N

N

Complementarity of process-oriented and ontology-based
context managers to identify situations
Amel Bouzeghoub, Chantal Taconet, Amina Jarraya, Ngoc Kien Do, Denis

Conan

» To cite this version:

Amel Bouzeghoub, Chantal Taconet, Amina Jarraya, Ngoc Kien Do, Denis Conan. Complementarity
of process-oriented and ontology-based context managers to identify situations. ICDIM 2010: 5th
International Conference on Digital Information Management, Jul 2010, Thunder Bay, Canada. pp.222
- 229, 10.1109/ICDIM.2010.5664620 . hal-01354807

HAL Id: hal-01354807
https://hal.science/hal-01354807

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01354807
https://hal.archives-ouvertes.fr

Complementarity of Process-oriented and Ontology-based Context Managers to
Identify Situations

Amel Bouzeghoub, Chantal Taconet, Amina Jarraya, Ngoc Kien Do and Denis Conan
Institut Télécom, Télécom SudParis; CNRS UMR SAMOVAR
9 Rue Charles Fourier, 91011, Evry Cedex, FRANCE

Chantal.Taconet,Amel.Bouzeghoub,Amina.Jarraya,Ngoc_Kien.Do,Denis.Conan @telecom-sudparis.eu

Abstract

One issue for context-aware applications is to identify
without delay situations requiring reactions. The identifi-
cation of these situations is computed from both dynamic
context information and domain specific knowledge. This
identification is the output of a process involving context in-
terpretation, aggregation and deduction. In smart environ-
ments, these treatments have to be efficient since they may
be partly performed on constrained mobile devices. Two
main approaches exist in the literature: process-oriented
and ontology-based context management. In this paper, we
claim that they are complementary and we propose an ar-
chitecture which integrates the two approaches. We show in
a scenario how context-aware applications can benefit from
this architecture both to scale to numerous mobile users and
to identify complex situations.

1. Introduction

One issue for mobile applications is to identify with-
out delay new situations requiring appropriate adaptation
actions from context-aware applications or notifications of
recommendations to end-users. As stated in [14], “situa-
tions are external semantic interpretations of low-level con-
text, permitting a higher-level specification of human be-
haviour in the scene and the corresponding system ser-
vices. Situations inject meaning into the application and
are more stable, and easier to define and maintain than ba-
sic contextual cues. Adaptations in context-aware applica-
tions are then caused by the change of situations (i.e., a
change of a context value triggers adaptation if the context
update changes the situation).” Two main approaches ex-
ist in the literature to identify situations from applications’
context: process-oriented context management (PCM) and
ontology-based context management (OCM). They bring
into play context processors and inference engines with on-

tologies, respectively.

PCM involves context processors that collect, filter, ag-
gregate, and interpret input context data to compute higher-
level observations. These context processors are organised
into a graph, more particularly a forest, with leaf nodes col-
lecting raw data from context sources, non-leave nodes in-
fering more abstract context data, up to root nodes deliv-
ering situation identifications. Since smart environments
may comprise numerous mobile and constrained devices,
context processors should be deployable on small devices.
Context Toolkit [5], Contextor [4], COSMOS [3], and the
MUSIC context manager [12] are representative of the PCM
approach.

For several years, ontologies have been used for the de-
velopment of ubiquitous computing applications with the
goal of modelling the information managed by such ap-
plications. OCMs are characterised by the use of one or
more ontologies as central elements of the system. This
is a knowledge-based system whose architecture consists
mainly of a knowledge repository (formed by an ontol-
ogy) and an inference engine. It makes it easy to auto-
matically deduce further implicit high-level contexts or sit-
uations (like user’s activities) from low-level context data
(like location, temperature or noise). In addition, they offer
a support for interoperability and heterogeneity since they
can be shared with other domain ontologies. CoBrA [2],
SOCAM (conon ontology) [7], GAIA [13] and MUSE [1]
are examples of OCMs.

In this paper, we claim that the PCM and OCM ap-
proaches are complementary and we propose an architec-
ture which integrates them. We show in a scenario how
context-aware applications can benefit from this architec-
ture both to scale to numerous mobile users and to identify
complex situations.

