data[END_REF], the plug-in estimator θt is approximately unbiased for θ.

The estimated linearized variable of θ is

u i = {f ( Ŷt )} y i ,
(5.10) with f ( Ŷt ) the q-vector of first derivatives of f at point Ŷt . Replacing in (4.12) the variable y i with u i yields the estimator of the variance due to the sampling design

V p t ( θt ) = i,j∈st ∆ ij π ij 1 p1→t ij u i π i u j π j .
(5.11)

Similarly, replacing in (4.14) the variable y i with u i yields the estimator of the variance due to the non-response

V nr t ( θt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i u i π i p1→δ i -k δ i ( ĥδ i ) γδ tθ 2
(5.12)

γδ tθ = i∈st k δ i pδ i (1 -pδ i ) pδ→t i ĥδ i ( ĥδ i ) -1 i∈st 1 -pδ i p1→t i ĥδ i u i π i . (5.13)
The global variance estimator for θt is Vt ( θt ) = V p t ( θt ) + V nr t ( θt ).

(5.14)

The simplified estimator of the variance due to non-response is

V nr t,simp ( θt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i u i π i p1→δ i 2 = i∈st 1 -p1→t i (p 1→t i ) 2 u i π i 2 .
(5.15)

The bias of this simplified variance estimator will depend on the explanatory power for ĥδ i on the linearized variable u i .

Variance estimation for complex parameters under calibration

The calibrated weights w ti may also be used to obtain an estimator of the parameter θ at time t. Substituting Ŷwt into θ = f (Y ) yields the calibrated plug-in estimator θwt = f ( Ŷwt ). So as to obtain a variance estimator for θwt , we first compute the estimated linearized variable u i = {f ( Ŷt )} y i . Then, we compute

e θi = u i -bθt x i (5.16) with bθt = i∈st 1 π i p1→t i x i x i -1 i∈st 1 π i p1→t i x i u i .
(5.17)

Replacing in (4.12) the variable y i with e θi yields the estimator of the variance due to the sampling design

V p t ( θwt ) = i,j∈st ∆ ij π ij 1 p1→t ij e θi π i e θj π j
.

(5.18)

Similarly, replacing in (4.14) the variable y i with e θi yields the estimator of the variance due to the non-response

V nr t ( θwt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i e θi π i p1→δ i -k δ i ( ĥδ i ) γδ teθ 2 (5.19) γδ teθ = i∈st k δ i pδ i (1 -pδ i ) pδ→t i ĥδ i ( ĥδ i ) -1 i∈st 1 -pδ i p1→t i ĥδ i e θi π i . (5.20)
The global variance estimator for θwt is Vt ( θwt ) = V p t ( θwt ) + V nr t ( θwt ).

(5.21)

The simplified estimator of the variance due to non-response is

V nr t,simp ( θwt ) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i e θi π i p1→δ i 2 = i∈st 1 -p1→t i (p 1→t i ) 2 e θi π i 2 .
(5.22)

The bias of this simplified variance estimator will depend on the explanatory power for ĥδ i on e θi . Since the variable e θi is obtained as the residual in the regression of the linearized variable u i on the calibration variables x i , the explanatory power for ĥδ i on e θi is expected to be small in practice, and the bias of the simplified variance estimator is expected to be small as well.

As an illustration, we consider the model of Response Homogeneity Groups, and the simple case when RHGs are kept over time and when k δ i = k i for any δ = 1, . . . , t. In such case, the estimator of the variance due to the non-response in (5.19) may be rewritten as

V nr t ( θwt ) = C(0) c=1 (1 -p1→t c ) (p 1→t c ) 2 i∈st∩s c t-1 e θi π i -k i j∈st∩s c t-1 e θj π j j∈st∩s c t-1 k j 2 .
(5.23)

Longitudinal estimators

We may be interested in a change in parameters, such as the difference between the totals of a variable of interest measured at two different times u < t. Denoting by y ui and y ti the value of this variable of interest for unit i at times u and t, respectively, and denoting by Y (u) = i∈U y ui and Y (t) = i∈U y ti their totals, the parameter of interest is

∆(u → t) = Y (t) -Y (u). (6.1)
Since the variable y ui is measured on all sub-samples s u for u = u, . . . , t, there are several possible estimators for ∆(u → t). For u = u, . . . , t, we denote by

∆u t (u → t) = i∈st y ti π i p1→t i - i∈s u y ui π i p1→u i (6.2)
the estimator which makes use of the sample s t for the estimation of Y (t), and of the sample s u for the estimation of Y (u). The case u = u corresponds to the estimation of Y (u) on the largest available sub-sample, s u . The case u = t corresponds to the estimation of Y (u) and Y (t) on the common subsample, s t .

