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Describing diffraction of atomic and molecular projectiles at fast grazing incidence presents a real
challenge for quantum theoretical simulations due to the high incidence energy (100 eV–1 keV) used
in experiments. This is one of the main reasons why most theoretical simulations performed to date
are based on reduced dimensional models. Here we analyze two alternatives to reduce the computational
effort, while preserving the real dimensionality of the system. First, we show that grazing incidence
conditions are already fulfilled for incidence angles 6 5�, i.e., incidence angles higher than those typically
used in experiments. Thus, accurate comparisons with experiment can be performed considering diffrac-
tion at grazing incidence, but with smaller total incidence energies, whilst keeping the same experimen-
tal normal energy in the calculations. Second, we show that diffraction probabilities obtained at fast
grazing incidence are fairly well reproduced by simulations performed at slow normal incidence. This
latter approach would allow one to simulate several experimental spectra, measured at the same normal
incidence energy for several incidence crystallographic directions, with only one calculation. This
approach requires to keep the full dimensionality of the system.

1. Introduction

Since 2007, when first diffraction experimental results obtained
using grazing incidence fast atoms diffraction (GIFAD) techniques
were published [1,2], these techniques have highly improved [3].
To present, they have been used to study a wide number of sur-
faces, including insulating [1,2,4], semiconductor [5] oxide [6–9],
metal [10–13], and reconstructed surfaces [14], as well as super-
structures adsorbed on metal surfaces [15–19], and even Graphene
adsorbed on SiC(0001) [20]. This fruitful experimental effort has
encouraged theorists to perform detailed quantum theoretical
studies aiming to analyze and understand GIFAD experiments.
However, these theoretical simulations present a major challenge
due to the huge incidence energy used in the experiment.

In order to reduce the computational effort, and make the calcu-
lations feasible using reasonable computational resources, the
axial surface channeling (ASC) approximation [5,24–26] and
dynamics semi-quantum approaches [21–23] has been widely

used. Within the ASC approximation, the dimensionality of the sys-
tem is reduced to two-dimensions (2D) by considering that the
projectile feels an average potential along the incidence direction.
As already discussed in the literature [27,28] this approximation
holds whenever the projectile feels a quasi-periodic potential and
follows trajectories that are nearly parallel to the surface [29],
i.e., whenever the condition a � ðEi=tanhiÞ=ðdV3D=dZÞ is fulfilled
[30] -a being the lattice constant, Ei and hi the incidence energy
and polar angle, respectively, and dV3D=dZ the variation of the
three-dimensional potential over Z (see Fig. 1 for coordinates
definition). Thus, this approximation may fail, for example, for
surfaces with large lattice parameters, as recently shown for the
case of diffraction of H atoms from the reconstructed (12 � 4)

phase of the Al2O3(11�20) surface [8], whose experimental diffrac-
tion spectra displays several Laue circles revealing the three-
dimensionality of the system.

In this work, using as benchmark system H/LiF(001), we have
investigated how to reduce the computational effort required to
study GIFAD phenomena, but keeping the full dimensionality of
the system. When performing quantum dynamics calculations of
atom(molecule)/surface systems using grid methods [31–33] the
computational effort is fundamentally linked to the number of
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basis functions required to describe accurately each degree of free-
dom (DOF): the higher the energy associated to a specific DOF the
higher the number of basis functions needed to properly describe
the motion along this DOF. In fact, we have estimated that GIFAD
calculations at typical experimental conditions demand twice
more RAM memory and ten times more CPU time than typical
low energy diffraction calculations -within the Multi Configuration
Time-Dependent Hartree (MCTDH) method framework (see
below). These requirements could imply prohibitive calculations,
for example, when molecular projectiles are involved. In order to
reduce this computational effort, we have to take into account that
GIFAD diffraction is mainly governed by the projectile low normal
incidence energy (En), and that one can usually disregard the pro-
jectile total (Ei) and parallel (Ep) energies. Thus, the same diffrac-
tion spectra should be observed for a range of Ep’s and polar
incidence angles, hi (see Fig. 1), while keeping En constant. Of
course, higher hi’s imply lower Ep’s, and therefore, lower computa-
tional effort. Our working hypothesis is that we can perform GIFAD
calculations to much lower incidence energy that in experiment,
and still be directly comparable with experimental results
obtained at fast grazing incidence. In addition, with the aim of
proposing a method to reduce the computation effort, while keep-
ing the accuracy of the theoretical analysis, we have tested to what
extend quantum calculations at slow normal incidence could be
used to simulate GIFAD experiments and by extension GIFMD
(grazing incidence fast molecules diffraction) experiments.