The outline of the paper is as follows. In Section 2,
we motivate and give our objectives through an illustra-
tive scenario. We present an overview of our proposition
in Section 3 and detail the implementation of the campus

scenario with the proposition in Section 4. Section 5 com-
pares PCMs and OCMs and highlights their complemen-
tarity. Then, we compare our contribution with regard to
related work in Section 6. Finally, we conclude and present
some perspectives in Section 7.

2. Motivations and objectives

In this section, we present the illustrative example ap-
plications of a campus scenario and some situations to de-
tect. We then introduce the requirements on context man-
agement.

Campus scenario Marie is one of the thousand students
at TSP school. She enters the campus at 08:00 am. She
is automatically detected and authenticated. An application
installed on her mobile phone proposes two kinds of func-
tionalities: i) a “query mode” to search contextual entities
such as electronic resources (e.g., printers, computers) or
persons (e.g., friends, teachers) and ii) a “recommendation
mode” in which the system pro-actively notifies contextual
recommendations. For example, the application displays
the necessary documents for her next class programmed in
her agenda at 8:30am as well as the room number and lo-
cation. Marie wants to print one of these documents. The
application uses the query mode to find the nearest avail-
able printers which are in unengaged rooms (i.e., rooms not
reserved for a lesson). John is Marie’s next class teacher.
At 8:15am, the recommendation mode of an application
installed on John’s phone notifies him for his class sched-
uled within fifteen minutes. At lunchtime, John is close
to the self-service restaurant. A lot of people are waiting
in the line. Since John has a meeting scheduled within one
hour, another application proposes him the delivery of a tray
lunch in his office adapted to his culinary habits. Yesterday,
the line was nearly empty, the application displayed instead
the lunch menu, thus John chose his lunch while waiting in
the line.

Examples of situations For this scenario, we identify
two abstraction levels for classifying situations. The first
level may be computed from the observations obtained from
Marie’s and John’s devices and from sensors spread over
the campus. The second level may involve a knowledge
base. For instance, the system detects and identifies a vis-
itor entering the restaurant and proposes the delivery of a
tray lunch in the visitor’s office. Firstly, the situation “a vis-
itor enters the restaurant” is detected from dynamic context
data. Afterwards, the recommendation “delivery of a tray
lunch in the visitor’s office” requires the use of both con-
text observations and a knowledge base: the visitor’s pro-
file, agenda and habits, and the estimation of the waiting
time in the line.

Requirements for context management From the sce-
nario and the examples of situations, we identify the follow-
ing requirements for the context manager with a criterion
name for each of them. Context data such as visitor’s loca-
tion evolve constantly (Handling constantly evolving con-
text criterion). Context data collected or computed on a de-
vice shall be consumed elsewhere (Distributed context man-
agement criterion). Complex situations shall be computed
from dynamic context data and from application-specific
knowledge, both unforeseenable at design time (Handling
unforeseen situation criterion). Situation changes shall be
both observed by and notified to applications (Observa-
tion/Notification criterion). When permitted by the fresh-
ness requirement, context data requiring resource inten-
sive processing shall be prepared in order to be consumed
rapidly later on (Observation preparation criterion). The
solution proposed shall scale up to thousands of visitors
(Scalability criterion), all of them being equipped with mo-
bile devices (Constrained device criterion). Recommenda-
tions shall be presented to end-users with appropriate delays
according to end-users’ perception (Situation detection la-
tency criterion). Application designers shall have a means
to express relevant situations to be detected by the system
(Expression of situations criterion). In Section 5, we will
discuss each of these criteria with respect to our proposi-
tion.

3. Hybrid OCM and PCM proposition

This section presents our proposition, an hybrid archi-
tecture combining a PCM (COSMOS, COntext entitieS
coMpositiOn and Sharing) and an OCM (MUSE, Multi-
ontology based User Situation awarenEss). Then, we pro-
vide a rapid overview of COSMOS and MUSE.

3.1. Hybrid Architecture

Figure 1 presents the architecture combining a PCM and
an OCM between the context sources and the application.
The COSMOS PCM collects the raw context data from the
different context sources of the smart environment: e.g., lo-
cations, temperatures, images of the restaurant line. As de-
picted in the COSMOS PCM box, the graph represents con-
text processing paths from raw context data to higher-level
context data. Either COSMOS is responsible for infering
high-level context data and situations (left part of the box)
or it supplies the MUSE inference engine with low-level
context data (right part of the box). The MUSE OCM is di-
vided into three entities. The Context Ontology describes a
generic context knowledge. The Application Ontology de-
scribes applications specific knowledge. These ontologies
are used by the Inference Engine when processing context
data provided by COSMOS and application-specific data.