In the context of full response, several authors have recommended the estimator ∆tt (u → t) which makes use of the common sample only, if the variables y ui and y ti are strongly positively correlated; see [START_REF] Caron | Estimation dans les enquêtes répétées : application à l'enquête emploi en continu[END_REF], [START_REF] Qualité | Variance estimation of changes in repeated surveys and its application to the Swiss survey of value added[END_REF], [START_REF] Goga | Composite estimation and linearization method for two-sample survey data[END_REF], [START_REF] Chauvet | Linearization versus bootstrap for variance estimation of the change between Gini indexes[END_REF]. In our context, this choice may be heuristically justified as follows. For u < t, and by conditioning on the sub-sample s u , we obtain

V ∆u t (u → t) V    i∈s u y ti -y ui π i p1→u i    + EV i∈st y ti π i p1→t i s u , (6.3) V ∆tt (u → t) V    i∈s u y ti -y ui π i p1→u i    + EV i∈st y ti -y ui π i p1→t i s u . (6.4)
In equations ( 6.3) and (6.4), the first term in the right-hand side is identical. If the variables y ui and y ti are positively correlated, then the difference y ti -y ui is expected to be smaller than y ti , so that the second term in the right-hand side of (6.4) is expected to be smaller than the second term in the right-hand side of (6.3). Therefore, the estimator ∆tt (u → t) based on the common sample is expected to be more efficient in terms of variance.

The results of a small simulation study in Section 7.2 support this heuristic reasoning. Therefore, we focus only in this Section on the estimator ∆tt (u → t) for the estimation of ∆(u → t). Replacing in (4.12) the variable y i with y ti -y ui yields the estimator of the variance due to the sampling design

V p t ∆tt (u → t) = i,j∈st ∆ ij π ij 1 p1→t ij (y ti -y ui ) π i (y tj -y uj ) π j . (6.5)
Similarly, replacing in (4.14) the variable y i with y ti -y ui yields the estimator of the variance due to the non-response

V nr t ∆tt (u → t) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i y ti -y ui π i p1→δ i -k δ i ( ĥδ i ) γδ t∆ 2 (6.6) with γδ t∆ = i∈st k δ i pδ i (1 -pδ i ) pδ→t i ĥδ i ( ĥδ i ) -1 i∈st 1 -pδ i p1→t i ĥδ i y ti -y ui π i . (6.7)
The global variance estimator for ∆tt (u

→ t) is Vt ∆tt (u → t) = V p t ∆tt (u → t) + V nr t ∆tt (u → t) . (6.8)
Variance estimation for measures of change is also considered in [START_REF] Berger | Variance estimation for measures of change in probability sampling[END_REF], [START_REF] Qualité | Variance estimation of changes in repeated surveys and its application to the Swiss survey of value added[END_REF], [START_REF] Goga | Composite estimation and linearization method for two-sample survey data[END_REF], [START_REF] Chauvet | Linearization versus bootstrap for variance estimation of the change between Gini indexes[END_REF], among others.

The simplified estimator of the variance due to non-response is

V nr t,simp ( ∆tt (u → t)) = t δ=1 i∈st pδ i (1 -pδ i ) pδ→t i y ti -y ui π i p1→δ i 2 = i∈st 1 -p1→t i (p 1→t i ) 2 y ti -y ui π i 2 .
(6.9)

If the variables y ti and y ui are strongly positively correlated, the explanatory power for ĥδ i on y ti -y ui is expected to be small in practice. In such case, the bias of the simplified variance estimator is also expected to be small.

