
HAL Id: hal-01354837
https://hal.science/hal-01354837v1

Submitted on 19 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Choosing security elements for the xAAL home
automation system

Christophe Lohr, Philippe Tanguy, Jérôme Kerdreux

To cite this version:
Christophe Lohr, Philippe Tanguy, Jérôme Kerdreux. Choosing security elements for the xAAL
home automation system. ATC 2016 : 13th IEEE International Conference on Advanced and
Trusted Computing, Jul 2016, Toulouse, France. pp.534 - 541, �10.1109/uic-atc-scalcom-cbdcom-
iop-smartworld.2016.0093�. �hal-01354837�

https://hal.science/hal-01354837v1
https://hal.archives-ouvertes.fr

Choosing security elements for the xAAL home automation system

Christophe Lohr, Philippe Tanguy and Jérôme Kerdreux
Telecom Bretagne, Technopôle Brest-Iroise, CS 83818, 29238 Brest Cedex 3, France

Email: christophe.lohr@telecom-bretagne.eu philippe.tanguy1@telecom-bretagne.eu jerome.kerdreux@telecom-bretagne.eu

Abstract—The emergence of Internet of Things (IoT) and
smart-home systems allows us to combine devices from dif-
ferent domains and to explore new usages and services. Unfor-
tunately interoperability between devices from different tech-
nologies is a major issue to overcome before being able to offer
smart services. For this purpose we have proposed the XAAL
system. It is both a federating home-automation protocol and
an open infrastructure designed to address issues caused by the
heterogeneity of existing home-automation solutions. XAAL
has been implemented, deployed and has proved its efficiency.
However, early versions have been designed with functional
concerns in mind. The time has come to address security.
XAAL has its own specificities: a distributed system, multicast
communications on a bus, etc. This paper details choices,
compromises and motivations for selecting security elements
that have been introduced in the new version of XAAL.

1. Introduction

The interoperability between home-automation solutions
is a key issue nowadays: how to make a device from vendor
A (e.g., a switch) talking with a device from vendor B (e.g.,
a lamp)?

In fact, the current situation could be compared to the
well known prisoner’s dilemma: each one act for its own
little benefit, without collaboration with others, and finally
there is no winner [1]. Manufacturers of home-automation
systems would certainly have benefit by opening their solu-
tion but no one wants to do the first step of fear to be eaten
by the concurrency. So, each one has to reinvent yet another
home-automation box claiming to provide all functionalities,
all possible services, in every domains... without a great
success for end users.

To address this issue the XAAL system has been pro-
posed [2]. XAAL is a functional distributed architecture;
all components talk to others via an IP (multicast) bus.
The communications are in the form many-to-many. Mes-
sages are in JSON format. The set functions tradition-
ally implemented by home-automation boxes are arranged
into well-defined separated functional components: elemen-
tary gateways for technology-specific devices (translating
one vendor-specific protocol into XAAL), native-xAAL de-
vices (that embed the XAAL stack), caches, configuration
database, user interfaces, scenarios automata, etc. Each com-
ponent may have multiple instances, may be shared by

xAAL native

Home Automation

Devices
Gateway

X2D−xAAL

Gateway

ZWave−xAAL

Gateway

...−xAAL

xAAL bus (Multicast IPv4/IPv6 UDP)

.

Home Automation Devices

Schemas

Respository

xAAL bus (Multicast IPv4/IPv6 UDP)

Schemas

Respository

Database of

Meta−data

for devices

.

Cache of

xAAL events

xAAL bus (Multicast IPv4/IPv6 UDP)

scenarios

of

Automata
User

Interface

web

User

Interface

externaltablets...

REST...

servers

web

...

.

PC TV...

Figure 1. Functional Architecture of xAAL.

several boxes, and may be physically located on any box.
Figure 1 depicts the general architecture of XAAL.

The previous version of XAAL proposed messages in
clear text, with an optional cryptographic signature. Tra-
ditionally, security is not a high concern in old home-
automation systems (X10, HomeEasy, etc.), even for device
involved in alarms systems. However, new solutions began
to embed cryptographic elements; sometime poor (RC4,
rolling codes, etc.), sometime rather strong (RSA, DSA,
AES, etc.). XAAL must not introduce weakness. Its com-
munication bus over IP could be a place for attacks. Further-
more, securing many-to-many communications (a bus) is a
big challenge rarely addressed by classical security layers,
which consider one-to-one communications. The current pa-
per describes experiments and choices leading to the security
elements proposed for the new version of XAAL. It does not
provide new functionality to XAAL except communications
ciphering.

This document is organized as follows. The section 2
details preliminary studies and tests that have been driven
with very pragmatic concerns in mind. The section 3 spec-
ifies the new message format with the security elements.
Section 4 concludes this paper.

