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Abstract. This work is concerned with the computational complexity
of a model of computation that is inspired by optical computers. We
present lower bounds on the computational power of the model. Parallel
time on the model is shown to be at least as powerful as sequential space.
This gives one of the two inclusions that are needed to show that the
model verifies the parallel computation thesis. As a corollary we find that
when the model is restricted to simultaneously use polylogarithmic time
and polynomial space, its power is lower bounded by the class NC. By
combining these results with the known upper bounds on the model, we
find that the model verifies the parallel computation thesis and, when
suitably restricted, characterises NC.

1 Introduction

Over the years, optical computers were designed and built to emulate conven-
tional microprocessors (digital optical computing), and for image processing over
continuous wavefronts (analog optical computing). Here we are interested in the
latter class: optical computers that store data as images. Numerous physical
implementations exist and example applications include fast pattern recognition
and matrix-vector algebra [7, 22]. There have been much resources devoted to
designs, implementations and algorithms for such optical information processing
architectures (for example see [1, 3, 5, 7, 10–13,20, 22, 28] and their references).
However the computational complexity theory of optical computers (that is,
finding lower and upper bounds on computational power in terms of known
complexity classes) has received relatively little attention when compared with
other nature-insired computing paradigms. Some authors have even complained
about the lack of suitable models [5, 11].

The computational model that we study was originally put forward by Naughton
and is called the continuous space machine (CSM) [14–16, 23, 27]. The CSM is
inspired by classical Fourier optical computing architectures and uses complex-
valued images, arranged in a grid structure, for data storage. The program also
resides in images. The CSM has the ability to perform Fourier transformation,
complex conjugation, multiplication, addition, thresholding and resizing of im-
ages. It has simple control flow operations and is deterministic. We analyse the
model in terms of seven complexity measures inspired by real-world resources.



A rather general variant of the model was previously shown [27] to decide
the membership problem for all recursively enumerable languages, and as such
is unreasonable in terms of implementation. Also, the growth in resource us-
age was shown for each CSM operation, which in some cases was unreasonably
large [25]. These results motivated the definition of the C2-CSM, a restricted
CSM that uses discrete-valued images. We have given upper [24] and lower [26]
bounds on the computational power of the C2-CSM by showing that it verifies
the parallel computation thesis. This thesis [4, 6, 8, 9, 17, 21] states that parallel
time corresponds, within a polynomial, to sequential space for reasonable par-
allel models. Furthermore we have characterised the class NC in terms of the
C2-CSM. These results are collected together in [23].

Here we present one of the two inclusions that are necessary in order to
verify the parallel computation thesis; we show that the languages accepted
by nondeterministic Turing machines in S(n) space are accepted by C2-CSMs
computing in time O(S(n) + log n)4.

NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S(n) + log n)4)

For example polynomial time C2-CSMs accept the PSPACE languages. Also we
show that C2-CSMs that simultaneously use polynomial space and polylogarith-
mic time accept the class NC.

NC ⊆ C2-CSM–SPACE, TIME(nO(1), logO(1) n)

These inclusions are established via C2-CSM simulation of index-vector machines.

2 The CSM

We begin by describing the model in its most general sense, this brief overview
is not intended to be complete and more details are to be found in [23].

2.1 CSM

A complex-valued image (or simply, image) is a function f : [0, 1)× [0, 1)→ C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N+ = {1, 2, 3, . . .}, N = N+ ∪ {0}, and for a given CSM M

let N ⊂ I be a countable set of images that encode M ’s addresses. Additionally,
for a given M there is an address encoding function E : N → N such that E

is Turing machine decidable, under some reasonable representation of images as
words. An address is an element of N× N.

Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P, O), where

E : N→ N is the address encoding function,
L = ((sξ , sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a and b, where a 6= b,
I and O are finite sets of input and output addresses, respectively,
P = {(ζ1, p1ξ

, p1η
), . . . , (ζr , prξ

, prη
)} are the r programming symbols ζj and
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their addresses where ζj ∈ ({h, v, ∗, ·, +, ρ, st, ld, br, hlt} ∪ N ) ⊂ I.
Each address is an element from {0, . . . , Ξ−1}×{0, . . . , Y−1} where Ξ, Y ∈ N+.