A simulation study

In this Section, several artificial populations are generated according to some superpopulation model described in Section 7.1. In Section 7.2, we consider several estimators for a change between totals, which illustrates the heuristic reasoning in Section 6. A Monte Carlo experiment is then presented in Section 7.3, and several variance estimators for estimating a total, a ratio or a parameter change are compared. The results from Tables 1 and2 are readily reproducible using the R code provided in the supplementary material of the present paper.

Simulation set-up

We consider seven populations of size 10, 000, each containing three variables of interest y 1i , y 2i and y 3i observed at times t = 1, 2 and 3, respectively. The variables of interest are generated according to the superpopulation model

y 1i = α 0 + α a x ai + α b x bi + σu 1i , (7.1) y 2i = ρy 1i + σu 2i , (7.2) y 3i = ρy 2i + σu 3i . (7.
3)

The auxiliary variables x ai and x bi are independently generated from a Gamma distribution with shape and scale parameters 2 and 1. Two other auxiliary variables x ci and x di are also independently generated from a Gamma distribution with shape and scale parameters 2 and 1. These two last variables are not related to the variables of interest. The variables u 1i , u 2i and u 3i are independently generated according to a standard normal distribution. We use α 0 = 10, α a = α b = 5 and σ = 10, which leads to a coefficient of determination (R 2 ) in model ( 7.1) approximately equal to 0.50. The parameter ρ is set to 0 for population 1, 0.2 for population 2, 0.4 for population 3, 0.6 for population 4, 0.8 for population 5, 1.0 for population 6 and 1.2 for population 7.

For each population, a simple random sample s 0 of size n = 1, 000 is selected. Three non-response phases are then successively simulated. At each phase δ = 1, 2, 3, the sub-sample of respondents s δ is obtained by Poisson sampling with a response probability p δ i for unit i, defined as

logit(p δ i ) = β δ0 + β δa x ai + β δb x bi . (7.4)
We use β δ0 = -1 at each phase δ = 1, 2, 3. For δ = 1, we use β 1a = β 1b = 0.60, which corresponds to an average response rate of 0.75. For δ = 2, 3, we use β δa = β δb = 0.75, which corresponds to an average response rate of 0.81. Inside each sub-sample s δ , the estimated response probabilities pδ i are obtained by means of an unweighted logistic regression.

Comparison of estimators for a difference of totals

In this Section, we are interested in comparing the accuracy of two estimators for a difference of totals ∆(u → t) for u = 1 and t = 2, for u = 1 and t = 3, and for u = 2 and t = 3. We consider the estimator ∆ut (u → t), which makes use of the whole appropriate sub-samples for variables y ui and y ti , and the estimator ∆tt (u → t), which makes use of the common sub-sample only. These two estimators are compared through the relative difference (RD) of their variances, which are defined as follows:

RD(1 → 2) = 100 × V ∆12 (1 → 2) -V ∆22 (1 → 2) V ∆22 (1 → 2) , (7.5) RD(1 → 3) = 100 × V ∆13 (1 → 3) -V ∆33 (1 → 3) V ∆33 (1 → 3) , (7.6) RD(2 → 3) = 100 × V ∆23 (2 → 3) -V ∆33 (2 → 3) V ∆33 (2 → 3) . (7.7)
The true variances are replaced by their Monte Carlo approximation, obtained by repeating B = 100, 000 times the sample selection and the non-response phases.

The results are presented in Table 1. A positive RD indicates that the use of the common sample only leads to a more accurate estimator. As could be expected, the RD increases in all cases with ρ, that is, when the correlation between y ti and y ui increases. For u = 1 and t = 2, and for u = 2 and t = 3, the estimator ∆tt (u → t) is more accurate for ρ greater than 0.6. For u = 1 and t = 3, ∆tt (u → t) is more accurate for ρ greater than 0.8. 

ρ RD(1 → 2) RD(1 → 3) RD(2 → 3) 0.0 -

Performances of the variance estimators

In this Section, we consider the artificial population 5 (ρ = 0.8) generated as described in Section 7.1. The sample selection by means of simple random sampling of size n = 1, 000 and the three non-response phases are applied B = 5, 000 times. We are interested in evaluating the variance estimators and the simplified variance estimators, in case of estimating a total, a ratio or a change in totals.

