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Abstract

Panel surveys are frequently used to measure the evolution of param-
eters over time. Panel samples may suffer from different types of unit
non-response, which is currently handled by estimating the response
probabilites and by reweighting respondents. In this work, we con-
sider estimation and variance estimation under unit non-response for
panel surveys. Extending the work by Kim and Kim (2007) for sev-
eral times, we consider an expansion estimator accounting for initial
non-response and attrition, and propose a suitable variance estimator.
It is then extended to cover most estimators encountered in surveys,
including calibrated estimators, complex parameters and longitudinal
estimators. The properties of the proposed variance estimator and
of a simplified variance estimator are estimated through a simulation
study. An illustration of the proposed methods on data from the
ELFE survey is also presented.

1 Introduction

Surveys are not only used to produce estimators for one point in time (cross-
sectional estimations), but also to measure the evolution of parameters (lon-
gitudinal estimations), and are thus repeated over time. Kalton (2009) dis-
tinguishes three broad families of sampling designs for such surveys: the
repeated cross-sectional surveys, in which estimations are produced through
samples selected independently at each time; the panel surveys, in which
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measures are repeated over time for units in a same sample; the rotating
panel surveys, which correspond to panel surveys with a sub-sample of units
being replaced at each time by another incoming sub-sample. In this paper,
we are interested in estimation and variance estimation for panel surveys.

Among the panel surveys (a.k.a. longitudinal surveys, see Lynn, 2009), co-
hort surveys are particular cases where the units in the sample are linked by
a common original event, such as being born on the same year for children in
the ELFE survey (Enquête Longitudinale Française depuis l’Enfance), which
is the motivating example for this work. ELFE is the first longitudinal study
of its kind in France, tracking children from birth to adulthood (Pirus et al.,
2010). Covering the whole metropolitan France, it was launched in 2011
and consists of more than 18,000 children whose parents consented to their
inclusion. It will examine every aspect of these children’s lives from the
perspectives of health, social sciences and environmental health. The ELFE
survey suffers from unit non-response, which needs to be accounted for by
using available auxiliary information, so as to limit the bias of estimators.
Though the ELFE survey will be used for illustration in this paper, non-
response occurs in virtually any panel survey so that the proposed methods
are of general interest; see for example Laurie et al. (1999) for the treatment
of non-response of the British Household Panel Survey, or Vandecasteele and
Debels (2007) for the European Community Household Panel.

Non-response is currently handled by modeling the response probabilities
(Kim and Kim, 2007) and by reweighting respondents with the inverse of
these estimated probabilities. A panel sample may suffer from three types of
unit non-response (Hawkes and Plewis, 2009): initial non-response refers to
the original absence of selected units; wave non-response occurs when some
units in the panel sample temporarily do not answer at some point in time,
while attrition occurs when some units in the panel sample permanently do
not answer from some point in time. Wave non-response was fairly uncom-
mon in the first waves of the ELFE survey which were at our disposal. We
therefore simplify this set-up by assuming monotone non-response, where
only initial non-response and attrition occur.

There is a vast literature on the treatment of unit non-response for surveys
over time, see Ekholm and Laaksonen (1991), Fuller et al. (1994), Rizzo et al.
(1996), Clarke and Tate (2002), Laaksonen and Chambers (2006), Hawkes
and Plewis (2009), Rendtel and Harms (2009), Laaksonen (2007), Slud and
Bailey (2010), Zhou and Kim (2012). Variance estimation for longitudinal es-
timators is considered in Tam (1984), Laniel (1988), Nordberg (2000), Berger
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(2004), Skinner and Vieira (2005), Qualité and Tillé (2008) and Chauvet and
Goga (2016), but with focus on the sampling variance only. Variance estima-
tion in case of non-response weighting adjustments on cross-sectional surveys
is considered in Kim and Kim (2007). To the best of our knowledge, and
despite the interest for applications, variance estimation accounting for non-
response for panel surveys has not been treated in the literature, with the
exception of Zhou and Kim (2012).

The paper is organized as follows. Basic notations are given in Section 2. In
Section 3, we define the expansion estimator for a total and a corresponding
variance estimator when the response probabilities are assumed to be known
at each time. Though this case appears unrealistic in most applications, it is
common practice in some surveys that the response probabilities are assumed
to be known without error to simplify variance estimation. Consequently, the
simplified set-up in Section 3 enables to propose a first simplified variance
estimator. In Section 4, we consider the usual case when the response proba-
bilities are unknown. A parametric model is postulated leading to estimated
response probabilities and to a reweighted estimator, and a variance esti-
mator is derived by following the approach in Kim and Kim (2007). Some
illustrations on the particular important case of the response homogeneity
groups are also given. The proposed variance estimator is extended to cover
calibrated estimators and complex parameters in Section 5. Longitudinal
estimation is discussed in Section 6, and the proposed variance estimator is
used to cover such cases. The variance estimators are compared in Section
7 through a simulation study, and an illustration on the ELFE data is pro-
posed in Section 8. We draw some conclusions in Section 9. Some technical
conditions useful to derive the properties of some estimators that we consider
and the proofs are given in Appendix.

2 Notation

We are interested in a finite population U . A sample s0 is first selected
according to some sampling design p(·), and we assume that the first-order
inclusion probabilities πi are strictly positive for any i ∈ U . This first sam-
pling phase corresponds to the original inclusion of units in the sample. For
example, the 2011 ELFE survey involved the selection of a sample of babies
according to a cross-classified sampling design (CCS), where a sample of ma-
ternity units and a sample of days were selected independently, the survey
being performed in the maternity units selected on the days selected (Juil-
lard et al., 2016). Also, we note πij for the probability that units i and j are
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selected jointly in the sample, and ∆ij = πij − πiπj.

We consider the case of a panel survey in which the sole units in the original
sample s0 are followed over time, without reentry or late entry units at sub-
sequent times to represent possible newborns. We are therefore interested in
estimating some parameter defined over the population U , for some study
variable y taking the value yi for the unit i. The units in the sample s0 are
then followed at subsequent times δ = 1, . . . , t, and the sample is prone to
unit non-response at each time. We note rδi for the response indicator for
unit i at time δ, and sδ for the subset of respondents at time δ.

We assume monotone non-response resulting in the nested sequence

s0 ⊃ s1 ⊃ ... ⊃ st. (2.1)

For δ = 1, . . . , t, we note

pδi = Pr (i ∈ sδ|sδ−1) (2.2)

for the response probability of some unit i to be a respondent at time δ.
We assume that the non-response mechanisms are ignorable, in the sense
that the response probability pδi at time δ can be explained by the variables
observed at times 0, . . . , δ− 1. Also, we assume that at any time δ the units
answer independently of one another, and we note

pδij = Pr (i, j ∈ sδ|sδ−1) = pδip
δ
j (2.3)

for the probability that two distinct units i and j answer jointly at time δ.

3 Estimation with known response probabil-

ities

3.1 Expansion estimator

We are interested in estimating the total Y =
∑

i∈U yi. In a situation of full
response, the Horvitz-Thompson estimator

Ỹ0 =
∑
i∈s0

yi
πi

(3.1)
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is design-unbiased for Y . In the situation of unit non-response, the sub-
sample st only is observed at time t. Assuming that the response probabilities
at each time are known, the expansion estimator at time t is

Ỹt =
∑
i∈st

yi
πip1→t

i

with p1→t
i =

t∏
δ=1

pδi . (3.2)

Under some conditions on the variable of interest, the sampling design and
the response mechanisms, the expansion estimator Ỹt is design-unbiased and
consistent for Y , see Appendix B. Here and elsewhere, the subscript δ will
be used when the sample observed at time δ is used for estimation. The
superscript δ will be used when we account for non-response at time δ, like
for the probability pδi of unit i to be a respondent at time δ.