(Business Applications)

search /:\
| fecommend

[Context Proxy

A . A
infer/read/update
observe : i \l/ : callback

| MUSE OCM h
| notify
1 (Inference Engine J

inferiread [Business Application]

Ontology

callback

(Context Ontology)

observe /:\
| Update

(forest of context nodes) COSMOS PCM

PRYQY QPR Q

observe

: notify
Context sources
(e.g. sensors, user profiles, platform)

Figure 1. Hybrid architecture

Since this paper focuses on context management, the fig-
ure does not show how the inference engine obtains the
applications-specific data. The context data produced by
COSMOS and MUSE are transmitted by the Context Proxy
to the Business Applications according two modes: an ap-
plication can browse its context by calling for a search or
can subscribe to receive recommendations.

In addition, Figure 1 shows multiple interactions be-
tween COSMOS and MUSE. COSMOS provides two in-
teraction modes to observe (pull) context data and to notify
(push) newly computed context data or situation changes.
MUSE also provides two interaction modes, the first to
receive an inference or a read request, and the second to
trigger call-backs following situation changes. Notice that,
in addition to interactions involving COSMOS supplying
MUSE with context data, COSMOS processing nodes can
benefit from MUSE ontologies as context sources. For ex-
ample, in the illustrative scenario of Section 2 (which imple-
mentation is described in Section 4), the search performed
by COSMOS for the nearest available printers in unengaged
rooms implies to get classroom locations from MUSE.

3.2. COSMOS

COSMOS is a framework for the principled specifica-
tion and composition of context policies. With COSMOS,
these policies are decomposed into fine-grained units called
“context nodes” implemented as software components and
organised as hierarchies with sharing. These units perform
basic context-related operations (e.g., gathering data from a
system or network probe, computing threshold or average

values) and are assembled with a set of well-identified ar-
chitectural design patterns. A library of context operators
allows designers to define new COSMOS nodes by com-
position: existing context nodes are connected to a context
operator (also a component) which takes their provided con-
text data as inputs; all these components are gathered into
a new composite component to build a new context node.
Some of the context nodes have a specific meaning because
they provide context data corresponding to the situations to
be detected. These nodes constitute the nodes that are ac-
cessed by COSMOS clients (in our architecture, the Context
Proxy) and correspond to the context policies.

Every context node of a context policy can also be finely
tuned in order to control the flow of context data and to con-
trol the operating system resources consumed for context
processing treatments, more especially threads and memory
space. COSMOS is implemented as an open source frame-
work and is available on a large number of mobile devices
including J2ME phones and Android phones'.

3.3. MUSE

PreferenceModel Campus

Experience , InTrain
N -
=
A swin OutDosrLocation < Paking

(Objective B £ Stieet
- _ SpatialLocation
4 Location T < —
GPSCaordinates B

4 UserProfile) =
KnowledgeMadel
| . =

InDooiLocation <X Restaurant
HistoricalUsage —

- owl:sameds . AtHome W
Personalinfor

umhasProfle Office
\ [Calendar 4

s S R - —
- L4

neaBy— o | y
T — —
N

at AN

e.
= .
o
g
.
<
]
a
@‘/
N

usedBy
|V stopTime -
N sy

7 ~duration — —

Figure 2. MUSE campus ontology (partial
view)

Figure 2 presents the broad lines of the chosen context
ontology. It is a multi-ontology representation where each
ontology corresponds to an element or a context dimension.
Each dimension models and manages a context information

http://picolibre.int-evry.fr/projects/cosmos.

type. We focus on the following six dimensions since they
cover all needed information for our scenarios: User, Activ-
ity, Environment (Technical Computing and Physical Envi-
ronment), Device, Location and Time. This approach pro-
poses to bridge over these dimensions with semantic rela-
tions (e.g., in, use, nearBy, do) to express facts like: where
is the learner? in which environment is he/she? which
activity is he/she doing? which device is he/she using?
Some of these ontologies are based on existing standards
like CC/PP [9] for Device ontology and W3C [8] for Time
ontology while the others are specific to MUSE. The User
ontology contains all information about the user profile such
as competency, preferences, schedule, historical usage. Fi-
nally, the Activity ontology describes all possible activities
a user may practice. All these ontologies are described with
the OWL language and rule-based reasoning is performed
with the F-Logic language based on first-order logic.