As for the total Y , we consider at each time t = 1, 2, 3, three estimators. The estimator Ŷt makes use of the weights

d ti = π -1 i (p 1→t i ) -1 .
The estimator Ŷwt makes use of the weights w i , obtained by calibrating the weights d ti on the population size and on the totals of the auxiliary variables x ai and x bi . In view of model (7.1), the working model underlying this calibration is wellspecified. Finally, the estimator Ŷ wt makes use of the weights wi , obtained by calibrating the weights d ti on the population size and on the totals of the auxiliary variables x ci and x di . In view of model (7.1), the working model underlying this calibration is therefore not correctly specified. The proposed variance estimator for Ŷt is obtained from equation (4.18), and the simplified variance estimator is obtained by plugging in (4.18) the simplified variance estimator for non-response given in (4.19). The proposed variance estimators for Ŷwt and Ŷ wt are obtained from equation (5.8), and the simplified variance estimators are obtained by plugging in (5.8) the simplified variance estimator for non-response given in (5.9).

We are also interested in estimating the ratio R t = Y t /Y 1 for t = 2, 3. At each time t, we consider three estimators. The estimator Rt makes use of the weights d i . The proposed variance estimator is obtained from equation (5.14), by using the estimated linearized variable u i = ( Ŷ1 ) -1 (y ti -Rt y 1i ). The simplified variance estimator is obtained by plugging in (5.14) the simplified variance estimator for non-response given in (5.15). The estimators Rwt and R wt make use of the calibrated weights w i and wi . The proposed variance estimators are obtained from equation (5.21). The simplified variance estimators are obtained by plugging in (5.21) the simplified variance estimator for non-response given in (5.22).

Finally, we are interested in estimating the change in totals ∆(1 → t) for t = 2, 3. At each time t, we consider three estimators. The estimator ∆tt (1 → t) makes use of the weights d i . The proposed variance estimator is obtained from equation (6.8), and the simplified variance estimator is obtained by plugging in (6.8) the simplified variance estimator for non-response given in (6.9). The estimators ∆tt,w (1 → t) and ∆tt, w(1 → t) make use of the calibrated weights w i and wi . The proposed variance estimators are obtained from equation (6.8), by replacing y ti -y ui by the estimated residual for the weighted regression of y ti -y ui on the calibration variables. The simplified variance estimators are obtained by plugging in (6.8) the simplified variance estimator for non-response given in (6.9).

For a proposed variance estimator V , we computed the Monte Carlo Percent Relative Bias

RB mc ( V ) = 100 × B -1 B b=1 V (b) -V V
where the global variance V was approximated through an independent set of 100, 000 simulations. So as to evaluate the contribution of some component Va into the proposed variance estimator V , we also computed the contribution (in percent)

CONTR mc ( Va ) = 100 × 1 B B b=1 V (b) a 1 B B b=1
V (b) .

So as to evaluate the simplified variance estimator for the non-response V nr simp , we also computed the Monte Carlo Percent Relative Bias RB mc ( V nr simp ) = 100 ×

B -1 B b=1 V (b) simp -V nr V nr ,
where the variance V nr due to non-response was approximated through an independent set of 100, 000 simulations.

The simulation results are presented in Table 2. The proposed variance estimator is almost unbiased in all cases. As could be expected, the contribution of the variance due to the sampling design decreases with time, as the number of respondents decreases and as the variance due to non-response becomes larger. The simplified variance estimator is highly biased for the variance due to non-response in case of Ŷt . The bias decreases quickly with time, but remains large at time t = 3. The simplified variance estimator is almost unbiased for a calibrated estimator when the working model is adequately specified, but is severely biased otherwise. This is consistent with our reasoning in Section 5.1. The simplified variance estimator is almost unbiased for the three estimators of the ratio, and for the calibrated estimators of the change in totals. In case of the non-calibrated estimator for the change in totals, the bias can be as high as 30 % .