3.2 Variance computation

At time t, we have

V (Ỹt) = V E(Ỹt|st−1) + EV (Ỹt|st−1) (3.3)

= V (Ỹt−1) + EV (Ỹt|st−1). (3.4)

Using a proof by induction, we obtain

V (Ỹt) = V (Ỹ0) + E

{
t∑

δ=1

V (Ỹδ|sδ−1)

}
. (3.5)

The first term in the right-hand side of (3.5) is the variance due to the
sampling design, that we note as V p(Ỹt), and that may be rewritten as

V p(Ỹt) =
∑
i,j∈U

∆ij
yi
πi

yj
πj
. (3.6)

The second term in the right-hand side of (3.5) is the variance due to non-
response, that we note as V nr(Ỹt) and that may be rewritten as

V nr(Ỹt) = E

{
t∑

δ=1

V nrδ(Ỹt)

}
(3.7)

with

V nrδ(Ỹt) =
∑
i∈sδ−1

pδi (1− pδi )
(

yi
πip1→δ

i

)2

. (3.8)
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3.3 Variance estimation

At time t, an estimator for the variance due to the sampling design V p(Ỹt) is

V̂ p
t (Ỹt) =

∑
i,j∈st

∆ij

πij

1

p1→t
ij

yi
πi

yj
πj
, (3.9)

where p1→t
ij ≡

∏t
δ=1 p

δ
ij. This estimator is unbiased for V p(Ỹt), provided that

πij > 0 for any units i 6= j ∈ U . An unbiased estimator for the variance due
to non-response V nr(Ỹt) is

V̂ nr
t (Ỹt) =

t∑
δ=1

V̂ nrδ
t (Ỹt) (3.10)

with

V̂ nrδ
t (Ỹt) =

∑
i∈st

pδi (1− pδi )
pδ→ti

(
yi

πip1→δ
i

)2

. (3.11)

By using the writing

V̂ nrδ
t (Ỹt) =

∑
i∈st

(
yi
πi

)2

× 1

p1→t
i

×
(

1

p1→δ
i

− 1

p1→δ−1
i

)
, (3.12)

and by summing for δ = 1, . . . , t, the estimator for the variance due to non-
response simplifies as

V̂ nr
t (Ỹt) =

∑
i∈st

1− p1→t
i

(p1→t
i )

2

(
yi
πi

)2

. (3.13)

This leads to the global variance estimator at time t

V̂t(Ỹt) = V̂ p
t (Ỹt) + V̂ nr

t (Ỹt). (3.14)

This variance estimator can be shown to be unbiased and consistent for V (Ỹt),
see Appendix C.

3.4 Application to Response Homogeneity Groups

For the purpose of illustration, we consider the model of Response Homogene-
ity Groups (RHG) which is often used in practice. More precisely, we assume
that at each time δ = 1, . . . , t, the sub-sample sδ−1 may be partitioned into
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C(δ−1) groups scδ−1, c = 1, . . . , C(δ−1), such that the response probability
pδi is constant inside a group. In such case, we simplify the notation as

pδi = pδc for any i ∈ scδ−1. (3.15)

Note that the number of groups, and the groups themselves, may vary over
time.

If the expansion estimator is computed at time t = 1, the estimator in (3.13)
for the variance due to non-response may be rewritten as

V̂ nr
1 (Ỹ1) =

C(0)∑
c=1

1− p1
c

(p1
c)

2

∑
i∈s1∩sc0

(
yi
πi

)2

, (3.16)

and the global variance estimator at time 1 is

V̂1(Ỹ1) =
∑
i,j∈s1

∆ij

πij

1

p1
ij

yi
πi

yj
πj

+

C(0)∑
c=1

1− p1
c

(p1
c)

2

∑
i∈s1∩sc0

(
yi
πi

)2

. (3.17)

If the expansion estimator is computed at time t = 2, the estimator in (3.13)
for the variance due to non-response may be rewritten as

V̂ nr
2 (Ỹ2) =

C(0)∑
c=1

C(1)∑
d=1

1− p1
cp

2
d

(p1
cp

2
d)

2

∑
i∈s2∩sd1∩sc0

(
yi
πi

)2

. (3.18)

A simple case occurs when the same system of RHGs is kept over time. In
this case, the number of groups at each time is equal to C(0), and we obtain
a nested sequence of sub-samples

sc0 ⊃ sc1 ⊃ ... ⊃ sct for any c = 1, . . . , C(0). (3.19)

The variance estimator in (3.18) simplifies as

V̂ nr
2 (Ỹ2) =

C(0)∑
c=1

1− p1→2
c

(p1→2
c )2

∑
i∈s2∩sc1

(
yi
πi

)2

, (3.20)

with p1→2
c =

∏2
δ=1 pc for c = 1, . . . , C(0).
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4 Estimation with unknown response proba-

bilities

4.1 Reweighted estimator

In practice, the response probabilities at each time are unknown and need to
be estimated. We assume that at each time δ the probability of response is
parametrically modeled as

pδi = pδ(zδi , α
δ) (4.1)

for some known function pδ(·, ·), where zδi is a vector of auxiliary variables ob-
served for all the units in the subsample sδ−1, and αδ denotes some unknown
parameter. Following the approach in Kim and Kim (2007), we assume that
the true parameter is estimated by α̂δ, which is the solution of the estimating
equation

∂

∂α

∑
i∈sδ−1

kδi
{
rδi ln(pδi ) + (1− rδi ) ln(1− pδi )

}
= 0, (4.2)

with kδi some weight of unit i in the estimating equation. Customary choices
for these weights include kδi = 1 and kδi = π−1

i , see Fuller and An (1998),
Beaumont (2005) and Kim and Kim (2007).

The estimated response probability at time δ is

p̂δi = pδ(zδi , α̂
δ). (4.3)

The reweighted estimator at time t is

Ŷt =
∑
i∈st

yi
πip̂1→t

i

with p̂1→t
i =

t∏
δ=1

p̂δi . (4.4)

It is obtained by substituting in (3.2) each unknown response probability pδi
with its estimator in (4.3).

4.2 Variance computation

Under some regularity assumptions on the response mechanisms and some
regularity conditions on the pδ(·, ·)’s, we obtain from Theorem 1 in Kim and
Kim (2007) that we can write

Ŷt = Ŷlin,t +Op(Nn
−1), (4.5)
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where

Ŷlin,t =
∑
i∈st−1

1

πip̂
1→t−1
i

{
ktiπip̂

1→t−1
i pti(h

t
i)
>γt (4.6)

+
rti
pti

(yi − ktiπip̂1→t−1
i pti(h

t
i)
>γt)

}
,

and where for any δ = 1, . . . , t we denote by hδi the value of hδi (α) =
∂ logit(pδi )/∂α evaluated at α = αδ, and

γδ =

 ∑
i∈sδ−1

kδi p
δ
i (1− pδi )hδi (hδi )>


−1 ∑

i∈sδ−1

1− pδi
p̂1→δ−1
i

hδi
yi
πi
. (4.7)

From (4.6), we obtain that

E
(
Ŷlin,t |st−1

)
= Ŷt−1. (4.8)

Using a proof by induction, it follows from (4.5) and (4.8) that Ŷt is ap-
proximately unbiased for Y . Also, the variance of Ŷt may be asymptotically
approximated by

Vapp(Ŷt) = V (Ỹ0) + E

{
t∑

δ=1

V (Ŷlin,δ|sδ−1)

}
. (4.9)

The first term in the right-hand side of (4.9) is the variance due to the
sampling design, that we note as V p(Ŷt). It is identical to the variance due
to the sampling design for the expansion estimator. The second term in the
right-hand side of (4.9) is the variance due to non-response, that we note as
V nr(Ŷt). From (4.6), this asymptotic variance is given by

V nr(Ŷt) = E

{
t∑

δ=1

V nrδ(Ŷt)

}
, (4.10)

where

V nrδ(Ŷt) =
∑
i∈sδ−1

pδi (1− pδi )
(

yi

πip̂
1→δ−1
i pδi

− kδi (hδi )>γδ
)2

. (4.11)

We now compare the variance due to non-response for the reweighted esti-
mator with estimated response probabilities Ŷt, given in equation (4.10), and
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the variance due to non-response for the expansion estimator with known
response probabilities Ỹt, given in equation (3.7). For each of its component
δ = 1, . . . , t, the term V nrδ(Ŷt) in (4.11) includes a centering term kδi (h

δ
i )
>γδ,

which is essentially a prediction of (πip̂
1→δ−1
i pδi )

−1yi by means of regressors
hδi . This centering is due to the estimation of the response probabilities, and
therefore does not appear in equation (3.7). It usually leads to a smaller
variance than that of Ỹt; see also Beaumont (2005), equation (5.7) and Kim
and Kim (2007), equation (17), for the case t = 1.