4. Implementation of the campus scenario

In this section, we present how the implementation of the
campus scenario takes benefit from an architecture combin-
ing PCM and OCM. We introduce the way we simulate the
context using the Siafu context simulator. Then, we present
the implementation of two use cases: a search and a recom-
mendation illustrating the two modes of interactions and the
combination of PCM and OCM. In these two use cases, we
develop the role and the functioning of the COSMOS PCM
and the MUSE OCM, respectively.

4.1. Simulating the scenario with Siafu

To exercise our solution, we simulate the context using
the Siafu context simulator [11]. The campus is depicted
in a map, campus places are tagged with context data (e.g.,
GPS location, name of the place), overlays are drawn on
the map (e.g., WiFi network overlay, gradient temperature
overlay), agents simulating visitors are added with their pro-
files (e.g., role in the scenario, language). Siafu allows the
scripting of visitors’ movements in the map with differ-
ent mobility patterns (e.g., random way-point, predefined
paths). Siafu provides client applications, here COSMOS
and MUSE, with a Web Service to get the context data of the
simulation. Therefore, for our experiments, mobile phones
execute COSMOS context policies and a fixed host runs the
MUSE server, and mobile phones interact with the MUSE
server and the Siafu server through a WIFI network.

4.2. “Query mode” for “Nearest printers” use case
We illustrate the query mode of our proposition with the

search of printers which are the nearest to Marie. The result
of the search is the presentation on Marie’s mobile device of

a list of ordered printers beginning with the nearest printer.
Figure 3 is a Siafu representation of a building of the cam-
pus showing in circles Marie and existing printers. The se-
lected printers are linked to Marie’s avatar on the map and
the result is superimposed. The two selected printers are in
a classroom not booked for a class (even if some visitors
are present in it; perhaps, they are also currently using the
printers). The two other printers are not selected because
they are either in the meeting room to be occupied in a few
minutes for a meeting (even if nobody is present yet) or in
another classroom that is busy (e.g., engaged for a lesson).

' 1 févr. 2009 \
10:27 00

B roenes (3 pices) @ overays

[T

Figure 3. Siafu map of “Nearest printers”

<> 1 Ordered list of

printers

m available

b Printers in Classrooms
Visitor classroom

Classroom availability
List

4 Visitor
Q Classroom

Q * Visitor max1 Classroom Q}_Classroom Q&Printers

Location list (location) Availability List

Location Ontology query Ontology query UpNP discovery,
manager manager manager status manager

f Block notification i Block observation max 1 At most one obs./notif.

Q Active observer @ Active notifier @ Active obs. and notif.

Figure 4. Context policy of “Nearest printers”

Figure 4 presents the COSMOS context policy for this
use case. We introduce the configuration capabilities of

COSMOS context nodes when presenting the hierarchy of
context nodes from the leaves to the root. Visitor location
provides the geographical coordinates of Marie’s location.
Classroom list outputs the geographical coordinates of the
rooms that are obtained from the MUSE ontology. Annota-
tion “max 1” means that the observation is done only once
since the campus map does not change. Classroom avail-
ability computes rooms availability from data obtained from
the MUSE ontology. Printers list is an encapsulation of an
UPnP service which determines accessible printers. Except
for the node Classroom list which is annotated “max 1, the
leave nodes control the collect of the raw context data by
blocking the observations: The nodes return the most up-to-
date previously collected context data without polling con-
text sources, then avoiding a latency that can be important.
For that purpose, those leave nodes are active observers (de-
pending on system load average, the activity adapts its peri-
odicity for polling context sources).

Visitor Classroom deduces Marie’s classroom identifica-
tion from Visitor location and from Classroom list. Class-
room availability list produces an ordered list of unengaged
classrooms with the nearest first. Printers in visitor class-
room gives the list of printers in the visitor classroom if
any. Printers in available classroom provides an ordered list
of printers in the other classrooms. Ordered list of printers
is the root of the hierarchy and outputs the list of printers,
with the printers in visitor’s classroom first. Notice that the
root node is active in observation and in notification: It pro-
actively observes the context to update the list of printers;
It can both receive observation requests and notify clients
when this list changes (meaning that this is a new situation).