2. State of the art and preliminary studies

2.1. Constraints and needs

The objective is to introduce ciphering for the XAAL
home-automation system. Among its specificities, this is a
distributed and an open system designed for heterogeneous
devices. Concretely, a consumer may acquire and plug new
devices from different vendors at any time. This implies
very little configuration stage for the end user, just like
configuring a WiFi connection.

The second major point is the choice of a bus for
communications between XAAL components. This is used
for automatic discovering, for event messages and also
for control-command. Therefore, there is no hand check
between devices, there is no room for any preliminary keys
or cipher exchange between entities before communications.
This is why existing solutions such as DTLS (Datagram
Transport Layer Security [3], [4]) cannot be reused as it.
Indeed, existing security layers are mostly designed for one-
to-one communication principles. Therefore, sent messages
must be self-content in terms of ciphering elements. Re-
ceivers must be able to check messages without any context.

2.2. Signature in the previous version of XAAL

The previous version of XAAL proposes authenticating
messages with a signature and a private shared key. For
this purpose, messages had three fields: (i) cipher: the name
of the ciphering mechanism used to sign the message; (ii)
signature: the signature of the message by the selected
signing algorithms; (iii) timestamp: the date of the message
in seconds since 1970-01-01 00:00:00 UTC, to avoid replay
attacks.

This specification have been coded and tested with
mixed outcomes.

2.2.1. A private shared key. Several types of security key
may be considered:

A private shared key: Each home-owner chooses a secret
key for its home-automation network and sets it into each
XAAL device at home.

A private/public couple of keys certified by an authority:
keys are generated at factory and preloaded on each device.
The public key is signed by an authority to proof that the
device is the legitimate owner of the key (e.g., TLS [5]).
The signature of the authority is preloaded on each device
in order to check signature of received messages.
But who is legitimate to play the role of the authority?
Which establishment has the infrastructure to do the job
seriously on the long term? Shall we introduce a business

around certifications? Moreover, this drastically breaks the
XAAL principle of a distributed system for heterogeneous
devices. Also, keep in mind that in such systems, leaks of the
signatures may happen: the signatures of the (intermediate)
authorities can be revealed and reused to sign illegitimate
keys. So, revocation protocols have to be introduced.

A private/public couple of keys signed by friends: keys
are generated at factory and preloaded on each device. The
public key is signed by friends, or by friends of friends (e.g.,
PGP [6]). Friends can be other XAAL devices of the home-
automation network.
Before starting to emit messages on the bus, each device
has to send its public key to a certain number of its friends
and to ask them to certify its key with their key. It will also
certify keys of friends with its certified key. This will make
a chain of certifications.
However one may get isolated devices (i.e., friend with no
one, without a certified key), or too popular devices (i.e.,
with many friends and a redundant chain of certifications).
Moreover, there is still the question of the bootstrap: how to
know its first true friends? Possibly the initial key of devices
could be printed on a sticker on the device and scanned by
the installer and pasted into the configuration of friend’s
devices.

As written in the previous version of the XAAL specifi-
cations, using a pre-shared key seems acceptable in the con-
text of a home network: it is the choice of WiFi WPA/WPA2
Personal and HomePlug AV Powerline. This introduces a
configuration stage to set the secret key into each XAAL
device, however this greatly eases the implementation com-
pared to using asymmetric keys.

2.2.2. Multiple signing algorithms. The previous version
of the XAAL specifications allows multiple signing al-
gorithms. An XAAL device may support several signing
algorithms. The cipher field on an XAAL message tells the
signing algorithm used to sign it.

Supporting multiple cryptographic algorithms is recom-
mended by the IETF [7]. It is quite common on classical se-
curity layers (e.g., SSL, TLS, SSH, etc.): with the progresses
of the science of the cryptography, weaknesses on some
algorithms may be discovered, and new stronger algorithms
may be designed; the cryptographic algorithms change, but
the protocol remains the same. For instance RC4 has been
withdrawn from TLS, and Chacha20 has been added [8].
Note that allowing such cryptographic algorithm agility in-
creases the complexity of the protocol: additional signalling
communication has to be added to negotiate cipher between
communicating peers, one has to ensure that participants
choose the strongest algorithm available in common and a
minimal set of mandatory algorithms has to be chose and
maintained.

Having such a flexible security layer is very comfortable.
However, implementing such a flexible security layer is very
hard, uncomfortable and a source of errors.

This leads to some questions about the design: since
XAAL communications are in a many-to-many way (i.e.,
messages on a bus), there cannot be a preliminary nego-

tiation stage in which a sender and a receiver agree on a
cryptographic algorithm. A sender emits a message to sev-
eral receivers. So, which cryptographic algorithm to choose?
Moreover, if many cryptographic algorithms are allowed
at the same time on the same bus, there can be several
separated conversations in parallel where devices may (or
may not) understand conversations of others: possibly one
“channel” per cryptographic algorithm. This breaks some
other design points of XAAL: a distributed collaborative
system. To avoid this one would have to ensure that there is
at least one cryptographic algorithm shared by all devices
of the bus among the list of ones they accept. So, why not
having just one, once and for all?