4.3 Variance estimation

At time t, an approximately unbiased estimator for the variance due to the
sampling design V p(Ŷt) is

V̂ p
t (Ŷt) =

∑
i,j∈st

∆ij

πij

1

p̂1→t
ij

yi
πi

yj
πj
, (4.12)

where p̂1→t
ij ≡

∏t
δ=1 p̂

δ
ij, and where

p̂δij =

{
p̂δi if i = j,
p̂δi p̂

δ
j otherwise.

(4.13)

Following equation (25) in Kim and Kim (2007), V nr(Ŷt) may be approxi-
mately unbiasedly estimated at time t by

V̂ nr
t (Ŷt) =

t∑
δ=1

V̂ nrδ
t (Ŷt) (4.14)

where

V̂ nrδ
t (Ŷt) =

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
yi

πip̂1→δ
i

− kδi (ĥδi )>γ̂δt
)2

, (4.15)

ĥδi = h(zi, α̂
δ), (4.16)

γ̂δt =

{∑
i∈st

kδi
p̂δi (1− p̂δi )
p̂δ→ti

ĥδi (ĥ
δ
i )
>

}−1∑
i∈st

1− p̂δi
p̂1→t
i

ĥδi
yi
πi
. (4.17)

This leads to the global variance estimator at time t

V̂t(Ŷt) = V̂ p
t (Ŷt) + V̂ nr

t (Ŷt). (4.18)
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A simplified estimator of the variance due to non-response is obtained by
ignoring the prediction terms kδi (ĥ

δ
i )
>γ̂δt for each of the δ = 1, . . . , t vari-

ance components. Mimicking the reasoning in Section 3.3, this leads to the
simplified variance estimator

V̂ nr
t,simp(Ŷt) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
yi

πip̂1→δ
i

)2

=
∑
i∈st

1− p̂1→t
i

(p̂1→t
i )

2

(
yi
πi

)2

. (4.19)

This simplified variance estimator is computed as if in the reweighted esti-
mator Ŷt, the response probabilities were known. It will tend to overestimate
the variance due to non-response of Ŷt if the prediction term kδi (h

δ
i )
>γδ partly

explains (πip̂
1→δ−1
i pδi )

−1yi.

4.4 Application to the logistic regression model

In the particular case when a logistic regression model is used at each time
δ, the model (4.1) may be rewritten as

logit(pδi ) = (zδi )
>αδ. (4.20)

We obtain ĥδi = zδi , and the estimator for the variance due to non-response
is given by (4.14), with

V̂ nrδ
t (Ŷt) =

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
yi

πip̂1→δ
i

− kδi (zδi )>γ̂δt
)2

, (4.21)

γ̂δt =

{∑
i∈st

kδi
p̂δi (1− p̂δi )
p̂δ→ti

zδi (z
δ
i )
>

}−1∑
i∈st

1− p̂δi
p̂1→t
i

zδi
yi
πi
. (4.22)

If the reweighted estimator is computed at time t = 1, the estimator in (4.14)
for the variance due to non-response may be rewritten as

V̂ nr
1 (Ŷ1) = V̂ nr,1

1 (Ŷ1)

=
∑
i∈s1

(1− p̂1
i )

(
yi
πip̂1

i

− k1
i (z

1
i )
>γ̂1

1

)2

. (4.23)

If the reweighted estimator is computed at time t = 2, the estimator in (4.14)
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for the variance due to non-response may be rewritten as

V̂ nr
2 (Ŷ2) = V̂ nr,1

2 (Ŷ2) + V̂ nr,2
2 (Ŷ2)

=
∑
i∈s2

(1− p̂1
i )

p̂2
i

(
yi
πip̂1

i

− k1
i (z

1
i )
>γ̂1

2

)2

+
∑
i∈s2

(1− p̂2
i )

(
yi

πip̂1
i p̂

2
i

− k2
i (z

2
i )
>γ̂2

2

)2

. (4.24)

4.5 Application to Response Homogeneity Groups

We consider the model of Response Homogeneity Groups introduced in Sec-
tion 3.4. At each time δ = 1, . . . , t, the sub-sample sδ−1 is partitioned into
C(δ − 1) groups scδ−1, c = 1, . . . , C(δ − 1). The response probabilities are
assumed to be constant within the groups.

This model is equivalent to the logistic regression model in (4.20), with

zδi =
[
1
{
i ∈ s1

δ−1

}
, . . . , 1

{
i ∈ sC(δ−1)

δ−1

}]>
. (4.25)

Solving the estimating equation (4.2) leads to the estimated response prob-
abilities

p̂δi =

∑
i∈scδ−1

kδi r
δ
i∑

i∈scδ−1
kδi

for i ∈ scδ−1. (4.26)

That is, the response probability is estimated by the weighted response rate
inside the RHG.

We first consider the case when the reweighted estimator is computed at time
t = 1. In the estimator of the variance due to non-response given in (4.23),
the vector γ̂1

1 simplifies as

γ̂1
1 =

( ∑
i∈s1∩s10

yi
πi

p̂1
1

∑
i∈s1∩s10

k1
i

, . . . ,

∑
i∈s1∩sC(0)

0

yi
πi

p̂1
C(0)

∑
i∈s1∩sC(0)

0
k1
i

)>
. (4.27)

After some algebra, the variance estimator in (4.23) may be rewritten as

V̂ nr
1 (Ŷ1) =

C(0)∑
c=1

(1− p̂1
c)

(p̂1
c)

2

∑
i∈s1∩sc0

(
yi
πi
− k1

i

∑
j∈s1∩sc0

yj
πj∑

j∈s1∩sc0
k1
j

)2

. (4.28)
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We now consider the case when the reweighted estimator is computed at
time t = 2. We focus on the simpler case when the same system of RHGs is
kept over time. In the estimator of the variance due to non-response given
in (4.24), the vectors γ̂1

2 and γ̂2
2 simplify as

γ̂1
2 =

( ∑
i∈s2∩s11

yi
πi

p̂1
1

∑
i∈s2∩s11

k1
i

, . . . ,

∑
i∈s2∩sC(0)

1

yi
πi

p̂1
C(0)

∑
i∈s2∩sC(0)

1
k1
i

)>
, (4.29)

γ̂2
2 =

( ∑
i∈s2∩s11

yi
πi

p̂1
1p̂

2
1

∑
i∈s2∩s11

k2
i

, . . . ,

∑
i∈s2∩sC(0)

1

yi
πi

p̂1
C(0)p̂

2
C(0)

∑
i∈s2∩sC(0)

1
k2
i

)>
. (4.30)