4.3. “Recommendation mode” for “Restaurant’ use
case

We illustrate the recommendation mode of our proposi-
tion with the recommendation notified when John enters the
restaurant. The recommendation presents either a selection
from the meals of the day provided by the university restau-
rant or a proposition to deliver a tray lunch in his office.
This recommendation is built into two steps. Firstly, COS-
MOS identifies the situation of John entering the restaurant
to have a lunch. This situation is detected when John enters
the restaurant at lunch time. This situation is then comple-
mented with information on the estimated time to be served

with the evaluated waiting time.

Secondly, following COSMOS notification, MUSE in-
ference engine is called by the Context proxy in order to
make an adapted recommendation. More generally, MUSE
measures the similarity between the current situation and al-
ready known prototypical situations. If an exact similarity is
found, the corresponding recommendation is triggered; oth-
erwise, an inference calculus is processed in order to deter-
mine the most similar situation among the known ones. In
our example, MUSE identifies John’s situation as follows:

WaitingTimeForRestaurantSituation =
{in(O_User.User, O_Location.Restaurant),
hasWaitingTimeForMeal (O_User. User, @WI),
hasBreakTime (O_User.User, @BT)}

The following recommendation rule is then triggered:
“If the waiting time is equal or higher than the user break
time, the recommendation process proposes to deliver a tray
lunch”:

RecommendationRule = {
ON VisitorEntersRestaurantEvent
IF (WaitingTimeForRestaurantSituation .@WI >=
WaitingTimeForMealRestaurantSituation . @BT)
THEN Action(deliver (O_Resource.Tray_Lunch,
EntersRestaurantEvent. User))
}.

5. Discussion

In this section, we discuss the proposed hybrid
PCM/OCM architecture with regards to the criteria intro-
duced in Section 2. We illustrate this discussion with ex-
amples taken from the campus scenario. This discussion
highlights the differences and complementarity of PCM and
OCM.

Handling constantly evolving context This criterion
characterises the ability of the context manager (CM) to
handle context data that evolves constantly such as the vis-
itors’ location. PCMs have been designed to integrate con-
text collectors. For example, with COSMOS, the leave
nodes of a hierarchy wrap a context collector. Interfac-
ing OCMs with PCMs as proposed in our architecture has
the advantage of limiting the number of calls to the heavy-
weight inference engines of OCMs: PCMs act as filters of
situations and are by definition less heavy-weight and more
efficient for detecting low-level situations. For instance, in
the restaurant use case, John’s location updates are trans-
mitted to MUSE i) when he enters the restaurant line and ii)
when he leaves the restaurant line.

Distributed context management In the campus sce-
nario, the number of observed entities is large. Furthermore,
the entities are distributed on the whole campus. For per-
formance reasons, a centralised context management would
become a bottleneck. With the MUSE/COSMOS architec-
ture, context management is distributed. Context manage-
ment is done partly on mobile devices by the PCM and
partly on a central server by the OCM. For the restaurant
use case, the situation “visitor enters in the restaurant line”
is autonomously managed by each visitor’s mobile device.
MUSE is invoked for a second level of deduction. Distri-
bution is also a requirement for disconnection tolerance to
avoid single point of failure and disconnection: The PCM is
the right place to detect disconnections on mobile devices.

Handling unforeseen situations This criterion defines
the ability of the context manager to identify complex situa-
tions computed both from raw context data and application-
specific knowledge, and also to infer situations unforeseen
at design time. With PCMs, all the context processors on a
processing path from context collection up to situation de-
tection are precisely organised to detect well-defined situa-
tions. On the contrary, the OCMs reasoning process is by
definition able to deal with unforeseen situations. These
situations were not expressed at design time, thus meaning
that no inference rule is triggerable. In such a case, the cur-
rent situation is compared to the set of historical situations
using a case-based reasoning to find the most similar sit-
uation and to propose the most accurate recommendation.
Furthermore, in order to take into account a larger number
of situations, the designer can add new rules.

Observation/notification It is a requirement of context
managers to be effective. The PCM terminology is ob-
servation and notification whereas the OCM terminology is
search and recommendation.