Well, one will not talk about another ugly solution:
add some proxies on the bus to translate messages from
one cryptographic algorithm to another one. This duplicates
messages for devices that understand the two cryptographic
algorithms and may flood the bus by introducing loops if
there are two proxies doing the translation in the two ways.
So, forget it. Definitively.

As a consequence, it has been decided that the new
version of XAAL will support one and only one crypto-
graphic algorithm. So, the cryptographic algorithm agility
recommended by the IETF will take the form in the XAAL
context: when the time will come to change the ciphering
algorithm, a new version will be edited.

2.2.3. A “signature” field inside the message. The previ-
ous version of XAAL specifies that the signature is written
inside the message it signs. This leads to some difficulties.

Nowadays a signing mechanism has been implemented
and tested. It uses HMAC SHA256 on messages with the
signature field previously padded with zeros. The signature
is then encoded in hexadecimal and replaced within the
message.

This trick is rather usual: the checksum of TCP/UDP/IP
packets is computed with the field padded by zeros, and once
one has the right value, one writes it in the final packet.

The difficulty in XAAL is the operation of writing the
signature field inside the message after computation on the
JSON serialization of data.

There will be several sides’ effects if this is performed
by using a JSON library. Indeed, JSON is not a canonical
format: the same data may be serialized into several ways,
by adding spaces or new lines, by reordering fields inside
objects, etc. This is allowed. For instance, some JSON li-
brary removes all spaces and systematically places the fields
in the alphabetical order. As a consequence, after writing
the signature field inside the message, the serialization may
be very far from the one on which the signature has been
computed. The receiver has no chance to retrieve the original
way in which the message was serialized. It cannot check
the signature.

To avoid this, one has to use something else than a JSON
library to write the signature field. For instance, one can
play with pointers inside the buffer of the message. This is
feasible; however this is rather inelegant and non desirable.

As a consequence, it has been decided that new XAAL
version will place the cryptographic elements outside of the
message to be secured.

2.2.4. A timestamp as the nonce. The replay attack is a
classical issue in security. For instance, consider the alarm
of a house that can be activated and deactivated remotely
via a secure channel with ciphering but without replay attack
protection. A robber could record the deactivating message
emitted when the home-owner stops its alarm when he
arrives at home. Then, when the home-owner is away, the
robber could re-inject this message as-is. He does not need
to decrypt it; he does not need to break the key. The message
is perfect as this. The alarm will accept it and will stop.

To avoid this, each message must be different, even those
that say the same thing. For that an extra field is added
inside messages whose value is different on each message:
a nonce. A nonce does not need to be secret, a nonce does
not need to be random; it just has to be different on each
message.

Another required property is that a nonce must be
checked by the receiver. It cannot be completely free: if
the receiver accepts any nonce value, it will accept the
nonce of the old replayed message, and will not avoid the
replay attack. Typical security protocols have a preliminary
challenge-response stage. The receiver itself chooses a value
for the nonce, and indicates it to the sender. Then the sender
uses it in the messages it sends. On receipt, the receiver
checks that the nonce in the message is the one it expects.
This strategy is fine for one-to-one communication schemes.
However, XAAL has many-to-many communications.

A first naive strategy would be to ask all devices to
keep in memory all past values used for the nonce, and
to compare any incoming message to this list. This is not
realistic.

Another strategy is to use a counter, a kind of message-
id. Each device listens messages on the bus, records the
last used message-id. On receipt, the device checks that the
message-id in the received message is consistent with the
message-id it recorded previously. At emission, it increments
its recorded message-id and uses it as the nonce in the
message it sends. This is more realistic, however the devices
must stay awake to listen to the bus and remain synchro-
nized to this counter. Unfortunately some home-automation
devices are sleeping to save battery (sometime for a long
time).

Finally, it has been decided in the previous XAAL
version to use the time that passes for this counter. The
nonce is a timestamp, the number of seconds since Epoch,
1970-01-01 00:00:00 +0000 (UTC). From a practical point
of view, it is much more feasible to remain synchronized
with the time, at least with a precision of several seconds or
minutes. The dormant devices may embed a small clock; that
consumes much less battery than listening to the network.

Strictly speaking, this does not fully avoid a replay
attack. Indeed, one has to introduce an acceptance window
of few seconds (or few minutes): only messages that are too
old (outside this acceptance window) are rejected. From the

hardware point of view, having a precision of a few seconds
(or few minutes) is OK. Requiring a stronger synchroniza-
tion may become very hard. We want a good security but
at an acceptable price. Therefore, a replay attack is still
feasible within this acceptance window. However, the replay
attacks have a rather limited interest: the attacker cannot
send all messages he wants, he can just blindly inject some
messages that legitimate users have emitted just before. A
window of few seconds (or few minutes) is compatible
with usages of people: if the robber tries to replay the
deactivating message of the alarm within this delay, there are
high chances that the home-owner is still in the place (and
that the alarm is already off)... Moreover, due to the choice
of UDP as the transport protocol, XAAL applications have
to be designed to be resilient to packet losses and packets
duplications. Commands of devices are designed to support
messages duplications; for instance a lamp has separated
on/off methods, but no trigger. In case of critical situation
and to avoid replaying commands, devices should keep in
memory a hash of treated requests within the acceptance
window.