After some algebra, the variance estimator in (4.24) may be rewritten as

V̂ nr
2 (Ŷ2) =

C(0)∑
c=1

(1− p̂1
c)

p̂2
c

∑
i∈s2∩sc1

(
yi
πip̂1

c

− k1
i

∑
j∈s2∩sc1

yj
πj∑

j∈s2∩sc1
k1
j

)2

+

C(0)∑
c=1

(1− p̂2
c)
∑

i∈s2∩sc1

(
yi

πip̂1
c p̂

2
c

− k2
i

∑
j∈s2∩sc1

yj
πj∑

j∈s2∩sc1
k2
j

)2

. (4.31)

If we further assume that kδi is constant over times δ = 1, 2, and may thus
be rewritten as ki, the expression in (4.31) simplifies as

V̂ nr
2 (Ŷ2) =

C(0)∑
c=1

(1− p̂1→2
c )

(p̂1→2
c )2

∑
i∈s2∩sc1

(
yi
πi
− ki

∑
j∈s2∩sc1

yj
πj∑

j∈s2∩sc1
kj

)2

. (4.32)

with p̂1→2
c =

∏2
δ=1 p̂

δ
c for c = 1, . . . , C(0). This simplification of the variance

estimator can be extended to the reweighted estimator computed at time
t. Assuming that the RHGs are kept over time, and that kδi = ki for any
δ = 1, . . . , t, the variance estimator in (4.14) may be written after some
algebra as

V̂ nr
t (Ŷt) =

C(0)∑
c=1

(1− p̂1→t
c )

(p̂1→t
c )2

∑
i∈st∩sct−1

(
yi
πi
− ki

∑
j∈st∩sct−1

yj
πj∑

j∈st∩sct−1
kj

)2

(4.33)

with p̂1→t
c =

∏t
δ=1 p̂

δ
c for c = 1, . . . , C(0).

5 Calibrated estimators and complex param-

eters

In most surveys, a calibration step is used to obtain adjusted weights which
enable to improve the accuracy of total estimates. Such calibrated estimators
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are considered in Section 5.1. Also, more complex parameters than totals
are frequently of interest, and a linearization step can be used for variance
estimation. This is the purpose of Section 5.2. The estimation of complex
parameters with calibrated weights is treated in Section 5.3. In each case,
explicit formulas for variance estimation and simplified variance estimation
are derived, and the bias of the simplified variance estimator is discussed.

5.1 Variance estimation for calibrated total estimators

Assume that a vector xi of auxiliary variables is available for any unit i ∈ st,
and that the vector of totals X on the population U is known. Then an
additional calibration step (Deville and Särndal, 1992) is usually applied to
Ŷt. It consists in modifying the weights dti = π−1

i (p̂1→t
i )−1 to obtain calibrated

weights wti which enable to match the real total X, in the sense that∑
i∈st

wtixi = X. (5.1)

The new calibrated weights are chosen so as to minimize a distance function
with the original weights, while satisfying (5.1). This leads to the calibrated
estimator

Ŷwt =
∑
i∈st

wtiyi. (5.2)

Under some mild conditions on the chosen distance function, on the sampling
design and on the response mechanisms, it can be shown that the calibrated
estimator Ŷwt is approximately unbiased for Y .

The estimated residual for the weighted regression of yi on xi is denoted by

ei = yi − b̂txi (5.3)

with b̂t =

(∑
i∈st

1

πip̂1→t
i

xix
>
i

)−1∑
i∈st

1

πip̂1→t
i

xiyi. (5.4)

Replacing in (4.12) the variable yi with ei yields the estimator of the variance
due to the sampling design

V̂ p
t (Ŷwt) =

∑
i,j∈st

∆ij

πij

1

p̂1→t
ij

ei
πi

ej
πj
. (5.5)
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Similarly, replacing in (4.14) the variable yi with ei yields the estimator of
the variance due to the non-response

V̂ nr
t (Ŷwt) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
ei

πip̂1→δ
i

− kδi (ĥδi )>γ̂δte
)2

(5.6)

γ̂δte =

{∑
i∈st

kδi
p̂δi (1− p̂δi )
p̂δ→ti

ĥδi (ĥ
δ
i )
>

}−1∑
i∈st

1− p̂δi
p̂1→t
i

ĥδi
ei
πi
. (5.7)

The global variance estimator for Ŷwt is

V̂t(Ŷwt) = V̂ p
t (Ŷwt) + V̂ nr

t (Ŷwt). (5.8)

The simplified estimator of the variance due to non-response is

V̂ nr
t,simp(Ŷwt) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
ei

πip̂1→δ
i

)2

=
∑
i∈st

1− p̂1→t
i

(p̂1→t
i )

2

(
ei
πi

)2

. (5.9)

Here again, this simplified variance estimator ignores the prediction terms
kδi (ĥ

δ
i )
>γ̂δte. If all the auxiliary variables that are explanatory for yi are in-

cluded in the calibration, which means that the underlying calibration model
is appropriate, then ei is essentially a white noise. The explanatory power
of ĥδi for ei is then expected to be small, as well as the prediction term
kδi (ĥ

δ
i )
>γ̂δte. In such case, we expect the bias of the simplified variance esti-

mator to be small. If it is believed that some important auxiliary variables
are not included in the calibration, then there may remain in ei some signif-
icant part of yi that may not been explained by the sole xi. In such case,
there may remain some explanatory power for ĥδi on ei, and the bias of the
simplified variance estimator may be non-negligible. The same problem may
occur in case of domain estimation, when the calibration variables do not
include any auxiliary information specific of the domain. In such case, the
calibration model is not appropriate for domain estimation and the bias of
the simplified variance estimator may be non-negligible.

5.2 Variance estimation for complex parameters

We may be interested in estimating more complex parameters than totals.
Suppose that the variable of interest y is q-multivariate, and that the pa-
rameter of interest is θ = f(Y ) with f(·) a known function. At time t,
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substituting Ŷt into θ yields the plug-in estimator θ̂t = f(Ŷt). Under some
mild regularity conditions on the function f , on the sampling design and on
the response mechanisms (see Deville, 1999; Goga et al., 2009), the plug-in
estimator θ̂t is approximately unbiased for θ.

The estimated linearized variable of θ is

ui = {f ′(Ŷt)}>yi, (5.10)

with f ′(Ŷt) the q-vector of first derivatives of f at point Ŷt. Replacing in
(4.12) the variable yi with ui yields the estimator of the variance due to the
sampling design

V̂ p
t (θ̂t) =

∑
i,j∈st

∆ij

πij

1

p̂1→t
ij

ui
πi

uj
πj
. (5.11)

Similarly, replacing in (4.14) the variable yi with ui yields the estimator of
the variance due to the non-response

V̂ nr
t (θ̂t) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
ui

πip̂1→δ
i

− kδi (ĥδi )>γ̂δtθ
)2

(5.12)

γ̂δtθ =

{∑
i∈st

kδi
p̂δi (1− p̂δi )
p̂δ→ti

ĥδi (ĥ
δ
i )
>

}−1∑
i∈st

1− p̂δi
p̂1→t
i

ĥδi
ui
πi
. (5.13)

The global variance estimator for θ̂t is

V̂t(θ̂t) = V̂ p
t (θ̂t) + V̂ nr

t (θ̂t). (5.14)

The simplified estimator of the variance due to non-response is

V̂ nr
t,simp(θ̂t) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
ui

πip̂1→δ
i

)2

=
∑
i∈st

1− p̂1→t
i

(p̂1→t
i )

2

(
ui
πi

)2

. (5.15)

The bias of this simplified variance estimator will depend on the explanatory
power for ĥδi on the linearized variable ui.
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5.3 Variance estimation for complex parameters under
calibration

The calibrated weights wti may also be used to obtain an estimator of the
parameter θ at time t. Substituting Ŷwt into θ = f(Y ) yields the calibrated
plug-in estimator θ̂wt = f(Ŷwt). So as to obtain a variance estimator for θ̂wt,
we first compute the estimated linearized variable ui = {f ′(Ŷt)}>yi. Then,
we compute

eθi = ui − b̂θtxi (5.16)

with b̂θt =

(∑
i∈st

1

πip̂1→t
i

xix
>
i

)−1∑
i∈st

1

πip̂1→t
i

xiui. (5.17)