Observation preparation Context inference requiring
resource-intensive processing shall be prepared beforehand
in order to be ready when required. With COSMOS, each
node may be configured as a non-blocking node or not. Dur-
ing an observation, a non-blocking node propagates the ob-
servation and requests observations from each of its child
nodes. On the contrary, a blocking node provides the client
or parent node with the last values computed during the last
reception of children inputs. For instance, in Figure 4, the
root node which prepares the ordered list of printers is a
blocking node: It allows Business applications and Context
proxy to consume with no delay a pre-computed/prepared
list. When a node is a blocking observer, it must possess an
activity for periodically observing child nodes; such a node
is said to be active. Node activities are matched to threads:
all the activities can be managed by the same thread or each
activity can lead to a separate thread, etc. Another advan-
tage of the “blocking node” and “active node” configuration
parameters is the possibility to tune the frequency of the
calls to context sources. This is important since for instance
the collect of context data from a local user profile is much
less expensive (processor usage, time) than the collection of
context data from a remote UPnP server.

Scalability For the campus scenario, the proposed archi-
tecture has to scale potentially to a large number of visitors.
For scalability purpose, we claim that the cooperation be-
tween PCM and OCM is essential. Indeed, PCM compu-
tation may be handled by distributed mobile devices. This
characteristic is an opportunity to distribute the CM load. If
the OCM were interfaced directly with context collectors,

this would not be possible since most interpretations and
deductions should be performed by the OCM server. For
the restaurant use case, the OCM is called only when the
“visitor enters the restaurant” situation is detected by the
PCM executing on the mobile device. In consequence, we
greatly reduce the load of the OCM server.

Constrained device In smart environments, some context
collectors and a part of the context management must be ex-
ecuted on mobile devices. COSMOS PCM is operational
on mobile devices if those devices provide the J2ME or An-
droid API. To the best of our knowledge, OCM cannot be
deployed on constrained devices. Therefore, the collabora-
tion of PCM and OCM is required.

Situation identification latency In smart environments,
situation identification with a reasonably short latency (in
the order of the second) improves the degree of acceptance
of context-sensitive applications by end-users. In addition,
some critical situations automatically managed by proactive
services of middleware platforms require a shorter latency
(in the order of the hundred of milliseconds). This should
be one of the goals of PCMs to control situation identifi-
cation latencies. For instance, COSMOS provides activity
management facilities with blocking facilities to finely tune
every context node of a context policy. On the contrary,
OCM-based solutions cannot ensure that an inference com-
putation involving artificial intelligence methods is bounded
in time. In addition, output context data cannot be computed
beforehand and provided when required.

Expression of situations This criterion explains the
means proposed to application designers to express the
events which have to be detected by the CM. In most of
PCMs, interpretation mechanisms are hidden in the code.
With COSMOS, situations are expressed by an assembly
of existing context sources and operator components. In
OCMs, several languages can be used for context mod-
elling and context reasoning (DAML+OIL, DL, Ontobro-
ker, OWL, Prolog, Jena, etc.). MUSE uses Ontobroker rea-
soner and F-logic rules. A PCM/OCM architecture offers
application designers a wide range of possibilities to ex-
press how to identify situations. The cost is that application
designers shall have multi-language skills.

This section has highlighted that some of the criteria are
well handled by both PCMs and OCMs (observation/no-
tification), others are better handled by PCMs (handling
constantly evolving context, distributed context manage-
ment, observation preparation, scalability, constrained de-
vice, situation identification latency) or OCMs (handling
unforeseen situations, expression of situations). An hybrid

OCM/PCM solution allows designers architecting their sys-
tem in order to maximise advantages.

6. Related works

As stated before, context management can be achieved
using either PCMs or OCMs. This section presents works
related to those two approaches and more particularly to
studies mixing PCMs and OCMs.