Timekeeping is a common issue of distributed systems.
In fact there are two problems: first knowing what time
it is, and then staying synchronized without much drift.
Everything depends on the required precision. There are
several technical solutions: the clock of a GPS, the atomic
clock of Frankfurt transmitted via the DCF77 longwave
radio signal (fine in Europe), and the clock transmitted
via Radio Data System by local radio stations, etc. Those
solutions are quite expensive and unrealistic for small home-
automation devices.

A more realistic solution is to get the time via Internet
(since XAAL devices are already on the network). The plain
old Time Protocol [9] is no more in use. Nowadays, the
Network Time Protocol (NTP [10]) is used. Many public
servers are available. (Private servers, usually those of the
“first strata”, require authentication.) According to the al-
gorithm specifications of NTP, the typical accuracy on the
Internet ranges from about 5ms to 100ms. This is too precise
for XAAL. NTP also includes a variant: the Simple Network
Time Protocol (SNTP), with an accuracy of about one
second. In fact NTP and SNTP use the same protocol (from
outside there is no way to distinguish if the client or the
server implements NTP rather than SNTP). The differences
are in the internal routines to mitigate several time sources
and to compensate clock drifts, which may consume CPU
resource with NTP. Another more lightweight strategy is the
ntpdate approach: this application just asks once the time is
it to an NTP server and sets it to its internal clock. For
instance this is also the strategy of the NTP implementation
in Arduino [11]. (This is more or less the way the plain old
Time Protocol do the job.)

Note that there are very few attacks on the NTP protocol.
Sometimes NTP servers are used to collect IPs of clients
for later attacks, or NTP servers may be used to amplify
distributed denial-of-service (DDoS) attacks, but there is no
real attack on the NTP protocol itself. In fact, it is pretty
hard to fool an NTP client on the time of the day. This is also

a reason why there will not be an XAAL device that gives
the time to other devices. First, there are little chances that
we design something better than NTP. Then, such a device
would be a prime target for an attacker. And finally, XAAL
communication with this device could not be secured, since
devices will not be synchronized.

The ntpdate approach (or similar) is a low-cost strategy
that addresses the first issue: knowing what time it is.
Remains the second issue about keeping its internal clock
synchronized without too much drift. Typically, one uses
quartz crystal oscillators. The accuracy of such quartz crystal
oscillators depends on the temperature variations. Fortu-
nately, it is shown that this compensates itself along day’s
cycles. The accuracy is of 1 second per day, 15 seconds
per month, 1 minute per year [12]. It is good enough for
XAAL.

As a consequence, it has been decided that new XAAL
version, as for the previous one, will use a timestamp as a
nonce with an acceptance window of few seconds or few
minutes.

2.3. Ciphering in the previous version of XAAL

Signed messages provides authentication: a device has
the proof that a command comes from a legitimate sender.
However, the content of the message is still in clear. A spy
may know that a given message is the one to deactivate the
alarm, or that someone is doing something in the bathroom...
To avoid this, messages have to be ciphered.

The specification of previous XAAL version does not
propose ciphering. However, some tests and implementa-
tions have been driven, with little arrangements of the format
of messages.

2.3.1. Security with Poly1305/Chacha20. As stated above,
it has been decided to use one and only one security
algorithm for XAAL. Among the large list of well-known
algorithm, Poly1305/Chacha20 has been selected [13], [14].
According to the author, it is at least as stronger than others
(e.g. AES); it is much faster, requiring less memory, less
CPU. (It works on an Intel 8051! [15])

Even if Poly1305/Chacha20 is not necessarily well
known by non-experts in security, it is now in the cipher
suites for TLS 4. Several libraries are available in different
programming languages.

2.3.2. A timestamp as the binary nonce. As stated above,
a timestamp can be used for the nonce. Chacha20 supports
a nonce of 64 bits. Some systems return the number of
seconds since Epoch on 64 bits. Some others return it on
32 bits. In fact, this will be the same until Sunday February
7 2106 at 07:28:15 UTC. In the mean time, the other bits are
just zeros. So the unused bits can be used to code something
else that varies, for instance microseconds. As a result one
can build a nonce that changes a lot. In terms of implemen-
tation, this is quite usual to get seconds and microseconds on
systems by functions like gettimeofday(). (Modern systems

claim to provide nanoseconds; microseconds are enough for
us.)

In fact, coding microseconds requires 20 bits. Coding
seconds since Epoch requires today 31 bits. In one hour 12
bits are changing. As a result, a nonce built as described
above (seconds on 32 bits + micro-seconds on 32 bits) will
have a variability of more or less 32 bits. Well, among other
compromises made about the nonce, we consider that this
is good enough.