Replacing in (4.12) the variable yi with eθi yields the estimator of the variance
due to the sampling design

V̂ p
t (θ̂wt) =

∑
i,j∈st

∆ij

πij

1

p̂1→t
ij

eθi
πi

eθj
πj
. (5.18)

Similarly, replacing in (4.14) the variable yi with eθi yields the estimator of
the variance due to the non-response

V̂ nr
t (θ̂wt) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
eθi

πip̂1→δ
i

− kδi (ĥδi )>γ̂δteθ
)2

(5.19)

γ̂δteθ =

{∑
i∈st

kδi
p̂δi (1− p̂δi )
p̂δ→ti

ĥδi (ĥ
δ
i )
>

}−1∑
i∈st

1− p̂δi
p̂1→t
i

ĥδi
eθi
πi
. (5.20)

The global variance estimator for θ̂wt is

V̂t(θ̂wt) = V̂ p
t (θ̂wt) + V̂ nr

t (θ̂wt). (5.21)

The simplified estimator of the variance due to non-response is

V̂ nr
t,simp(θ̂wt) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
eθi

πip̂1→δ
i

)2

=
∑
i∈st

1− p̂1→t
i

(p̂1→t
i )

2

(
eθi
πi

)2

. (5.22)

The bias of this simplified variance estimator will depend on the explanatory
power for ĥδi on eθi. Since the variable eθi is obtained as the residual in the
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regression of the linearized variable ui on the calibration variables xi, the
explanatory power for ĥδi on eθi is expected to be small in practice, and the
bias of the simplified variance estimator is expected to be small as well.

As an illustration, we consider the model of Response Homogeneity Groups,
and the simple case when RHGs are kept over time and when kδi = ki for
any δ = 1, . . . , t. In such case, the estimator of the variance due to the
non-response in (5.19) may be rewritten as

V̂ nr
t (θ̂wt) =

C(0)∑
c=1

(1− p̂1→t
c )

(p̂1→t
c )2

∑
i∈st∩sct−1

(
eθi
πi
− ki

∑
j∈st∩sct−1

eθj
πj∑

j∈st∩sct−1
kj

)2

. (5.23)

6 Longitudinal estimators

We may be interested in a change in parameters, such as the difference be-
tween the totals of a variable of interest measured at two different times
u < t. Denoting by yui and yti the value of this variable of interest for
unit i at times u and t, respectively, and denoting by Y (u) =

∑
i∈U yui and

Y (t) =
∑

i∈U yti their totals, the parameter of interest is

∆(u→ t) = Y (t)− Y (u). (6.1)

Since the variable yui is measured on all sub-samples su′ for u′ = u, . . . , t,
there are several possible estimators for ∆(u → t). For u′ = u, . . . , t, we
denote by

∆̂u′t(u→ t) =
∑
i∈st

yti
πip̂1→t

i

−
∑
i∈su′

yui
πip̂1→u′

i

(6.2)

the estimator which makes use of the sample st for the estimation of Y (t),
and of the sample su′ for the estimation of Y (u). The case u′ = u corresponds
to the estimation of Y (u) on the largest available sub-sample, su. The case
u′ = t corresponds to the estimation of Y (u) and Y (t) on the common sub-
sample, st.

In the context of full response, several authors have recommended the estima-
tor ∆̂tt(u→ t) which makes use of the common sample only, if the variables
yui and yti are strongly positively correlated; see Caron and Ravalet (2000),
Qualité and Tillé (2008), Goga et al. (2009), Chauvet and Goga (2016). In
our context, this choice may be heuristically justified as follows. For u′ < t,
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and by conditioning on the sub-sample su′ , we obtain

V
{

∆̂u′t(u→ t)
}
' V

∑
i∈su′

yti − yui
πip̂1→u′

i

+ EV

{∑
i∈st

yti
πip̂1→t

i

∣∣∣∣∣ su′
}
,(6.3)

V
{

∆̂tt(u→ t)
}
' V

∑
i∈su′

yti − yui
πip̂1→u′

i

+ EV

{∑
i∈st

yti − yui
πip̂1→t

i

∣∣∣∣∣ su′
}
.(6.4)

In equations (6.3) and (6.4), the first term in the right-hand side is identi-
cal. If the variables yui and yti are positively correlated, then the difference
yti − yui is expected to be smaller than yti, so that the second term in the
right-hand side of (6.4) is expected to be smaller than the second term in the
right-hand side of (6.3). Therefore, the estimator ∆̂tt(u → t) based on the
common sample is expected to be more efficient in terms of variance.

The results of a small simulation study in Section 7.2 support this heuristic
reasoning. Therefore, we focus only in this Section on the estimator ∆̂tt(u→
t) for the estimation of ∆(u → t). Replacing in (4.12) the variable yi with
yti − yui yields the estimator of the variance due to the sampling design

V̂ p
t

{
∆̂tt(u→ t)

}
=

∑
i,j∈st

∆ij

πij

1

p̂1→t
ij

(yti − yui)
πi

(ytj − yuj)
πj

. (6.5)

Similarly, replacing in (4.14) the variable yi with yti−yui yields the estimator
of the variance due to the non-response

V̂ nr
t

{
∆̂tt(u→ t)

}
=

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
yti − yui
πip̂1→δ

i

− kδi (ĥδi )>γ̂δt∆
)2

(6.6)

with

γ̂δt∆ =

{∑
i∈st

kδi
p̂δi (1− p̂δi )
p̂δ→ti

ĥδi (ĥ
δ
i )
>

}−1∑
i∈st

1− p̂δi
p̂1→t
i

ĥδi
yti − yui

πi
. (6.7)

The global variance estimator for ∆̂tt(u→ t) is

V̂t

{
∆̂tt(u→ t)

}
= V̂ p

t

{
∆̂tt(u→ t)

}
+ V̂ nr

t

{
∆̂tt(u→ t)

}
. (6.8)

Variance estimation for measures of change is also considered in Berger
(2004), Qualité and Tillé (2008), Goga et al. (2009), Chauvet and Goga
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(2016), among others.

The simplified estimator of the variance due to non-response is

V̂ nr
t,simp(∆̂tt(u→ t)) =

t∑
δ=1

∑
i∈st

p̂δi (1− p̂δi )
p̂δ→ti

(
yti − yui
πip̂1→δ

i

)2

=
∑
i∈st

1− p̂1→t
i

(p̂1→t
i )

2

(
yti − yui

πi

)2

. (6.9)

If the variables yti and yui are strongly positively correlated, the explanatory
power for ĥδi on yti − yui is expected to be small in practice. In such case,
the bias of the simplified variance estimator is also expected to be small.

7 A simulation study

In this Section, several artificial populations are generated according to some
superpopulation model described in Section 7.1. In Section 7.2, we consider
several estimators for a change between totals, which illustrates the heuristic
reasoning in Section 6. A Monte Carlo experiment is then presented in
Section 7.3, and several variance estimators for estimating a total, a ratio
or a parameter change are compared. The results from Tables 1 and 2 are
readily reproducible using the R code provided in the supplementary material
of the present paper.