PCMs Context Toolkit [5] acquires, interprets and deliv-
ers context data to applications. Developers design and im-
plement widgets (to collect data), interpreters (to compute
higher abstractions) and aggregators (to aggregate data from
several widgets). Application/widgets interactions are made
through queries and call-back notifications. In the spirit
of Context Toolkit, interpreters and aggregators are heavy-
weight software entities. Nothing precludes encapsulating
an OCM in one of them. Nevertheless, Context Toolkit is
by design a PCM and the contribution of this framework
is not in using context data obtained from an inference en-
gine working with ontologies. The Contextor builds a con-
text manager as a network of contextors [4]. Contextors
are software entities equivalent to components with meta-
data describing context data quality and controllers modi-
fying their configuration. The target of this framework is
the support of ad-hoc networking and dynamic construction
of the architecture. These solutions have the same goal and
are built using the same approach as COSMOS: the PCM
approach. Therefore, they are very powerful in building
chains, trees or even forests of efficient context processors
going from elementary observables to situation identifica-
tion. However, they lack the support of a broad context rep-
resentation which would enable to reason easily on a large
knowledge base.

OCMs CONON [7] and CoBrA-ONT [2] are ontologies
describing knowledge of the ubiquitous computing domain
(or some sub-domain of this discipline) and helping to dis-
ambiguate different contexts that may have different mean-
ings. Those ontologies should be integrated with widely ac-
cepted ontologies (such as the FIPA Device Ontology [6],
and CC/PP [9]) with the goal of knowledge reuse. Some
of these ontologies are used in ontology-driven ubiquitous
computing applications and during execution for context
management purpose. This category of solutions proposes
architectures which consist mainly of i) a knowledge base,
ii) an inference engine and iii) context acquisition and in-
terpretation mechanisms. CoBrA [2], SOCAM (CONON
ontology) [7] and GAIA [13] are representatives of this cat-
egory. OCMs have advantages regarding their capabilities
for reasoning and their level of interoperability and hetero-

geneity. They are well suited for the recognition of high-
level context abstractions. The main problem with OCMs
is that reasoning is computationally expensive. Online exe-
cution of ontological reasoning is technically impossible on
constrained mobile devices and raises scalability issues, es-
pecially when the ontology is populated by a large number
of individuals. An OCM needs to be wrapped with a con-
text provider in order to reason on updated observations for
constantly evolving contexts. OCMs generally do not de-
tail how they are interfaced with a context provider as their
contributions are rather at higher levels.

PCM and OCM combination MUSIC [12] includes
pluggable context sensors (to collect data) and context rea-
soners (to interpret data). Each context plug-in defines its
required and provided context types. The contribution of
MUSIC is the configuration capabilities of the context man-
ager at runtime through the concept of context plug-ins, that
is dynamic activation and deactivation of context plug-ins.
However, the authors do not discuss the complementary of
the context reasoner in an OCM approach with the plug-
ins of the context sensors that can in a sense be viewed
as the basic components of a PCM approach. In [10], the
authors present a framework for the recognition of situa-
tions in “real-time” in the presence of uncertain, noisy and
rapidly changing contexts. Mobile devices run a resource
server similar to a PCM with the following functionalities:
sensor measurement, preprocessing, feature extraction and
quantisation. These resource servers send their data to a
blackboard used by the Context Recognition Service and
the Change Detection Service. These latter services encap-
sulate an ontology, thus implementing the OCM approach.
According to the authors, the rationale for this combina-
tion of PCM and OCM are the situation detection latency
and the scalability. However, they do not view the PCM
as a possible client to the OCM. In this paper, we mix an
OCM (MUSE) with a PCM (COSMOS) rather than with a
simple context provider. The COSMOS PCM is available
on mobile devices. This allows us to deploy a great part
of the context collection and reasoning on mobile devices.
Compared to a direct context provider solution, this drasti-
cally reduces the amount of events sent to the MUSE OCM
and thus improves the scalability of the solution. MUSE
is well suited for the identification of high-level situations.
It offers reasoning capability and can deal with unforeseen
situations. The mix of COSMOS PCM and MUSE OCM
provides better scalability, efficiency, flexibility and enable
designers to reason on high-level knowledge such as user
activity and user intentions.

7. Conclusion

Identifying situations to trigger without delay appro-
priate reactions is an important issue for mobile applica-
tions. Many context management solutions have been pro-
posed so far for that purpose. Context management de-
sign must meet mobile devices constraints, interoperability
and scalability features. In this paper, we have presented
an hybrid architecture which integrates two types of ap-
proaches: process-oriented context management (PCM) il-
lustrated by COSMOS and ontology-based context manage-
ment (OCM) illustrated by MUSE. The situation identifica-
tion is performed at two abstraction levels. The first level
may be computed from the observations obtained from de-
vices and sensors. The second level may involve a knowl-
edge base. We have identified six criteria to highlight the
differences and complementarity of PCMs and OCMs for
the two modes of interactions: query or search, and notifi-
cation or recommendation.