Illustration

In this Section, we aim at illustrating the results previously obtained on a real data set from the ELFE survey. Covering the whole metropolitan France, it was launched in 2011 and consists of more than 18,000 children whose parents consented to their inclusion. The population of inference consists of infants born in one of the 544 French maternity units during 2011, except very premature infants.

An original sample s 0 of about 35, 600 infants was originally selected when the babies were just a few days old and were still at the maternity unit. The sample was selected using a cross-classified sampling design [START_REF] Skinner | Cross-classified sampling: some estimation theory[END_REF][START_REF] Juillard | Estimation under cross-classified sampling with application to a childhood survey[END_REF]. A sample of days and a sample of maternity units were independently selected, and both sample selections may be approximated by stratified simple random sampling (STSI). The sample sizes inside strata are provided in Tables 3 and4. The sample consisted in all the infants born during one of the 25 selected days in one of the 320 selected maternity units. Table 4: Population and sample strata sizes for the days design.
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Among the 35, 600 infants originally selected, a total of 18, 329 face-to-face interviews were completed with their families, which represents a response rate of 51 % . This led to the subsample s 1 after accounting for non-response. The weights at time t = 1 were computed on the basis of the original sampling weights, adjusted in two steps. First, response probabilities were estimated by means of a model of Response Homogeneity Groups (RHGs), with 20 RHGs defined by using a logistic regression model with explanatory variables Age of the mother, Gemellary identity and Season of birth. Then, a calibration by means of the raking ratio method was performed on the binary variables Born within marriage, Immigrant mother and Gemellary identity.

When the children reached the age of two months, the parents had the first telephone interview with a response rate of 87 % . This leads to the subsample s 2 . The weights at time t = 2 were computed on the basis on the weight obtained at time t = 1, with a two-step adjustment. First, response probabilities were estimated by means of 20 RHGs, defined by using a logistic regression with explanatory variables Age of the mother, Mother nationality and Father present at childbirth. Then, a calibration by means of the raking ratio method was performed on the same calibration variables as at time t = 1.

When the children were one year old, the parents were contacted by phone with a response rate of 77 % . This led to the subsample s 3 . The weights at time t = 3 were computed on the basis on the weights obtained at time t = 2, with a two-step adjustment similar to that realized at time t = 2. The parents were expected to be also interviewed when the infants would reach the age of two, three and half years and five and half years, but at the time when the paper was written, the three first waves only were available.

We considered three variables of interest: Breastfeeding exclusivity at the childbirth, at two month, at one year. For each of these variables, we computed the estimator Ŷt from equation (4.4) and the estimated variance Vt ( Ŷt ) from the equation (4.18). We also computed the estimated coefficient of variation (in percent), defined as

CV t Ŷt = 100 × Vt Ŷt Ŷt . (8.1)
For each component Vta in the estimated variance Vt , we computed its contribution (in percent) defined as

CONTR( Vta ) = 100 × Vta -Vt Vt . (8.2)
We also computed the simplified variance estimator for non-response V nr t,simp

given in (4.19), and the relative difference (in percent) with the approximately unbiased variance estimator V nr defined as

RD( V nr simp ) = 100 × V nr simp -V nr t V nr t . (8.3)
The results are given in the upper left of Table 5. For each of the three variables of interest, we also computed the calibrated estimator Ŷwt , and the same indicators. They are given in the upper right of Table 5. Finally, for each variable interest, we computed the estimator Rt and the calibrated estimator Rwt for the percentage of breastfeeding among all the children. The same indicators were computed. They are presented in the lower part of Table 5. As observed in the simulation study, the RD of the simplified variance estimator for non-response can be large in case of the estimator of the total without calibration, but the bias decreases with time. The bias appears as negligible for the calibrated estimator of the total, and for both estimators of the ratio. 

Conclusion

In this paper, we considered variance estimation accounting for weighting adjustments in panel surveys. We proposed both an approximately unbiased variance estimator and a simplified variance estimator for estimators of totals, complex parameters and measures of change, which covers most cases that may be encountered in practice. Our simulation results indicate that the proposed variance estimator performs well in all cases considered. The simplified variance estimator tends to overestimate the variance of the expansion estimator for totals, and to overestimate the variance for calibrated estimators of totals when the calibration variables lack of explanatory power for the variable of interest. However, the simplified variance estimator performs well for the estimation of ratios and change in totals with calibrated weights, even if the underlying calibration model is not appropriate for the study variable.