7.1 Simulation set-up

We consider seven populations of size 10, 000, each containing three variables
of interest y1i, y2i and y3i observed at times t = 1, 2 and 3, respectively. The
variables of interest are generated according to the superpopulation model

y1i = α0 + αaxai + αbxbi + σu1i, (7.1)

y2i = ρy1i + σu2i, (7.2)

y3i = ρy2i + σu3i. (7.3)

The auxiliary variables xai and xbi are independently generated from a Gamma
distribution with shape and scale parameters 2 and 1. Two other auxiliary
variables xci and xdi are also independently generated from a Gamma distri-
bution with shape and scale parameters 2 and 1. These two last variables
are not related to the variables of interest. The variables u1i, u2i and u3i are
independently generated according to a standard normal distribution. We
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use α0 = 10, αa = αb = 5 and σ = 10, which leads to a coefficient of deter-
mination (R2) in model (7.1) approximately equal to 0.50. The parameter ρ
is set to 0 for population 1, 0.2 for population 2, 0.4 for population 3, 0.6 for
population 4, 0.8 for population 5, 1.0 for population 6 and 1.2 for population
7.

For each population, a simple random sample s0 of size n = 1, 000 is selected.
Three non-response phases are then successively simulated. At each phase
δ = 1, 2, 3, the sub-sample of respondents sδ is obtained by Poisson sampling
with a response probability pδi for unit i, defined as

logit(pδi ) = βδ0 + βδaxai + βδbxbi. (7.4)

We use βδ0 = −1 at each phase δ = 1, 2, 3. For δ = 1, we use β1a = β1b =
0.60, which corresponds to an average response rate of 0.75. For δ = 2, 3,
we use βδa = βδb = 0.75, which corresponds to an average response rate of
0.81. Inside each sub-sample sδ, the estimated response probabilities p̂δi are
obtained by means of an unweighted logistic regression.

7.2 Comparison of estimators for a difference of totals

In this Section, we are interested in comparing the accuracy of two estimators
for a difference of totals ∆(u→ t) for u = 1 and t = 2, for u = 1 and t = 3,
and for u = 2 and t = 3. We consider the estimator ∆̂ut(u → t), which
makes use of the whole appropriate sub-samples for variables yui and yti, and
the estimator ∆̂tt(u→ t), which makes use of the common sub-sample only.
These two estimators are compared through the relative difference (RD) of
their variances, which are defined as follows:

RD(1→ 2) = 100×
V
{

∆̂12(1→ 2)
}
− V

{
∆̂22(1→ 2)

}
V
{

∆̂22(1→ 2)
} , (7.5)

RD(1→ 3) = 100×
V
{

∆̂13(1→ 3)
}
− V

{
∆̂33(1→ 3)

}
V
{

∆̂33(1→ 3)
} , (7.6)

RD(2→ 3) = 100×
V
{

∆̂23(2→ 3)
}
− V

{
∆̂33(2→ 3)

}
V
{

∆̂33(2→ 3)
} . (7.7)

The true variances are replaced by their Monte Carlo approximation, ob-
tained by repeating B = 100, 000 times the sample selection and the non-
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response phases.

The results are presented in Table 1. A positive RD indicates that the use
of the common sample only leads to a more accurate estimator. As could be
expected, the RD increases in all cases with ρ, that is, when the correlation
between yti and yui increases. For u = 1 and t = 2, and for u = 2 and t = 3,
the estimator ∆̂tt(u→ t) is more accurate for ρ greater than 0.6. For u = 1
and t = 3, ∆̂tt(u→ t) is more accurate for ρ greater than 0.8.

ρ RD(1→ 2) RD(1→ 3) RD(2→ 3)
0.0 -12 -27 -13
0.2 -09 -25 -11
0.4 -04 -20 -03
0.6 05 -09 11
0.8 17 11 39
1.0 30 33 83
1.2 40 46 127

Table 1: Relative Difference (RD) between two estimators for a difference of
totals

7.3 Performances of the variance estimators

In this Section, we consider the artificial population 5 (ρ = 0.8) generated as
described in Section 7.1. The sample selection by means of simple random
sampling of size n = 1, 000 and the three non-response phases are applied
B = 5, 000 times. We are interested in evaluating the variance estimators
and the simplified variance estimators, in case of estimating a total, a ratio
or a change in totals.

As for the total Y , we consider at each time t = 1, 2, 3, three estimators. The
estimator Ŷt makes use of the weights dti = π−1

i (p̂1→t
i )−1. The estimator Ŷwt

makes use of the weights wi, obtained by calibrating the weights dti on the
population size and on the totals of the auxiliary variables xai and xbi. In
view of model (7.1), the working model underlying this calibration is well-
specified. Finally, the estimator Ŷw̃t makes use of the weights w̃i, obtained
by calibrating the weights dti on the population size and on the totals of the
auxiliary variables xci and xdi. In view of model (7.1), the working model
underlying this calibration is therefore not correctly specified. The proposed
variance estimator for Ŷt is obtained from equation (4.18), and the simplified
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variance estimator is obtained by plugging in (4.18) the simplified variance
estimator for non-response given in (4.19). The proposed variance estimators
for Ŷwt and Ŷw̃t are obtained from equation (5.8), and the simplified variance
estimators are obtained by plugging in (5.8) the simplified variance estimator
for non-response given in (5.9).

We are also interested in estimating the ratio Rt = Yt/Y1 for t = 2, 3. At
each time t, we consider three estimators. The estimator R̂t makes use of
the weights di. The proposed variance estimator is obtained from equation
(5.14), by using the estimated linearized variable ui = (Ŷ1)−1(yti − R̂ty1i).
The simplified variance estimator is obtained by plugging in (5.14) the sim-
plified variance estimator for non-response given in (5.15). The estimators
R̂wt and R̂w̃t make use of the calibrated weights wi and w̃i. The proposed
variance estimators are obtained from equation (5.21). The simplified vari-
ance estimators are obtained by plugging in (5.21) the simplified variance
estimator for non-response given in (5.22).

Finally, we are interested in estimating the change in totals ∆(1 → t) for
t = 2, 3. At each time t, we consider three estimators. The estimator
∆̂tt(1 → t) makes use of the weights di. The proposed variance estimator
is obtained from equation (6.8), and the simplified variance estimator is ob-
tained by plugging in (6.8) the simplified variance estimator for non-response
given in (6.9). The estimators ∆̂tt,w(1→ t) and ∆̂tt,w̃(1→ t) make use of the
calibrated weights wi and w̃i. The proposed variance estimators are obtained
from equation (6.8), by replacing yti − yui by the estimated residual for the
weighted regression of yti − yui on the calibration variables. The simplified
variance estimators are obtained by plugging in (6.8) the simplified variance
estimator for non-response given in (6.9).

For a proposed variance estimator V̂ , we computed the Monte Carlo Percent
Relative Bias

RBmc(V̂ ) = 100× B−1
∑B

b=1 V̂
(b) − V

V

where the global variance V was approximated through an independent set of
100, 000 simulations. So as to evaluate the contribution of some component
V̂a into the proposed variance estimator V̂ , we also computed the contribution
(in percent)

CONTRmc(V̂a) = 100×
1
B

∑B
b=1 V̂

(b)
a

1
B

∑B
b=1 V̂

(b)
.
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So as to evaluate the simplified variance estimator for the non-response V̂ nr
simp,

we also computed the Monte Carlo Percent Relative Bias

RBmc(V̂ nr
simp) = 100×

B−1
∑B

b=1 V̂
(b)
simp − V nr

V nr
,

where the variance V nr due to non-response was approximated through an
independent set of 100, 000 simulations.

The simulation results are presented in Table 2. The proposed variance esti-
mator is almost unbiased in all cases. As could be expected, the contribution
of the variance due to the sampling design decreases with time, as the number
of respondents decreases and as the variance due to non-response becomes
larger. The simplified variance estimator is highly biased for the variance
due to non-response in case of Ŷt. The bias decreases quickly with time, but
remains large at time t = 3. The simplified variance estimator is almost
unbiased for a calibrated estimator when the working model is adequately
specified, but is severely biased otherwise. This is consistent with our rea-
soning in Section 5.1. The simplified variance estimator is almost unbiased
for the three estimators of the ratio, and for the calibrated estimators of the
change in totals. In case of the non-calibrated estimator for the change in
totals, the bias can be as high as 30 % .