To sum up, having such timestamp in messages (i.e.,
seconds since Epoch + microseconds since the beginning
of this second) can be used for two things: first as a
cryptographic nonce for the Poly1305/Chacha20 algorithm,
and also to check the age of the message within a temporal
window (just in looking at seconds).

Note about the millennium bug (i.e., Sunday February
7 2106 at 07:28:15 UTC), if no other XAAL version is
proposed before this date: counters will loop back, but
the nonce will be computed in the same way. Nothing
special will occur, except that some devices will loop back
before others, depending on the precision of their clock (that
could be of few seconds or minutes). So, regular packets
may be rejected. (A priori this does not matter: remember
that XAAL does not provide warranty on the transmission
of messages.) Once everyone looped back, messages are
accepted as before.

Note about the size of the nonce: The original Chacha20
algorithm uses a nonce of 64 bits. The RFC 7539 [16] that
adds Chacha20 into TLS modifies it to support a 96 bit
nonce, in order to fit TLS recommendations. Indeed, the
nonce may be generated by a pseudo-random function; a
larger nonce may avoid collisions. Collisions of nonce are
not very serious, but it is best to avoid them. According to
the way XAAL builds the nonce, there could be collisions
between packets before and after February 2106, or if two
packets are emitted on the bus on the same time on the
same microsecond: a priori this is managed by collision
avoidance mechanisms of Ethernet or WiFi. Nevertheless,
collision of nonce may happen in theory if two devices
have slightly desynchronized clocks, just enough for the
messages they emit just one after the other will exhibit the
same timestamp with the same microsecond. It is assumed
that this scenario is extremely rare. And if it happens, this
should cause nothing special in practice.

2.3.3. Targets as public data. Through encryption, mes-
sages are unreadable for those that do not have the key.
However, this becomes heavy if all devices must decrypt all
messages, even those that are not for them, just to know if
messages are for them or not. For efficiency, devices should
be able to filter messages on the targets field (i.e., compare
targets addresses of the message with their own address)
before decryption.

Fortunately, the Poly1305/Chacha20 algorithm proposes
an AEAD mode (Authenticated Encryption with Additional
Data). With this mode, the message is encrypted and signed,
but the signature may also cover additional data that can
appear in clear. Such an additional data is the right place

for the targets field. Devices can quickly filters received
messages, and the field is also protected by the key. An
attacker cannot rebuild and inject a message by taking the
encrypted part of a message and add the target field of
another one.

Note: for the same motivation, the field version (which
indicates the XAAL protocol version of the current mes-
sage) has also been moved as public data to ease devices
to quickly filter messages. However, it was also covered by
the signature. But this is perhaps unnecessary. For now, we
cannot find a scenario of an attack based on tricking the
version field.

2.3.4. A binary security layer. To experiment ciphering of
XAAL, the original message format has been modified. The
fields cipher and signature have been removed. The fields
targets, timestamp and version have been moved outside.

It would have been fine to present the moved fields and
the security elements in a JSON format also, that could
have been placed before or after the encrypted message.
Unfortunately, because JSON is non canonical, there can
be extra spaces before the first opening brace, or after the
last closing brace. There is no way to really know where
does start a JSON message, and where it ends. Most JSON
libraries skip the spaces before the first opening brace,
and stop decoding at the closing brace. This is a valid
interpretation of the JSON serialization, but there could be
others. Those extra spaces, if any, could belong to the JSON
message itself, or to a data that is placed side to the JSON.
As a consequence, if one puts the encrypted message side to
those JSON fields, there is no way to really know where the
encrypted part starts or ends. The receiver cannot be sure it
is decrypting the right data.

Finally, for this experiment, it has been decided to
present the moved fields and the security elements in a
binary format rather than in a JSON format, just before the
encrypted message, which is also in a binary format. This
is the so-called security layer.

The binary format of this security layer is as follows:

The version: composed by a major and a minor number
(two unsigned on 8 bits);
The targets number: an unsigned on 16 bits in big endian
(network byte order);
The targets: a vector of a size of targets number where each
cell is an uuid on 128 bits (a vector of 16 bytes);
The public nonce: composed of seconds since Epoch as an
unsigned on 32 bits in big endian, and of microseconds as
an unsigned on 32 bits in big endian.
The application layer: the payload of the security layer. It is
built by encrypting the usual XAAL JSON message (without
the field version targets cipher signature timestamp), using
the Poly1305/Chacha20 algorithm and the above nonce. The
“public data” is the buffer composed by version, targets
number and targets.

The tests conducted have shown that it is feasible and
that it is pretty effective.

There are some cons against this solution. First, the
devices addresses (uuid [17]) are presented in two ways: in a
binary way in the security layer (the targets), and in a JSON
way inside the application layer (the source). This is rather
inelegant. And then, the implementation is source of error
(think to segmentation fault while handling the variable size
of the vector of targets), and complicated in other languages
than C.