The assumption of independent response behaviour is usually not tenable for multi-stage surveys, since units within clusters tend to be correlated with respect to the response behaviour. In this context, estimation of response probabilities based upon conditional logistic regression in the context of correlated responses has been studied by [START_REF] Skinner | Inverse probability weighting for clustered non-response[END_REF], see also [START_REF] Kim | Calibrated propensity score method for survey nonresponse in cluster sampling[END_REF]. Extending the present work in the context of correlated response behaviour is a challenging problem for further research.

H3: There exists some constant C 3 > 0 such that sup i =j∈U |π -1 ij ∆ ij | ≤ C 3 n -1 . H4: There exists some constant C 4 such that N -1 i∈U y 4 i ≤ C 4 .

H5: There exists some constant C 5 such that at any time δ = 1, . . . , t and for any unit i we have (p δ i ) -1 ≥ C 5 .

H6: There exists some constant C 6 > 0 such that V ( Ỹ0 ) ≥ C 6 N 2 n -1 , and we have (V ( Ỹ0 )) -1 V p 0 ( Ỹ0 ) → P r 1, where V p 0 ( Ỹ0 ) is defined in equation (3.9) and → P r stands for the convergence in probability.

H7: There exists some constant C 7 > 0 such that V nr ( Ỹt ) ≥ C 7 N 2 n -1 , where V nr ( Ỹt ) is defined in equation (3.7).

The assumptions (H1), (H2) and (H3) are classical in survey sampling, see for example [START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF]. It is assumed in (H5) that at any time, the response probabilities are bounded below; this assumption is similar to condition (R.3) in [START_REF] Kim | Nonresponse weighting adjustment using estimated response probability[END_REF]. It is assumed in (H6) that the variance of Ỹ0 does not vanish and has the usual order of magnitude N 2 n -1 . It is also assumed in (H6) that the variance estimator V p 0 ( Ỹ0 ) is consistent for V ( Ỹ0 ); this second part of the assumption could be avoided by additional assumptions on the higher order inclusion probabilities, see for example [START_REF] Breidt | Local polynomial regresssion estimators in survey sampling[END_REF] and [START_REF] Boistard | Approximation of rejective sampling inclusion probabilities and application to high order correlations[END_REF]. It is assumed in (H7) that the variance of Ỹt due to non-response has the usual order of magnitude N 2 n -1 .

B Consistency of the expansion estimator Ỹt

In this Section, we prove that under assumptions (H1)-( H5 Ỹt ) = V (N -1 Ỹ0 ) + V nr (N -1 Ỹt ). Also, we have

V (N -1 Ỹ0 ) = N -2 i∈U π i (1 -π i ) y i π i 2 + N -2 i =j∈U ∆ ij y i π i y j π j . (B.3)
After some algebra, we obtain that From assumption (H6), it follows that t δ=1 { V p δ ( Ỹδ ) -V p δ-1 ( Ỹδ-1 )} V p ( Ỹt ) → P r 0, (C.9) which, along with (C.5), leads to the first part of (C.3).

V V p δ ( Ỹδ ) |s δ-1 = i∈s δ-1 p δ i (1 -p δ i ) (p 1→δ i ) 2 (1 -π i ) 2 y i π i 4 + 4 i =j∈s δ-1 p δ i (1 -p δ i ) (p 1→δ i ) 2 (1 -π i ) y i π i 3 × p δ j p 1→δ j ∆ ij π ij y j π j + 4 i =j =k∈s δ-1 p δ i (1 -p δ i ) (p 1→δ i ) 2 y i π i 2 × p δ j p 1→δ j ∆ ij π ij y j π j × p δ k p 1→δ k ∆ ik π ik y k π k . (C.
We now consider the second part of (C.3). We have

E V nr t ( Ỹt ) -V nr ( Ỹt ) 2 = V i∈st 1 -p 1→t i (p 1→t i ) 2 y i π i 2 .
(C.10)