8 Illustration

In this Section, we aim at illustrating the results previously obtained on a real
data set from the ELFE survey. Covering the whole metropolitan France,
it was launched in 2011 and consists of more than 18,000 children whose
parents consented to their inclusion. The population of inference consists of
infants born in one of the 544 French maternity units during 2011, except
very premature infants.

An original sample s0 of about 35, 600 infants was originally selected when
the babies were just a few days old and were still at the maternity unit. The
sample was selected using a cross-classified sampling design (Skinner, 2015;
Juillard et al., 2016). A sample of days and a sample of maternity units were
independently selected, and both sample selections may be approximated by
stratified simple random sampling (STSI). The sample sizes inside strata are
provided in Tables 3 and 4. The sample consisted in all the infants born
during one of the 25 selected days in one of the 320 selected maternity units.
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t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

Ŷt Ŷwt Ŷw̃t

RBmc(V̂ ) -0 -1 -2 -1 -1 -2 -1 -1 -3

CONTRmc(V̂ p
t ) 81 57 35 69 49 32 80 56 35

CONTRmc(V̂ nr1
t ) 19 19 13 31 22 15 20 18 13

CONTRmc(V̂ nr2
t ) - 25 18 - 28 19 - 25 17

CONTRmc(V̂ nr3
t ) - - 34 - - 34 - - 34

RBmc(V̂ nr
simp) 559 188 80 0 -1 -2 83 34 15

R̂t R̂wt R̂w̃t

RBmc(V̂ ) - -0 -2 - -1 -2 - -1 -2

CONTRmc(V̂ p
t ) - 49 32 - 49 32 - 50 33

CONTRmc(V̂ nr1
t ) - 22 15 - 22 15 - 22 15

CONTRmc(V̂ nr2
t ) - 28 19 - 28 19 - 28 19

CONTRmc(V̂ nr3
t ) - - 34 - - 34 - - 34

RBmc(V̂ nr
simp) - 0 0 - -1 -2 - -1 -1

∆̂tt(1→ t) ∆̂tt,w(1→ t) ∆̂tt,w̃(1→ t)

RBmc(V̂ ) - -0 -2 - -0 -2 - -1 -3

CONTRmc(V̂ p
t ) - 50 33 - 49 32 - 50 33

CONTRmc(V̂ nr1
t ) - 22 14 - 22 15 - 22 14

CONTRmc(V̂ nr2
t ) - 28 18 - 28 19 - 28 18

CONTRmc(V̂ nr3
t ) - - 34 - - 34 - - 34

RBmc(V̂ nr
simp) - 19 30 - -1 -2 - 3 5

Table 2: Relative bias of a global variance estimator, relative contribution
to the estimators of variance components and relative bias of a simplified
variance estimator for the variance due to non-response for the estimation of
a total, a ratio or a change in totals with three sets of weights
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Strata Strata size Sample size
g NMg nMg

1 108 21
2 108 41
3 109 55
4 108 80
5 111 90
Total 544 287

Table 3: Population and sample strata sizes for the maternity units design.

Strata Strata size Sample size
h NDh nDh

1 91 4
2 91 6
3 91 7
4 92 8
Total 365 25

Table 4: Population and sample strata sizes for the days design.

Among the 35, 600 infants originally selected, a total of 18, 329 face-to-face
interviews were completed with their families, which represents a response
rate of 51 % . This led to the subsample s1 after accounting for non-response.
The weights at time t = 1 were computed on the basis of the original sampling
weights, adjusted in two steps. First, response probabilities were estimated
by means of a model of Response Homogeneity Groups (RHGs), with 20
RHGs defined by using a logistic regression model with explanatory vari-
ables Age of the mother, Gemellary identity and Season of birth. Then, a
calibration by means of the raking ratio method was performed on the binary
variables Born within marriage, Immigrant mother and Gemellary identity.

When the children reached the age of two months, the parents had the first
telephone interview with a response rate of 87 % . This leads to the sub-
sample s2. The weights at time t = 2 were computed on the basis on the
weight obtained at time t = 1, with a two-step adjustment. First, response
probabilities were estimated by means of 20 RHGs, defined by using a logistic
regression with explanatory variables Age of the mother, Mother nationality
and Father present at childbirth. Then, a calibration by means of the raking
ratio method was performed on the same calibration variables as at time
t = 1.
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When the children were one year old, the parents were contacted by phone
with a response rate of 77 % . This led to the subsample s3. The weights
at time t = 3 were computed on the basis on the weights obtained at time
t = 2, with a two-step adjustment similar to that realized at time t = 2. The
parents were expected to be also interviewed when the infants would reach
the age of two, three and half years and five and half years, but at the time
when the paper was written, the three first waves only were available.

We considered three variables of interest: Breastfeeding exclusivity at the
childbirth, at two month, at one year. For each of these variables, we com-
puted the estimator Ŷt from equation (4.4) and the estimated variance V̂t(Ŷt)
from the equation (4.18). We also computed the estimated coefficient of
variation (in percent), defined as

ĈVt

(
Ŷt

)
= 100×

√
V̂t

(
Ŷt

)
Ŷt

. (8.1)

For each component V̂ta in the estimated variance V̂t, we computed its con-
tribution (in percent) defined as

CONTR(V̂ta) = 100× V̂ta − V̂t
V̂t

. (8.2)

We also computed the simplified variance estimator for non-response V̂ nr
t,simp

given in (4.19), and the relative difference (in percent) with the approximately
unbiased variance estimator V̂ nr defined as

RD(V̂ nr
simp) = 100×

V̂ nr
simp − V̂ nr

t

V̂ nr
t

. (8.3)

The results are given in the upper left of Table 5. For each of the three
variables of interest, we also computed the calibrated estimator Ŷwt, and
the same indicators. They are given in the upper right of Table 5. Finally,
for each variable interest, we computed the estimator R̂t and the calibrated
estimator R̂wt for the percentage of breastfeeding among all the children.
The same indicators were computed. They are presented in the lower part
of Table 5. As observed in the simulation study, the RD of the simplified
variance estimator for non-response can be large in case of the estimator of
the total without calibration, but the bias decreases with time. The bias
appears as negligible for the calibrated estimator of the total, and for both
estimators of the ratio.
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Breastfeeding t = 1 t = 2 t = 3 t = 1 t = 2 t = 3
exclusivity maternity 2 months 1 year maternity 2 months 1 year

without calibration with calibration

Ŷt 402409 209009 22658 415272 214262 23276

V̂t(·) 8.51E+07 2.32E+07 1.58E+06 5.95E+06 6.93E+06 1.21E+06

ĈVt(·) (%) 2.3 2.3 5.6 0.6 1.2 4.7

CONTR(V̂ p
t ) 94 78 42 28 34 25

CONTR(V̂ nr1
t ) 6 17 32 72 51 42

CONTR(V̂ nr2
t ) - 5 10 - 15 13

CONTR(V̂ nr3
t ) - - 16 - - 21

RD(V̂ nr
simp) 91 31 3 1 2 0

R̂t (%) 59.0 30.6 3.3 59.4 31.0 3.4

V̂ (R̂t) 1.34E-05 1.50E-05 2.58E-06 1.28E-05 1.48E-05 2.60E-06

ĈV(Ŷt) (%) 0.6 1.3 4.8 0.6 1.2 4.7

CONTR(V̂ p
t ) 31 34 24 28 34 25

CONTR(V̂ nr1
t ) 69 51 42 72 51 41

CONTR(V̂ nr2
t ) - 15 13 - 15 13

CONTR(V̂ nr3
t ) - - 21 - - 21

RD(V̂ nr
simp) 2 2 0 1 2 0

Table 5: Estimates for a total and a ratio, variance estimates, estimated
coefficient of variation, relative contributions of variance components and
relative difference of a simplified variance estimator for some variables in the
ELFE survey

28



9 Conclusion

In this paper, we considered variance estimation accounting for weighting
adjustments in panel surveys. We proposed both an approximately unbiased
variance estimator and a simplified variance estimator for estimators of to-
tals, complex parameters and measures of change, which covers most cases
that may be encountered in practice. Our simulation results indicate that
the proposed variance estimator performs well in all cases considered. The
simplified variance estimator tends to overestimate the variance of the ex-
pansion estimator for totals, and to overestimate the variance for calibrated
estimators of totals when the calibration variables lack of explanatory power
for the variable of interest. However, the simplified variance estimator per-
forms well for the estimation of ratios and change in totals with calibrated
weights, even if the underlying calibration model is not appropriate for the
study variable.