As we show below, our results indicate that grazing incidence
conditions are reached at incidence angles higher than the ones
used experimentally, and that results at slow normal incidence
could be used, as a first approximation, to analyze fast grazing inci-
dence experimental results. At this point, we should remark that
the two methods we propose to save computing time do not rep-
resent per se a substantial improvement respect to the ASC
approach, they just represent other approaches to the problem.
In fact, our proposed approaches can be used within the same con-
ditions for which the ASC approximation holds. However, to keep
the full dimensionality of the system presents an advantage over

this approach, namely, it allows one to analyze not only GIFAD
and GIFMD experiments at low computational cost, but also
quasi-GIFAD and quasi-GIFMD ones, similar to the ones published
in Ref. [8]. Thus, the dynamics can be easily adapted according to
the experimental conditions and/or the system we are interesting
in. Furthermore, using slow normal incidence calculations to sim-
ulate grazing incidence results would allow one to simulate several
diffraction spectra, measured at different crystallographic direc-
tions, with only one calculation. Of course, to take advantage of this
latter method, we have to keep the full dimensionality of the
system.

2. Theoretical approach

To perform our dynamics study, we have carried out quantum
dynamics calculations by solving the time-dependent Schrödinger
(TDS) equation for the nuclear Hamiltonian of the system. To solve
the TDS equation we have made use of the Heiderberg MCTDH
package [34,32,33,35], which has been already successfully used
to study molecular reactive scattering from surface [36–39], and
also diffraction of atoms from surfaces at low incidence energy
[40]. Using the MCTDH method, we write the nuclear wave func-
tion of our 3D-system (see Fig. 1) as a sum of products of single-
particle functions (SPFs),

Uðq1; . . . ; qf ; tÞ ¼
Xn1

j1¼1

. . .

Xnf

jf¼1

Aj1 ...jf ðtÞ
Yf

k¼1

uðkÞ
jk
ðqk; tÞ; ð1Þ

where f denote the number of degrees of freedom (DOFs), in our
case three, qi (i = 1,. . .,f) the ith nuclear coordinate, Aj1 ...jf the time-

dependent expansion coefficients, uðkÞ
jk

the time-dependent SPFs,

and ni the number of the SPFs used to describe each DOF. The SPFs
are represented by linear combinations of time-independent prim-
itive bases functions,

uðkÞ
ik
ðqk; tÞ ¼

XNk

ik¼1

CðkÞ
ik jk

ðtÞvðkÞ
ik
ðqkÞ; ð2Þ

where vðkÞ
ik

have been chosen as the basis functions of a Fast Fourier

Transform (FFT) representation. At this point, it is worth pointing
out that within this formalism the equations of motions for the
expansion coefficients and the SPFs are derived from the Dirac–
Frenkel variational principle, which leads to a set of coupled equa-
tions that can be solved with less computational effort than in stan-
dard time-dependent wave packet (TDWP) propagation methods.
This is so because in the MCDTH method the nuclear wave function
can be expanded in a smaller number of SPFs than the number of
time-independent basis functions needed in a standard TDWP
method.

Finally, to obtain diffraction probabilities, we have performed a
flux analysis of the reflected wave function, which is absorbed by a
complex absorbing potential placed in the non-interaction Z

region. The main parameters used in the quantum calculations
are listed in Table 1.