Addresses whose contents are not specified by P in a CSM definition are
assumed to contain the constant image f(x, y) = 0. We interpret this definition to
mean that M is (initially) defined on a grid of images bounded by the constants Ξ

and Y, in the horizontal and vertical directions respectively. The grid of images
may grow in size as the computation progresses.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
located at the lower left-hand corner of the grid. The images have the same
orientation as the grid. For example the value f(0, 0) is located at the lower
left-hand corner of the image f .

In Definition 1 the tuple P specifies the CSM program using programming
symbol images ζj that are from the (low-level) CSM programing language [23,
27]. We refrain from giving a description of this programming language and
instead describe a less cumbersome high-level language [23]. Figure 1 gives the
basic instructions of this high-level language. The copy instruction is illustrated
in Figure 3. There are also if/else and while control flow instructions with
conditions of the form (fψ == fφ) where fψ and fφ are binary symbol images
(see Figures 2(a) and 2(b)).

Address sta is the start location for the program so the programmer should
write the first program instruction at sta. Addresses a and b define special im-
ages that are frequently used by some program instructions. The function E

is specified by the programmer and is used to map addresses to image pairs.
This enables the programmer to choose her own address encoding scheme. We
typically don’t want E to hide complicated behaviour thus the computational
power of this function should be somewhat restricted. For example, we put such
a restriction on E in Definition 7. Configurations are defined in a straightforward
way as a tuple 〈c, e〉 where c is an address called the control and e represents
the grid contents.

2.2 Complexity measures

Next we define some CSM complexity measures. All resource bounding functions
map from N into N and are assumed to have the usual properties [2]. Logarithms
are to the base 2.

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

For example suppose M accepts language L, then the grid complexity of M is
the minimum number of images accessible by M and arranged in a rectangular
grid, such that M accepts exactly L.
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h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform of i1.
v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.
∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.
··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.
+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper

amplitude threshold images, respectively. Place result at i2.
[ξ′1, ξ

′

2, η
′

1, η
′

2]← [ξ1, ξ2, η1, η2] : copy the rectangle of images whose bottom left-hand
address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′1, η

′

1) and whose
top right-hand address is (ξ′2, η

′

2). See illustration in Figure 3.

Fig. 1. CSM high-level programming language instructions. In these instructions
i, zl, zu ∈ N × N are image addresses and ξ, η ∈ N. The control flow instructions are
described in the main text.

(a) (b) (c) (d) (e) (f)

Fig. 2. Representing binary data. The shaded areas denote value 1 and the white areas
denote value 0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or
row) image representation of the word 1011, (d) column image representation of 1011,
(e) 3× 4 matrix image, (e) binary stack image representation of 1101. Dashed lines are
for illustration purposes only.

Let S : I × (N×N)→ I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ

constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ

such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

We also use complexity measures called amplRes, phaseRes and freq [23,
27]. Roughly speaking, the amplRes of a CSM M is the number of discrete,
evenly spaced, amplitude values per unit amplitude of the complex numbers in
the range of M ’s images. The phaseRes of M is the total number (per 2π)
of discrete evenly spaced phase values in the range of M ’s images. freq is a
measure of the optical frequency of M ’s images.

Often we wish to make analogies between space on some well-known model
and CSM ‘space-like’ resources. Thus we define the following convenient term.
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ξ ξ + 3

η
i

Fig. 3. Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a
single image that is denoted i.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

More details on the complexity measures are be found in [27].

2.3 C2-CSM

In previous work [23, 25] we investigated the growth of complexity resources over
time, with respect to CSM operations. As expected, under certain operations
some measures do not grow at all. Others grow at rates comparable to massively
parallel models. By allowing operations like the Fourier transform we are mixing
the continuous and discrete worlds, hence some measures grow to infinity in one
timestep. This gave strong motivation for the C2-CSM, a restriction of the CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and
freq.

– Operations h and v compute the discrete Fourier transform (DFT) in the
horizontal and vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.

3 Index-vector machines and representations

Here we introduce vector machines, and the variant that we simulate called
index-vector machines. We then describe our image representation of vectors.