From Assumptions (H1), (H2), (H4) and (H5), we may find some constant C such that

E V nr t ( Ỹt ) -V nr ( Ỹt ) 2 ≤ CN 5 n -4 , (C.11)
which, along with Assumption (H7), leads to the second part of (C.3). This completes the proof.

  follows from the fact that inclusion probabilities and response probabilities are bounded below from 0. Therefore, we focus on (B.2). From equation (3.5), we have V (N -1

  7)Under assumptions (H1)-(H5), we obtain from (C.6) and (C.7) that there exists some constant C such that E

Table 1 :

 1 Relative Difference (RD) between two estimators for a difference of totals

		12	-27	-13
	0.2	-09	-25	-11
	0.4	-04	-20	-03
	0.6	05	-09	11
	0.8	17	11	39
	1.0	30	33	83
	1.2	40	46	127

Table 2 :

 2 Relative bias of a global variance estimator, relative contribution to the estimators of variance components and relative bias of a simplified variance estimator for the variance due to non-response for the estimation of a total, a ratio or a change in totals with three sets of weights

	33	-	49	32	-	50	33

Table 3 :

 3 Population and sample strata sizes for the maternity units design.

	Strata Strata size Sample size
	h	N Dh	n Dh
	1	91	4
	2	91	6
	3	91	7
	4	92	8
	Total	365	25

Table 5 :

 5 Estimates for a total and a ratio, variance estimates, estimated coefficient of variation, relative contributions of variance components and relative difference of a simplified variance estimator for some variables in the ELFE survey

	Breastfeeding		t = 1	t = 2	t = 3	t = 1	t = 2	t = 3
	exclusivity		maternity 2 months	1 year	maternity 2 months	1 year
			without calibration		with calibration	
	Ŷt		402409	209009	22658	415272	214262	23276
	Vt (•)		8.51E+07 2.32E+07 1.58E+06 5.95E+06 6.93E+06 1.21E+06
	ĈV t (•) (%)		2.3	2.3	5.6	0.6	1.2	4.7
	CONTR( V p t )		94	78	42	28	34	25
	CONTR( V nr1 t CONTR( V nr2 t CONTR( V nr3 t	) ) )	6 --	17 5 -	32 10 16	72 --	51 15 -	42 13 21
	RD( V nr simp )		91	31	3	1	2	0
	Rt (%)		59.0	30.6	3.3	59.4	31.0	3.4
	V ( Rt )		1.34E-05 1.50E-05 2.58E-06	1.28E-05 1.48E-05 2.60E-06
	ĈV( Ŷt ) (%)		0.6	1.3	4.8	0.6	1.2	4.7
	CONTR( V p t )		31	34	24	28	34	25
	CONTR( V nr1 t CONTR( V nr2 t CONTR( V nr3 t	) ) )	69 --	51 15 -	42 13 21	72 --	51 15 -	41 13 21
	RD( V nr simp )		2	2	0	1	2	0

Supplementary Materials

The three supplemental files are contained in a single archive. readme: description of the supplemental files. (txt file)

CodeR Functions: basic functions required to calculate estimators. (R file)

CodeR Tables: commands that calculate and display the results in Table 1 and Table 2 (call the CodeR Functions). (R file)

It follows from Assumptions (H1)-(H4) that there exists some constant C > 0 such that V (N -1 Ỹ0 ) ≤ Cn -1 . Also, it follows from Assumption (H1)-(H5) that there exists some constant C such that

is lower than Cn -1 . This leads to (B.2).

C Consistency of the variance estimator Vt ( Ỹt )

In this Section, we prove that under assumptions (H1)-(H7) we have

and Vt ( Ỹt )

Equation (C.1) follows from the fact that from (H1)-( H3), the second-order inclusion probabilities are bounded below from 0 and from (H5), the response probabilities are bounded below from 0. Therefore, we focus on (C.2) for which it is sufficient to prove that V p t ( Ỹt ) V p ( Ỹt ) → P r 1 and

We first focus on the first part of equation (C.3). We can write

From assumption (H6), we obtain