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ABSTRACT
We consider a network with N nodes competing for access
to the channel using un-slotted ALOHA. When a request
is sent, each node may answer after a certain backoff time.
Only the first answer is of importance, that is why we want
to minimize the loss rate of the first message. We derive
the optimal backoff probability distribution which minimizes
the collision probability on the first message answering to
a request. Unlike previous works, we extract the collision
probability in continuous time domain. To this goal, we
use a variational method. This problem had only be solved
before in a slotted context (i.e. discrete time domain), but
we want to be able to manage later situations where the
nodes are not perfectly synchronized, which requires to know
how to solve it in the continuous time context.
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1. INTRODUCTION
In wireless networks, especially in sensor networks, situa-
tions often occur where only the first reply to a request is
important. It is typically the case with election protocols
(cf. [1] for example, or [2], [3]). Usually, an ALOHA mecha-
nism is used to transmit the answers, and nodes derive their
backoff times (according to certain probability distribution)
before transmitting the answer. In order to optimize the
performance of such protocols, we tried to identify the best
distribution which minimizes the collision probability of the
first answer that collides with the replies of the other nodes.

Several interesting works have been published until now. In
[4], authors address exactly this issue in a context where
the time is slotted. But we want to relax this assumption
on the slotted synchronization between the nodes.This may
be difficult to implement in some situations and a method

is needed to deal with un-slotted situations. In [6] and [7],
the same problem in the same slotted context is addressed,
but the authors noticed that the collision probability can
be reduced if the probability that the nodes answer is less
than 1. An optimal value is given. Moreover, the solution
is explicit in [7] while it is only recursive in [6]. In [5], the
authors address the same question without assuming any
synchronization, but they do not derive analytically an exact
solution. Moreover, there is a mistake in the formula (7) of
[5] where it is implicitely assumed a uniform distribution for
the loss rate, we give the correct formula below: formula (7).

In this work, we identify the optimal backoff distribution
mechanism in a non-slotted environment. The problem is
then to find an optimal continuous function minimizing an
integral. Then, we use the classical tools of the variational
calculus to derive the solution.

2. MODELING ASSUMPTIONS AND FOR-
MALIZATION OF THE PROBLEM

We reuse the same formalization as in [5]. We consider a
node having N neighbors. It sends a query and each one
of the other nodes sends a reply after a given backoff time.
We are interested by the first answer. Collisions involving
messages other than the first one is not considered to be
a problem. Each node has a window of length D. We as-
sume t = 0 at the beginning of the backoff period which
corresponds to the receipt instant of the query by all the
N nodes. Let x1, x2, · · · , xN be the times when the ex-
pected answers of node i ∈ [1; N ] are sent. The duration
of the messages is considered the same for all the messages
and equal to d. Let xfirst denote the minimum of the xi:
xfirst = mini∈[1;N ] xi. The collision probability of the first
message is denoted P(D,N) and is formally given by:

P(D,N) = P (∀i ∈ [1; N ],

xi < xfirst + d /xi 6= xfirst ) (1)

Let ∀x ∈ [0; D], y(x) be the density function of the backoff
distribution.

3. CALCULATION OF P(D,N)

Let us assume N = 2. When the first message is emitted at
xfirst, the probability that it collides with the second answer



is:

p1 =

R xfirst+d

xfirst
y(x)dxR D

xfirst
y(x)dx

(2)

Then, with N independent nodes, this probability is, for all
x in [0; D − d]:

pN−1 = 1−

241−

R xfirst+d

xfirst
y(x)dxR D

xfirst
y(x)dx

35N−1

= 1−

24R D

xfirst+d
y(x)dxR D

xfirst
y(x)dx

35N−1

(3)

When x is in [D− d; D], the collision probability is equal to
1. Thus, the mean loss rate for any xfirst is:

P(D,N) =

Z D−d

0

1−

24R D

xfirst+d
y(x)dxR D

xfirst
y(x)dx

35N−1

yfirst(x)dx

+

Z D

D−d

yfirst(x)dx (4)

where yfirst(x) is the distribution of xfirst. Let us determine
yfirst. The cumulative distribution function of xfirst is