We have demonstrated that the combination of a PCM
and an OCM for context management can lead to applica-
tions having a good level of scalability and efficiency while
allowing mobile application designers to reason on high-
level knowledge. Furthermore, it enables the distribution
of context interpretation even on constrained devices. The
drawback is that it requires mobile application designers to
master several complex technologies. In a future work, we
intend to measure the scalability of our hybrid solution. We
are also following a model driven approach and plan to de-
velop models from which to generate context management
code. This will release the application developers from ma-
nipulating context management technologies.

References

[1] A.Bouzeghoub and K. Do Ngoc. A situation based metadata
for describing pervasive learning objects. In Proceedings
of mLearn 2008 : Ist International Conference on Mobile
Learning, University of Wolverhampton, Ironbridge, UK,
October 8-10 2008.

H. Chen, T. Finin, and A. Joshi. An Ontology for Context-

Aware Pervasive Computing Environments. Special Issue on

Ontologies for Distributed Systems, Knowledge Engineering

Review, 18(3):197-207, May 2004.

D. Conan, R. Rouvoy, and L. Seinturier. Scalable Processing

of Context Information with COSMOS. In Springer-Verlag,

editor, 7th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems, volume 4531 of Lec-
ture Notes in Computer Science, pages 210-224, Paphos,

Cyprus, june 2007.

[4] J. Coutaz and G. Rey. Foundations for a Theory of Con-
textors. In C. Kolski and J. Vanderdonckt, editors, Proc.
4th International Conference on Computer-Aided Design of
User Interfaces, pages 13-34, Valenciennes (France), May
2002. Kluwer.

2

—

3

—

(5]

[6

—_

(7]

(8]
(9]

(10]

(11]

(12]

[13]

(14]

A. Dey, D. Salber, and G. Abowd. A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping
of Context-Aware Applications. Special Issue on Context-
Aware Computing in the Human-Computer Interaction Jour-
nal, 16(2-4):97-166, 2001.

FIPA. FIPA Device Ontology Specification. Foundation
for Intelligent Physical Agents (FIPA), Geneva, Switzerland,
http://www.fipa.org/specs/fipa00091/xc00091c.pdf edition,
2001.

T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An
Ontology-based Context Model in Intelligent Environments.
In Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference, pages 270-
275, San Diego, California, USA, January 2004.

J. Hobbs and F. Pan. W3C Time-ontology. Technical report,
W3C recommandation, september 2006.

G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm,
M. H. Butler, and L. Tran. Composite Capability/Preference
Profile (CC/PP): Structure and vocabularies 2.0. Technical
report, W3C recommandation, april 2007.

P. Korpipdd, J. Mintyjarvi, J. Kela, H. Kerdnen, and
E. Malm. Managing Context Information in Mobile De-
vices. IEEE Pervasive Computing, 2(3):42-51, July 2003.
M. Martin and P. Nurmi. A Generic Large Scale Simu-
lator for Ubiquitous Computing. In Proceedings of Third
Annual International Conference on Mobile and Ubiqui-
tous Systems: Networking & Services, 2006 (MobiQuitous
2006), pages 1-3, San Jose, California, USA, July 2006.
IEEE Computer Society.

N. Paspallis, R. Rouvoy, P. Barone, G. Papadopoulos,
F. Eliassen, and A. Mamelli. A Pluggable and Reconfig-
urable Architecture for a Context-aware Enabling Middle-
ware System. In Proceedings of the 10th International Sym-
posium on Distributed Objects, Middleware, and Applica-
tions (DOA’08), volume 5331 of Lecture Notes in Computer
Science, pages 553-570, Monterrey, Mexico, Nov. 2008.
Springer-Verlag.

M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces. Pervasive Computing, IEEE, 1(4):74-83,
Oct-Dec 2002.

J. Ye, L. Coyle, S. Dobson, and P. Nixon. Using Situation
Lattices in Sensor Analysis. In Proceedings of IEEE Inter-
national Conference on Pervasive Computing and Commu-
nications, PerCom’09, pages 1-11, Galveston, TX, USA,
March 2009.