The vector machine model was originally described by Pratt, Rabin and
Stockmeyer [18], here we mostly use the conventions of Pratt and Stockmeyer [19].
A vector V is a binary sequence that is infinite to the left only and is ultimately
constant (after a finite number of bits every bit to the left is either always 0
or always 1). An ultimately 0 sequence represents a positive number and an
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ultimately 1 sequence represents a negative number [19, 2]. The non-constant
part (denoted v) represents a positive binary integer in the usual way, with the
rightmost vector bit representing the least significant integer bit. The negative
integer −n is represented by the bitwise complement of the vector represent-
ing n. The length of V is denoted |V |, and is the length of the non-constant part
of V . A vector machine (program) is a list of instructions where each is of the
form given in the following definition.

Definition 8 (Vector machine instructions and their meanings [2]).
Vector instruction Meaning

Vi := x Load the positive constant binary number x into vector Vi.
Vk := ¬Vi Bitwise parallel negation of vector Vi.
Vk := Vi ∧ Vj Bitwise parallel ‘and’ of two vectors.
Vk := Vi ↑ Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the left

(resp. right) by the distance given by the binary number vj
and store the result in Vk. If Vj = 0 then Vi is copied to Vk.

Vk := Vi ↓ Vj If Vj is ultimately 0 (resp. 1) then shift Vi to the right
(resp. left) by the distance given by the binary number vj
and store the result in Vk. If Vj = 0 then Vi is copied to Vk.

goto m if Vi = 0 If Vi = 0 then branch to the instruction labelled m.
goto m if Vi 6= 0 If Vi 6= 0 then branch to the instruction labelled m.

Instructions are labelled to facilitate the goto instruction. Configurations,
(accepting) computations and computation time are all defined in the obvious
way. Computation space is the maximum over all configurations, of the sum of
the lengths of the vectors in each configuration. A language accepting vector
machine on input w has an input vector of the form ...000w where w ∈ 1{0, 1}∗.
In this work we consider only deterministic vector machines. See [2] for details.

Definition 9 (Index-vector machines [19]). A vector machine is of class VI
(equivalently, an index-vector machine) if its registers are partitioned into two
disjoint sets, one set called index registers and the other called vector registers,
such that (i) each Boolean operation in the program involves either only index
registers or only vector registers; and (ii) each shift instruction is of the form

V1 := V2 ↑ I, V1 := V2 ↓ I, I := J ↑ 1, I := J ↓ 1

where V1 and V2 are vector registers, and I and J are index registers. For lan-
guage recognition the input register is a vector register.

It is straightforward to prove the following lemma by induction on t.

Lemma 1 ([19]). Given index-vector machine M ∈ VI with n as the maximum
input length, there is a constant c such that vector length in index (respectively
vector) registers is bounded above by c+t (respectively 2c+t+n) after t timesteps.

Pratt and Stockmeyer’s [19] main result is a characterisation of the power of
index-vector machines. The characterisation is described by two inclusions, proved
for time bounded index-vector machines and space bounded Turing machines:

NSPACE(S(n)) ⊆ VI–TIME(O(S(n) + log n)2) (1)

VI–TIME(T (n)) ⊆ DSPACE(O(T (n)(T (n) + log n))) (2)
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η
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Fig. 4. Representing data by images. To represent the value ψ, the black point has value
ψ. The white area denotes value zero. (a) Binary symbol image fψ where ψ ∈ {0, 1}, or
number image where ψ ∈ {0,± 1

2
,±1,± 3

2
, . . .}, (b) binary list image where ψ ∈ {0, 1}.

(c) Illustration of the instruction i← [ξ, ξ + 3, η, η] that copies four images to a single
image that is denoted i.

In other words, index-vector machines verify the parallel computation thesis and
are a member of the second machine class [21]. Modulo a polynomial, determin-
istic and nondeterministic vector machines have equal power [18].

3.1 Image representation of vectors

Let vi ∈ {0, 1}∗ denote the non-‘ultimately constant’ part of vector Vi. If the
ultimately constant part of Vi is 0ω (respectively 1ω) then let sign(vi) = 0 (re-
spectively let sign(vi) = 1). In this work we use binary symbol images, number
images and binary list images. These represent binary symbols, numbers from
{0,± 1

2 ,±1,± 3
2 , . . .}, and binary words in a straight-forward way that is illus-

trated in Figure 2. Further details are to be found in [23, 27].