The tests convinced us that using an existing format
to present elements of the security layer is preferable to
a binary ad-hoc format, even if it is less compact.

2.4. JavaScript Object Signing and Encryption
(JOSE)

The JOSE working group of the IETF aims to provide
security of JSON messages. A series of RFCs are proposed:

Use Cases and Requirements for JSON Object Signing and
Encryption (JOSE) [18]: This gives the frame for the JOSE
working group.
JSON Web Signature (JWS) [19]: This specifies the message
format and cryptographic mechanisms used to sign and
authenticate messages.
JSON Web Encryption (JWE) [20]: This specifies the mes-
sage format and cryptographic mechanisms used to cipher
messages.
JSON Web Key (JWK) [21]: This specifies the format of
keys.
JSON Web Algorithms (JWA) [22]: This describes registers
where cryptographic algorithms are recorded. (They are not
recorded inside RFCs but in registers pointed by RFCs. This
allows more flexibility.)
Examples of Protecting Content using JavaScript Object
Signing and Encryption (JOSE) [23]: A cooking-book with
examples and best practices.

Strictly speaking, JOSE is more a way to express crypto-
graphic elements into a JSON format rather than a solution
to encrypt JSON messages. The payload could be something
else than a JSON message, even if everything was designed
with JSON in mind.

JOSE is very flexible. Numerous cryptographic mecha-
nisms are possible. Surprisingly, Poly1305/Chacha20 is not
in the list at the time this document is written (2016).

A key point of JOSE is an intensive use of the base64
encoding/decoding. Indeed, encrypted data are in a binary
form by design, while JSON is in a textual form by design.
The use of base64 is rather natural. For the implementation
this requires new buffers to store data while encoding/de-
coding. However, base64 is typically used in JSON contexts.
This strategy could be used for XAAL: rather than placing
ciphered data before or after the security layer, this can be
placed inside as a base64 encoded string.

For now there are very few programming libraries for
JOSE. But JOSE is rather young (May 2015). This will
come later.

As a conclusion, for now JOSE is too complex (flexible)
to be used within XAAL. However, if in the future it is

decided to support several cryptographic mechanisms within
XAAL, JOSE could become a good candidate.

2.5. Concise Binary Object Representation
(CBOR)

The Concise Binary Object Representation (CBOR) [24]
specifies a format to serialize data in a binary way. In short,
CBOR does exactly the same things as JSON, except that
the result is in binary rather than in text. Moreover, CBOR
can handle binary data directly, without base64 encoding/de-
coding.

However, like JSON, CBOR is not a canonical format:
the same data can be serialized in several ways. Fields
can be reordered, numbers and lists may be serialized in
different way. There are no more issues with extra spacing,
but things are not perfect neither. A special tag (0xd9d9f7)
can be used to express when a CBOR serialization starts
within a byte stream, but there is no tag to express when a
CBOR serialization ends within the bytes stream (and that
something else is starting after).

Today there are some programming libraries (or piece of
code) for CBOR. CBOR seems to become more and more
used, and more specifically in the area of Internet of Things
(well, it has been designed for that). Moreover, there are
several efforts to provide security on CBOR, as JOSE does
for JSON. The IETF recently published drafts of RFCs for
this [25].

For now, JSON is fine for XAAL. This is a well-known
format, and messages are in clear text (readable by humans).
Those points are important for the promotion of XAAL
and the acceptance by developers. Even if today it is too
early, it is highly possible that a future release of XAAL
will use CBOR in the place of JSON. This could improve
messages format without changing XAAL principles and
functionalities.

2.6. Findings of the preliminary studies

The above studies lead us to draw major principles for
securing XAAL. To sum up, the main points are:

• A pre-shared symmetric key;
• Poly1305/Chacha20 as the only cryptographic algo-

rithm;
• A binary nonce built as a timestamp since the Epoch

(seconds + microseconds);
• An acceptance window for the timestamp of mes-

sages;
• The list of targets in clear, but covered by the

signature;
• A security layer in JSON;
• An application layer in JSON, very close to previous

XAAL releases;
• The ciphered application layer encoded in base64

and inside the security layer as a string.

3. Defining security elements for the new ver-
sion of XAAL

3.1. Definition of a message

A message is in JSON format. This called the security
layer. This is a JSON object whose fields are:

• version: The string “0.5”. (The version of the pro-
tocol.) Other values should be rejected.

• targets: A string built as the JSON serialization
of the array of destination addresses (uuid) of the
message. An empty list means a broadcast message.
An empty string is not allowed (the message should
be rejected).

• timestamp: An array of two (and exactly two) inte-
gers: the first number is the number of seconds since
the Epoch (1970-01-01 00:00:00 +0000 UTC), and
the second number is the number of microseconds
since the beginning of this second.

• payload: A string built as the base64 encoding of
the ciphered application layer.