P (xfirst < x) = P

„
min

i∈[1;N ]
xi < x

«
= 1− P

„
min
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xi ≥ x

«
= 1−

NY
1

(xi ≥ x)
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x
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(5)

and thus, its density function is obtained by differentiation:

d

dx
P (xfirst < x) = Ny(x)

„Z D

x

y(u)du

«N−1

(6)

The general formula for the mean collision probability is
then:

P(D,N) =

Z D−d

0

241−

0@R D

xfirst+d
y(x)dxR D

xfirst
y(x)dx

1AN−135
×Ny(xfirst)

"Z D

xfirst
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dxfirst

+

Z D

D−d

Ny(xfirst)
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xfirst

y(x)dx
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(7)

4. OPTIMAL DISTRIBUTION
Our problem is to find the optimal function y which min-
imizes Λ(y) = P(D,N). It is a typical variational problem,

and we use the classical tools of the variational calculus.
Let yε(x) = y(x) + εh(x) where h is any continuous func-
tion on [0; D]. If y achieves the minimum of Λ(y), then„

dΛ(yε)

dε

«
ε=0

= 0. Then, by differentiating Λ(yε) in order

to obtain a condition on the optimal y and by using the
fact that the fundamental lemma of the variational calcu-
lus stands that, for any function g such as g(a) = g(b) =

0,

Z b

a

f(u)g(u)du = 0 implies ∀u ∈ [a; b], f(u) = 0, it can be

schown that

„
dΛ(yε)

dε

«
ε=0

= 0 implies:

8>>><>>>:
∀x ∈ [(2k + 1)d; 2(k + 1)d], y(x) = 0

∀x ∈ [2kd; (2k + 1)d],

y(x) = y(x + 2d)

» R D
x+2d y(u)duR D

2(k+1)d
y(u)du

–N−2 (8)

y(x) can thus be arbitrary chosen on the last interval of
the type [2kd; (2k + 1)d] of the [0; D] interval as long as

∀x ∈ [0; D], y(x) ≥ 0 and
R D

0
y(u)du = 1.

5. COLLISION RATE FOR THE OPTIMAL
DISTRIBUTION

From now, without loss of generality, it is assumed ∃n ∈
N; D = (2n+1)d. Let us denote zk =

R (2k+1)d

2kd
y(u)du. Only

taking into account that x ∈ [(2k + 1)d; 2(k + 1)d], y(x) = 0,
it can be easily shown from (7) that

P (D, N) = 1−N

D−d
2d
−1X

k=0

zk

264D−d
2d
−1X

i=k+1

zi

375
N−1

(9)

To inject the optimal distribution in (9) is exactly to consider
in the calculation the property ∀x ∈ [2kd; (2k + 1)d], y(x) =

y(x + 2d)

» R D
x+2d y(u)duR D

2(k+1)d
y(u)du

–N−2

, which gives by integration
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Finally, injecting (10) into (9) leads to

P (D, N) = 1− (1− z0)N−1 (11)



6. DISCUSSION
The optimal distribution is defined by the recurrence equa-
tion (8). It is noteworthy to observe how the systematic
method of the variational calculus leads automatically to a
system avoiding frame overlaps as long as possible: emis-
sions are only permitted each two intervals of length d (cf.
Fig. 1). Note that it does not mean that every frame must
be sent at the beginning of such an interval. On the contrary,
the emission of a frame is allowed at any time of an autho-
rized interval. This is exactly the fundamental difference
with the discrete case as studied in [6] or [4]. A particular
attention must be paid to the choice of the initial distribu-
tion on the last non null interval of length d: it must be well
chosen in order to have the whole sum of the distribution on
[0; D] to be equal to 1.
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Figure 1: Examples of optimal probability density
functions

In figure 1 we display some examples of the shape of the
optimal distributions of the probability functions for the
cases where the distribution function on the last interval
of length d inside the interval [0; d] is uniform or exponen-
tial. In figure 2 several cumulative distributions functions
are presented for the case where D = 1.4, d = 0.2, for differ-
ent values for N . It can be observed that the higher N is, the
later the convergence of the distribution toward 1.0 is. Some
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Figure 2: Examples of optimal cumulative probabil-
ity functions

example of collision rates are given in figure 3, together with
a comparison with a simple uniform distribution.
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Figure 3: Examples of collision rates in function of
the number of users

We are currently validating an explicit solution of the dif-
ferential system (8).
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