The vector Vi is represented by three images: vi, |vi| and sign(vi). The im-
age vi is the binary list image representation of vi. Image |vi| is the natural
number image represention of |vi| (the length of vi). Accessing these images re-
spectively incurs spatialRes and dyRange costs that are linear in |vi|. Image
sign(vi) is f0 (the binary symbol image representing 0) if sign(vi) = 0 and f1

if sign(vi) = 1. We use the same representation scheme for vector program
constants. The simulation uses natural number images as addresses, which are
clearly reasonable in the sense of the C2-CSM definition. Hence addressing incurs
a (linear) dyRange cost.

Another issue to consider is the layout of the grid of images; where to place
input, program constants (f0, f1, f−1, f 1

2

, f2), local variables, etc. There are only
a constant number of such images hence there a number of layouts that work,
a specific grid layout is given in [23]. Rows 0 and 1 are used to store temporary
images. The only images explicitly referred to by numerical addresses are in
these two rows (the constant number of other addresses used in the simulation
have identifier names from the outset). check this.
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4 C2-CSM simulation of index-vector machines

In this section we prove that C2-CSMs are at least as powerful as index-vector
machines (up to a polynomial in time). More precisely

VI–TIME(T (n)) ⊆ C2-CSM–TIME(O(T 2(n))). (3)

To prove this we simulate each index-vector machine instruction in O(log |Vmax|)
time where |Vmax| ∈ N is the maximum length of (the non-ultimately constant
part of) any of the vectors mentioned in the instruction. Additionally we simulate
the index-vector shifts in linear time. From Lemma 1 this time bound ensures
that our overall simulation executes in quadratic time, which is sufficient for
the inclusion given by Equation (3). The space bound on the simulation is
O(|Vmax|3).

We begin by giving a straightforward simulation of vector assignment.

Theorem 1 (Vi := x). The vector machine assignment instruction Vi := x

is simulated by a C2-CSM in O(1) time, O(1) grid, O(|x|) dyRange and
O(max(|x|, |vi|)) spatialRes.

Proof. The images representing x are simply copied to those representing Vi:

assignment(x, |x|, sign(x); vi, |vi|, sign(vi))

vi ← x

|vi| ← |x|
sign(vi)← sign(x)

end // assignment
We require O(max(|x|, |vi|)) spatialRes to represent x and vi as binary list

images. dyRange of O(|x|) is needed to represent |x| as a natural number image.
No address goes beyond the initial grid limits hence we use constant grid. ut

A C2-CSM can quickly generate a list image g, where each list element is
identical. We state the following lemma for the specific case that each list ele-
ment is a binary symbol image fψ. By simply changing the value of one input,
the algorithm generalises to arbitrary repeated lists (with a suitable change in
resource use, dependent only on the complexity of the new input image element).

Lemma 2 (generate list(fψ, l; g)). A list image g that contains l list elements,
each of which is a copy of input binary image fψ, is generated in O(log l) time,
O(l) grid, spatialRes and dyRange.

Proof (Sketch). The algorithm horizontally juxtaposes two copies of fψ and
rescales them to a single image. This juxtaposing and rescaling is repeated on
the new image; the process is iterated a total of dlog le times to give a list of
length 2dlog le, giving the stated time bound. In constant time, the list image
is then stretched to its full length across 2dlog le images, l juxtaposed images are
then selected and rescaled to a single output image g. O(l) spatialRes is nec-
essary to store the list in a single image. O(l) grid is used to stretch the list out
to its full length. Recall that we are using natural number images for addresses,
hence O(l) dyRange is used to stretch the list across 2dlog le images. ut
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¬(vi, |vi|, sign(vi); vk, |vk|, sign(vk))

generate list(f−1, |vi|; list neg ones) // generate list of −1s
··· (vi,list neg ones;−vi) // change each 1 in vi to −1
generate list(f1, |vi|; list ones) // generate list of 1s
+(−vi,list ones;vk) // change −1s to 0s, 0s to 1s, & place in vk
if ( sign(vi) == f1 ) then sign(vk)← f0
else sign(vk)← f1 end if

end // ¬

Program 4.1: Simulation of Vk := ¬Vi.