The assumption of independent response behaviour is usually not tenable for
multi-stage surveys, since units within clusters tend to be correlated with
respect to the response behaviour. In this context, estimation of response
probabilities based upon conditional logistic regression in the context of cor-
related responses has been studied by Skinner and D’Arrigo (2011), see also
Kim et al. (2016). Extending the present work in the context of correlated
response behaviour is a challenging problem for further research.

10 Supplementary Materials

The three supplemental files are contained in a single archive.

readme: description of the supplemental files. (txt file)

CodeR Functions: basic functions required to calculate estimators. (R
file)

CodeR Tables: commands that calculate and display the results in Table
1 and Table 2 (call the CodeR Functions). (R file)
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A Some technical conditions

We make the following assumptions:

H1: There exists some constant f ∈]0, 1[ such that N−1n→ f .

H2: There exists some constants 0 < C1 ≤ C2 such that for any i ∈ U :
C1 ≤ Nn−1πi ≤ C2.
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H3: There exists some constant C3 > 0 such that supi 6=j∈U |π−1
ij ∆ij| ≤

C3n
−1.

H4: There exists some constant C4 such that N−1
∑

i∈U y
4
i ≤ C4.

H5: There exists some constant C5 such that at any time δ = 1, . . . , t and
for any unit i we have (pδi )

−1 ≥ C5.

H6: There exists some constant C6 > 0 such that V (Ỹ0) ≥ C6N
2n−1, and

we have (V (Ỹ0))−1V̂ p
0 (Ỹ0) →Pr 1, where V̂ p

0 (Ỹ0) is defined in equation
(3.9) and →Pr stands for the convergence in probability.

H7: There exists some constant C7 > 0 such that V nr(Ỹt) ≥ C7N
2n−1,

where V nr(Ỹt) is defined in equation (3.7).

The assumptions (H1), (H2) and (H3) are classical in survey sampling, see
for example Cardot et al. (2013). It is assumed in (H5) that at any time, the
response probabilities are bounded below; this assumption is similar to con-
dition (R.3) in Kim and Kim (2007). It is assumed in (H6) that the variance
of Ỹ0 does not vanish and has the usual order of magnitude N2n−1. It is also
assumed in (H6) that the variance estimator V̂ p

0 (Ỹ0) is consistent for V (Ỹ0);
this second part of the assumption could be avoided by additional assump-
tions on the higher order inclusion probabilities, see for example Breidt and
Opsomer (2000) and Boistard et al. (2012). It is assumed in (H7) that the
variance of Ỹt due to non-response has the usual order of magnitude N2n−1.

B Consistency of the expansion estimator Ỹt

In this Section, we prove that under assumptions (H1)-(H5) we have

E(Ỹt − Y ) = 0 (B.1)

and

V
{
N−1(Ỹt − Y )

}
= O(n−1). (B.2)

Equation (B.1) follows from the fact that inclusion probabilities and response
probabilities are bounded below from 0. Therefore, we focus on (B.2). From
equation (3.5), we have V (N−1Ỹt) = V (N−1Ỹ0)+V nr(N−1Ỹt). Also, we have

V (N−1Ỹ0) = N−2
∑
i∈U

πi(1− πi)
(
yi
πi

)2

+N−2
∑
i 6=j∈U

∆ij
yi
πi

yj
πj
. (B.3)
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It follows from Assumptions (H1)-(H4) that there exists some constant C > 0
such that V (N−1Ỹ0) ≤ Cn−1. Also, it follows from Assumption (H1)-(H5)
that there exists some constant C such that

V nr(N−1Ỹt) = E

[
N−2

t∑
δ=1

{(
yi

πip1→t
i

)2

pδi (1− pδi )

}]
(B.4)

is lower than Cn−1. This leads to (B.2).

C Consistency of the variance estimator V̂t(Ỹt)

In this Section, we prove that under assumptions (H1)-(H7) we have

E
[
V̂t(Ỹt)− V (Ỹt)

]
= 0 (C.1)

and

V̂t(Ỹt)

V (Ỹt)
→Pr 1. (C.2)

Equation (C.1) follows from the fact that from (H1)-(H3), the second-order
inclusion probabilities are bounded below from 0 and from (H5), the response
probabilities are bounded below from 0. Therefore, we focus on (C.2) for
which it is sufficient to prove that

V̂ p
t (Ỹt)

V p(Ỹt)
→Pr 1 and

V̂ nr
t (Ỹt)

V nr(Ỹt)
→Pr 1. (C.3)

We first focus on the first part of equation (C.3). We can write

V̂ p
t (Ỹt)− V p(Ỹt) =

t∑
δ=1

{
V̂ p
δ (Ỹδ)− V̂ p

δ−1(Ỹδ−1)
}

(C.4)

+
{
V̂ p

0 (Ỹ0)− V p(Ỹt)
}
.

From assumption (H6), we obtain

V̂ p
0 (Ỹ0)− V p(Ỹt)

V p(Ỹt)
→Pr 0. (C.5)

Also, we have

E

{ t∑
δ=1

V̂ p
δ (Ỹδ)− V̂ p

δ−1(Ỹδ−1)

}2
 = E

t∑
δ=1

V
[
V̂ p
δ (Ỹδ) |sδ−1

]
. (C.6)
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After some algebra, we obtain that

V
[
V̂ p
δ (Ỹδ) |sδ−1

]
=

∑
i∈sδ−1

pδi (1− pδi )
(p1→δ
i )2

(1− πi)2

(
yi
πi

)4

+ 4
∑

i 6=j∈sδ−1

pδi (1− pδi )
(p1→δ
i )2

(1− πi)
(
yi
πi

)3

×
pδj
p1→δ
j

∆ij

πij

yj
πj

+ 4
∑

i 6=j 6=k∈sδ−1

pδi (1− pδi )
(p1→δ
i )2

(
yi
πi

)2

×
pδj
p1→δ
j

∆ij

πij

yj
πj
× pδk
p1→δ
k

∆ik

πik

yk
πk
.(C.7)

Under assumptions (H1)-(H5), we obtain from (C.6) and (C.7) that there
exists some constant C such that

E

{ t∑
δ=1

V̂ p
δ (Ỹδ)− V̂ p

δ−1(Ỹδ−1)

}2
 ≤ CN2n−1. (C.8)

From assumption (H6), it follows that∑t
δ=1{V̂

p
δ (Ỹδ)− V̂ p

δ−1(Ỹδ−1)}
V p(Ỹt)

→Pr 0, (C.9)

which, along with (C.5), leads to the first part of (C.3).

We now consider the second part of (C.3). We have

E
[
V̂ nr
t (Ỹt)− V nr(Ỹt)

]2

= V

[∑
i∈st

1− p1→t
i

(p1→t
i )2

(
yi
πi

)2
]
. (C.10)

From Assumptions (H1), (H2), (H4) and (H5), we may find some constant
C such that

E
[
V̂ nr
t (Ỹt)− V nr(Ỹt)

]2

≤ CN5n−4, (C.11)

which, along with Assumption (H7), leads to the second part of (C.3). This
completes the proof.
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