The application layer (which is embedded inside the
security layer) is built as described in previous version of
XAAL with the following modification: the fields version,
targets, cipher, signature and timestamp are withdrawn of
the header. The rest is the same.

Figures 2 and 3 give an example of an XAAL message
(the security layer) with its decoded payload (the application
layer).

{ "version": "0.5",
"targets": "[\"174255ad...dbcdfc812d4\"]",
"timestamp": [1439824426, 467313],
"payload": "8sbrvczRc5Np...SAUc5Dj9SKoe82="

}

Figure 2. Example of an XAAL message (security layer)

{ "header": {
"source": "06b71935-...-dae3d3b8ce77",
"devType": "thermometer.basic",
"msgType": "reply",
"action": "getAttributes"

},
"body": {
"temperature": 33.0

}
}

Figure 3. The decrypted payload of an XAAL message (application layer)

3.2. Applying Poly1305/Chacha20

3.2.1. The targets array as a string. Please note that the
targets field is a string. This is not an array of uuids, this is
the JSON serialization of an array of uuids.

Two arguments for this: first, it is not so complicated
for a device to parse it and to check if the message is for it
or not. Then, this string may bee seen as a buffer of bytes
and can directly be used as the public additional data for
the Poly1305/Chacha20 algorithm.

3.2.2. The timestamp as an array of two integers. The
format of this field is mapped on the function gettimeofday()
(SVr4, BSD 4.3. POSIX.1-2001...) which return the date of
the day as a pair of two unsigned numbers (seconds and
microseconds). Just send it as it.

Then, the binary nonce (64 bits) to be used with
Poly1305/Chacha20 is composed of the seconds and mi-
croseconds (in this order) as two 32 bits unsigned in big-
endian.

3.2.3. The encrypted payload encoded in base64. En-
crypted data are encoded/decoded in base64 [26]. Due to
its heritage from the email, the base64 encoding may insert
line breaks every 72 chars, this is unnecessary here.

3.3. Recommendations

3.3.1. To build the cryptographic key from a passphrase.
The Poly1305/Chacha20 algorithm uses a binary key on 256
bits. A fine way to select a “good” key is to build it from a
passphrase using a cryptographic hashing algorithm.

It is proposed to use the dedicated function pro-
vided for this purpose in the reference Chacha20 li-
brary (the sodium library), and derived libraries: the
crypto pwhash scryptsalsa208sha256() function [27]. Rec-
ommended parameters are used: 512k cycles for the opslimit
and 16 Mbytes for the memlimit.

The only point is the question about choosing the salt.
Ideally, the salt should be something which differs from
one home-automation network to another home-automation
network, but should also be well known by each device on
the same home-automation network.

For instance, the key of a WPA-Personnal WiFi connec-
tion may be entered either as a string of 64 hexadecimal
digits, or as a passphrase of ASCII characters. In such a
case, the key is derived from the passphrase HMAC-SHA1
and the name of the WiFi network as the salt (IEEE Std.
802.11i-2004, Annex H.4.1). In the case of XAAL, there is
no network name. In the absence of a good idea for defining
such a salt, one proposes to use a buffer of zeros.

3.3.2. To choose a window of acceptance for the times-
tamp. According to our preliminary studies, we think that
an acceptance window of two minutes should be fine.

3.3.3. To have several keys on the same bus. An XAAL
bus is designed by an IP multicast address, and an UDP
port. This is possible to have several security keys on the
same bus, as it is possible to use several XAAL versions on
the same bus. However, this leads to several communication
channels in parallel. The devices with a given security
key or a given XAAL version cannot talk to the devices

with another key or version. They will systematically reject
plenty of packets. This is inefficient.

If several keys or XAAL versions are needed, it is
recommended to use different XAAL buses.

4. Conclusion

The XAAL system is both a federating home-automation
protocol and an open infrastructure designed to address
issues caused by the heterogeneity of existing home-
automation solutions. Among others specificities, XAAL
has a many-to-many communication scheme on a bus, mak-
ing unsuitable usual security solution designed to one-to-
one communications. This paper has presented experiments
and studies that have been driven. It detailed choices, com-
promises and motivations that underlie the design of a
new secured communication layer for XAAL. Main points
are: (i) A pre-shared private key; (ii) The use of the
Poly1305/Chacha20 algorithm; (iii) A timestamp to avoid
replay attack, and an acceptance window on the age of
messages; (iv) A JSON format for the security layer.

This proposal is coded and tested in our living’lab [28].
The next step is to deploy it in real field and to test it on
the long term with real end-users.

Acknowledgments

This project has received funding from the European
Community’s Seventh Framework Program for research,
technological development and demonstration under grant
agreement No.611366 (PRECIOUS [29]).