Theorem 2 (Vk := ¬Vi). The vector machine negation instruction Vk := ¬Vi
is simulated by a C2-CSM in O(log |vi|) time, O(|vi|) grid and dyRange, and
O(max(|vk |, |vi|)) spatialRes.

Proof. Program 4.1 simulates Vk := ¬Vi. The program generates a list of −1s of
length |vi|. This list image is then multiplied by vi; changing each 1 in vi to −1
and leaving each 0 unchanged. Then we add 1 to each element in the resulting list.
A simple if statement negates sign(vi). Each call to the function generate list(·)
requires O(log |vi|) time, otherwise time is constant. The remaining resource
usages are for accessing vectors and rescaling them to their full length. ut

The proof of the following straightforward lemma gives a program that de-
cides which of two vectors is the longer in constant time. It also shows that we
can decide the max or min of two integer images in constant time.

Lemma 3 (max(·) and min(·)). The max (or min) length of the vectors Vi
and Vj is decided in O(1) time, O(1) grid, O(max(|vi|, |vj |)) spatialRes,
O(max(|vi|, |vj |)) dyRange.

Proof (Sketch). The function header for max(·) is formatted as follows:
max(vi, |vi|, sign(vi), vj , |vj |, sign(vj); longest, |longest|, sign(longest))

The encoding of −|vi| is created by the instruction ··· (|vi|,f−1;−|vi|), then the
max(·) algorithm thresholds the value |vj | − |vi| to the range [0, 1]. If the result
is the zero image f0 then Vi is the longer vector and its representation is copied
to the three output addresses, else the representation of Vj is output. In a similar
way we decide the min length of two vector images, the function header for min(·)
has the format:
min(vi, |vi|, sign(vi), vj , |vj |, sign(vj); shortest, |shortest|, sign(shortest)) ut

Theorem 3 (Vk := Vi ∧ Vj). The vector machine instruction Vk := Vi ∧ Vj
is simulated by a C2-CSM in O(log max(|vi|, |vj |)) time, O(max(|vi|, |vj |, |vk|))
spatialRes, and O(max(|vi|, |vj |)) grid and dyRange.

Proof. Program 4.2 simulates ∧. It uses multiplication of vector images to sim-
ulate Vi ∧ Vj in parallel. However if |vi| 6= |vj |, we first pad the shorter vector
image with zeros so that both have equal length. To find the longer and shorter
of the two vectors we make use of the max(·) and min(·) routines given above.
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∧ (vi, |vi|, sign(vi), vj , |vj |, sign(vj); vk, |vk|, sign(vk) )

max(vi, |vi|, sign(vi), vj , |vj |, sign(vj); longest, |longest|, sign(longest))
min(vi, |vi|, sign(vi), vj , |vj |, sign(vj); shortest, |shortest|, sign(shortest))
if ( sign(longest) == f1 ) then

··· (f−1,|shortest|;−|shortest|)
+(longest,−|shortest|;difference)
generate list(f1, difference; pad)
[1,|shortest|,1,1]← shortest
+(|shortest|,f1;|shortest|+1)
[|shortest|+1,|longest|,1,1]← pad
padded shortest← [1,|longest|,1,1]

else

[1,|longest|,1,1] ← f0
[1,|shortest|,1,1]← shortest
padded shortest← [1,|longest|,1,1]

end if

··· (longest,padded shortest;vk) // a single multiplication simulates vi ∧ vj
··· (sign(longest),sign(shortest);sign(vk))
|vk| ← |longest|

end // ∧

Program 4.2: Simulation of Vk := Vi ∧ Vj .

The program requires O(log max(|vi|, |vj |)) time for the generate list(·) call
(the worst case is when exactly one of the vectors is of length 0). The remainder
of the program runs in O(1) time, including determining which vector is longer,
padding of the shorter vector and parallel multiplication of vectors. The remain-
ing resource usages on vector images in the theorem statement are for accessing
and storing to a single image, and stretching to full length. ut

Next we give algorithms to simulate vector left shift and right shift. The main
idea is to copy large numbers of images to simulate shifting.

Lemma 4 (left shift(n, vi, |vi|, sign(vi); vk, |vk|, sign(vk))). A left shift of dis-
tance n > 0 on a vector Vi, to create vector Vk, is simulated in O(1) time,
O(|vi + n|) grid and dyRange, and O(max(|vi + n|, |vk|)) spatialRes.