References

[1] A. Chaverot. (2015, juin) Maison connecte: vers un chec?
(in french) – Connected Home: towards fail? La Tri-
bune. [Online]. Available: http://www.latribune.fr/opinions/tribunes/
maison-connectee-vers-un-echec-480797.html

[2] C. Lohr, J. Kerdreux, and P. Tanguy, “xAAL: A Distributed
Infrastructure for Heterogeneous Ambient Devices,” Journal of
intelligent systems, vol. 24, no. 3, pp. 321–331, Aug. 2015. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01187869

[3] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347, january 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6347

[4] B. Moeller and A. Langley, “TLS Fallback Signaling Cipher
Suite Value (SCSV) for Preventing Protocol Downgrade Attacks,”
RFC 7507, april 2015. [Online]. Available: https://tools.ietf.org/html/
rfc7507

[5] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246, august 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5246

[6] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer,
“OpenPGP Message Format,” RFC 4880, november 2007. [Online].
Available: https://tools.ietf.org/html/rfc4880

[7] R. Housley, “Guidelines for Cryptographic Algorithm Agility and Se-
lecting Mandatory-to-Implement Algorithms,” RFC 7696, november
2015. [Online]. Available: https://tools.ietf.org/html/rfc7696

[8] P. Popov, “Prohibiting RC4 Cipher Suites,” RFC 7465, february
2015. [Online]. Available: https://tools.ietf.org/html/rfc7465

[9] J. Postel and K. Harrenstien, “Time Protocol,” RFC 868, may 1983.
[Online]. Available: https://tools.ietf.org/html/rfc868

[10] D. Mills, U. Delaware, J. Martin, J. Burbank, and W. Kasch,
“Network Time Protocol Version 4: Protocol and Algorithms
Specification,” RFC 5905, june 2010. [Online]. Available: https:
//tools.ietf.org/html/rfc5905

[11] (2016) Arduino Playground - NTPclient. [Online]. Available:
http://playground.arduino.cc/Code/NTPclient

[12] M. A. Lombardi, “The Accuracy and Stability of Quartz
Watches,” pp. 57–59, February 2008. [Online]. Available: http:
//www.nist.gov/manuscript-publication-search.cfm?pub id=50647

[13] D. J. Bernstein, Fast Software Encryption: 12th International
Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised
Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, ch. The Poly1305-AES Message-Authentication Code, pp.
32–49. [Online]. Available: http://dx.doi.org/10.1007/11502760 3

[14] ——. (2016) Poly1305-AES: a state-of-the-art message-
authentication code. [Online]. Available: http://cr.yp.to/mac.html

[15] ——. (2016) Poly1305-AES for the 8051. [Online]. Available:
https://cr.yp.to/mac/8051.html

[16] Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF
Protocols,” RFC 7539, may 2015. [Online]. Available: https:
//tools.ietf.org/html/rfc7539

[17] P. Leach, M. Mealling, and R. Salz, “A Universally Unique
IDentifier (UUID) URN Namespace,” RFC 4122, july 2005.
[Online]. Available: https://tools.ietf.org/html/rfc4122

[18] R. Barnes, “Use Cases and Requirements for JSON Object Signing
and Encryption (JOSE),” RFC 7165, april 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7165

[19] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature
(JWS),” RFC 7515, may 2015. [Online]. Available: https://tools.ietf.
org/html/rfc7515

[20] M. Jones and J. Hildebrand, “JSON Web Encryption (JWE),”
RFC 7516, may 2015. [Online]. Available: https://tools.ietf.org/html/
rfc7516

[21] M. Jones, “JSON Web Key (JWK),” RFC 7517, may 2015. [Online].
Available: https://tools.ietf.org/html/rfc7517

[22] ——, “JSON Web Algorithms (JWA),” RFC 7518, may 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7518

[23] M. Miller, “Examples of Protecting Content Using JSON Object
Signing and Encryption (JOSE),” RFC 7520, may 2015. [Online].
Available: https://tools.ietf.org/html/rfc7520

[24] C. Bormann and P. Hoffman, “Concise Binary Object Representation
(CBOR),” RFC 7049, october 2013. [Online]. Available: https:
//tools.ietf.org/html/rfc7049

[25] E. Wahlstroem, M. Jones, and H. Tschofenig, “CBOR
Web Token (CWT),” draft-wahlstroem-ace-cbor-web-token-00,
december 2015. [Online]. Available: https://tools.ietf.org/html/
draft-wahlstroem-ace-cbor-web-token-00

[26] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,”
RFC 4648, october 2006. [Online]. Available: https://tools.ietf.org/
html/rfc4648

[27] D. J. Bernstein. (2016) The Sodium crypto library (libsodium).
[Online]. Available: https://download.libsodium.org/doc/

[28] (2016) Experiment’Haal: an AAL Living’Lab. IHSEV Telecom
Bretagne. [Online]. Available: https://www.telecom-bretagne.eu/
recherche/plates-formes technologiques/experiment-haal/

[29] (2016) The Precious Project - PREventive Care Infrastructure
based On Ubiquitous Sensoring. [Online]. Available: http://www.
thepreciousproject.eu/