Proof (Sketch). The algorithm assumes that n is given as a natural number
image. We simulate the shift by stretching vi out to its full length, placing n

zero images to the right of the stretched vi, and then selecting all of vi along with
the n zeros and rescaling back to one image. After the shift (in accordance with
the definition of vector shift), 0s are to be placed in the rightmost positions. ut

An algorithm for right shift(·) would work similarly. However this time we
select the leftmost |vi| − n images of the stretched vi. If n > |vi| the output is
the representation of the zero vector.

Theorem 4 (Vk := Vi ↑ Vj). The vector machine instruction Vk := Vi ↑ Vj is
simulated by a C2-CSM in O(|vj |) time, O(|vi|+2|vj |) grid and dyRange, and
O(max(|vk |, |vi|+ 2|vj |)) spatialRes.
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↑ (vi, |vi|, sign(vi), vj , |vj |, sign(vj); vk, |vk|, sign(vk) )

shift distance← f0
current bit← |vj |
current power 2← f1
[1,|vj |,0,0] ← vj
ρ(|vj |,f0,f1;flag)
while ( flag == f1 ) do

if ( sign(vj) == f0 ) then

if ( [current bit,current bit,0,0] == f1 ) then

+(shift distance,current power 2;shift distance)
end if

else

if ( [current bit,current bit,0,0] == f0 ) then

+(shift distance,current power 2;shift distance)
end if

end if

··· (current power 2,f2;current power 2)
+(current bit,f−1;current bit)
ρ(current bit,f0,f1;flag)

end while

if ( sign(vj) == f0 ) then

left shift(shift distance, vi, |vi|, sign(vi); vk, |vk|, sign(vk))
else right shift(shift distance, vi, |vi|, sign(vi); vk, |vk|, sign(vk)) end if

end // ↑

Program 4.3: Simulation of Vk := Vi ↑ Vj .

Proof. Program 4.3 simulates the shift by stretching Vi out to its full length;
then selecting either part of Vi, or Vi and some extra zero images; and finally
rescaling back to one image. The simulator’s addresses are represented by natural
number images whereas vectors are represented by binary list images. In order
to perform the stretching the program converts the binary number defined by
Vj to a natural number image called shift distance.

The while loop efficiently generates a value of O(2|vj |) in O(|vj |) time. At
different stages of the algorithm each of vi and vj are rescaled to their full length,
across |vi| and |vj | images respectively. We get the value O(|vi|+ 2|vj |) for grid

since in the worst case Vi is left shifted by the value 2|vj |, and (when stretched)
the resulting vector spans O(|vi| + 2|vj |) images. This upper bound also covers
the right shift case (when Vj is negative). Analogously we get the same value for
spatialRes and dyRange (except |vk| is also in the spatialRes expression as
it could contain some values before the program executes). ut

The converse shift instruction (Vk := Vi ↓ Vj) is simulated by Program 4.3
except that the calls to right shift(·) and left shift(·) are exchanged. The resource
usage remains the same.

The proof of the following lemma gives a log time algorithm to decide if a
list or vector image represents a word that consists only of zeros. It is possible
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to give a constant time algorithm that makes use of the FT (to ‘sum’ the entire
list in constant time). Not using the FT enables us to state Corollary 6.

Lemma 5. A C2-CSM that does not use Fourier transformation decides whether
or not a list (equivalently vector) image vi represents the word 0|vi| in O(log |vi|)
time, O(|vi|) grid, spatialRes and dyRange.

Proof (Sketch). The binary list image vi is padded with zeros so that is of
length 2dlog |vi|e. The algorithm splits vi into a left half and a right half, adds
both halves (in a one step parallel pointwise fashion), and repeats until the list
is of length 1. A counter image keeps track of list length. The resulting image is
thresholded below by f0 and above by f1. If the result is the zero image then vi
represents a list of zeros, otherwise vi represents a list with at least one 1. ut

Theorem 5 (goto m if Vi = 0). The vector machine instruction goto m if
Vi = 0 (or goto m if Vi 6= 0) is simulated by a C2-CSM in O(log |vi|) time,
O(|vi|) grid, spatialRes, and dyRange.

Proof. Due to the vector machine number representation, there are exactly two
representations for 0; the constant sequences . . . 000 and . . . 111. Using our C2-
CSM representation of vectors, if |vi| = 0 then the vector Vi is constant, and
hence represents 0. We can test |vi| = 0 in constant time with an if statement.

However, it may be the case that |vi| = n > 0 and yet Vi represents 0. In
this case vi represents a list of 0s (respectively 1s) and sign(vi) represents 0
(respectively 1). A sequential search through vi will require exponential time

(worst case) and as such is too slow. Instead we use the log time technique
given by the previous lemma. In the case that Vi is ultimately 1 we make use
of the ¬(·) program defined in Theorem 2. For the goto part of the instruction
we merely note that gotos are simulated by ifs and whiles. Clearly the related
instruction ‘goto m if Vi 6= 0’ is simulated with the same resource usage. ut

Given a vector machine M there is a C2-CSM M ′ that simulates M . In
particular, if vector machine M decides a language L then we can easily modify
our simulation of vector machines so that M ′ decides L.

Theorem 6. Let M be an index-vector machine that decides L ∈ {0, 1}∗ in time
T (n) for input length n. Then L is decided by a C2-CSM M ′ in O(T 2(n)) time,
O(2T (n)) grid, spatialRes and dyRange.

Proof. By Lemma 1 M ’s index-vectors have length O(T (n)), while unrestricted
vectors have length O(2T (n)). From the above simulation theorems, any non-
shifting instruction is simulated in time that is log of the length of the vectors.
The remaining operations, right and left shift, are simulated in time that is
linear in the length of their index-vector input. From these bounds it is straight-
forward to work out that M decides L in O(T 2(n)) time and that each of grid,
spatialRes and dyRange is O(2T (n)). ut

From the previous theorem M ′ uses O(23T (n)) space to decide L, hence our
simulation uses space that is cubic in the space of M .
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Corollary 1. VI–TIME(T (n)) ⊆ C2-CSM–TIME(O(T 2(n)))

Let S(n) = Ω(log n). From the inclusion in Equation (1) we get:

Corollary 2. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S4(n)))

Combining this result with the upper bound on time bounded C2-CSM power [23,
24]:

Corollary 3. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S4(n)))
⊆ DSPACE(O(S8(n)))

To summarise, the C2-CSM satisfies the parallel computation thesis:

Corollary 4. NSPACE(SO(1)(n)) = C2-CSM–TIME(SO(1)(n))

This links space bounded sequential computation and time bounded C2-CSM
computation. For example C2-CSM–TIME(nO(1)) = PSPACE. We strengthen
this result by restricting the C2-CSM. Let a 1D-C2-CSM be a C2-CSM with
constant grid and spatialRes, in one of the vertical or the horizontal directions.

Corollary 5. The 1D-C2-CSM verifies the parallel computation thesis.

Proof. The index-vector machine simulation used only constant grid and spa-

tialRes in the vertical direction. Moreover we can rotate the grid layout and all
images by 90◦, to obtain a simulation where grid and spatialRes are constant
in the horizontal direction only. ut

Corollary 6. The C2-CSM without the DFT operations h and v verifies the
parallel computation thesis.

Proof. Our C2-CSM simulation of index-vector machines did not use h nor v. ut

The thesis relates parallel time to sequential space, however in our simulations
we explicitly gave all resource bounds. As a final result we show that the class of
C2-CSMs that simultaneously use polynomial space and polylogarithmic time

decide at least the languages in NC. Let C2-CSM–SPACE, TIME(S(n), T (n))
be the class of languages decided by C2-CSMs that use space S(n) and time

T (n). It is known [9] that VI–SPACE, TIME(nO(1), logO(1) n) = NC. From the
resource overheads in our simulations:

VI–SPACE, TIME(O(2T (n)), T (n))

⊆ C2-CSM–SPACE, TIME(2O(T (n)), TO(1)(n))

For the case of T (n) = logO(1) n we have our final result.

Corollary 7. NC ⊆ C2-CSM–SPACE, TIME(nO(1), logO(1) n)

Previously we have shown [23, 24] that the converse inclusion also holds.
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