Dynamics simulations have been performed on a three-
dimensional (3D) potential energy surface (PES) originally
obtained by applying the corrugation reducing procedure (CRP)
[41] to a set of density functional theory (DFT) energies (see Ref.
[42] for a detailed description of the PES). However, from a compu-
tational point of view, the MCTDH method is more efficient when
combined with PES’s that have the form of sum of products of one-
dimensional functions [47,32] such as:

Vðq1 . . . qf Þ ¼
Xs

i¼1

V iðq1ÞV iðq2Þ . . .V iðqf Þ ð3Þ

Fig. 1. Top: schematic representation of the H/LiF(100) system and the Cartesian
coordinates system. Bottom: real and reciprocal lattices. Dashed gray lines show
diffraction orders as defined in this work. Number within bracket indicate the
incidence direction considered in this work.
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To transform our 3D non-separable potential into a product of 1D
functions, we have used the POTFIT procedure [43,44]. Within this
procedure the PES of expanded in the so-called natural potentials,
vj(qi), as follow:

Vapproxðq1; . . . ; qf Þ �
Xm1

j1

Xmf

jf

Cji ...Jf v j1 ðq1Þ . . .v jf ðqf Þ; ð4Þ

where fmig represents a set of expansion orders. The expansion
coefficients are determined by the overlaps between the primitive
PES and the natural potentials as:

Cji ...Jf ¼
XN1

j1

XNf

jf

V i1 ...if v i1J1 . . .v if Jf : ð5Þ

Parameters related to the POTFIT procedure and the accuracy of the
approximated potential (Vapprox) are given in Table 2.

3. Results and discussion

We have first analyzed the diffraction probabilities as a function
of the incidence polar angle hi, while keeping the normal incidence
energy constant. In Fig. 2, we show the evolution of the most
intense diffraction peaks (see Fig. 1 for peak definition) with
hi -in the case of symmetric peaks, only one of them is represented.
From this figure, we can clearly see that specular peaks probabili-
ties increases and diffraction peaks probabilities decrease with
decreasing hi, and vanish at hi � 10�, except for peaks perpendicu-

lar to the incidence direction in the reciprocal space (see Fig. 1), the
only ones observed at grazing incidence. The behavior of the latter
peaks as a function of hi is also quite interesting, for the h110i
incidence direction (the one shown in Fig. 2), we can see that the

first order peaks probability [(0, 1) and (0, �1)] increases slightly
with decreasing hi, while the probability of the second order peaks

[(0, 2) and (0, �2)] remains almost constant. Similar results (not
shown here) are obtained for the h100i direction: the first order

peaks probability [(1, �1) and (�1, 1)] increases with decreasing hi

and the second order peaks one [(2, �2) and (�2, 2)] remains constant.
Once grazing incidence is reached (around hi ¼ 5�), these survivor
peaks, both the specular and the diffracted ones, remain constant.
Interestingly, it should be noticed that, independently of the
incidence direction, for incidence angles smaller than 20�. only
the specular and the perpendicular diffraction peaks have a proba-
bility larger than zero, and that the diffraction spectra do not
change significantly for hi below 5�, i.e., grazing incidence condi-
tions seem to be reached for an initial polar angle around 5�. These
results indicate that it is possible to compare experimental results
obtained, for example, for hi ¼ 1�. with theoretical ones obtained
for hi ¼ 5� provided that En is the same. Thus, for example, an
experiment performed at Ei ¼ 800 eV and hi ¼ 1:11�. could be
described using theoretical simulations for Ei ¼ 40 eV and hi ¼ 5�.
At this point, we should remark that to the best of our knowledge
no GIFAD experimental results for hi P 2:5� are available in the lit-
erature. Lienemann et al. [45] have shown that, for H/LiF(001) at Ei
= 1.0 keV, incoherent scattering due to electronic excitations
clearly dominate for hi P 1:5�. But, in this experiment, Ei was kept
fixed, while En increased with hi. However, no systematic experi-
mental study keeping En constant and varying hi, aiming to find
the maximum hi angle that defines grazing incidence, has ever
been performed. We hope that our analysis will encourage such
experimental study.

For the sake of completeness, we have compared our theoretical
results with experimental data available in the literature. In Fig. 3,
we compare experimental results from Ref. [46] with our theoret-
ical results, obtained for hi ¼ 5�. From this Fig., we can see that our
results reproduce qualitatively the experimental observations. In

Table 1

MCTDH calculation parameters as a function of the initial polar angle (hi). NX;Y and NZ

are the FFT primitive functions for coordinates X, Y and Z, respectively. See Fig. 1 for
coordinates definition. Specific parameters used for incidence conditions hi 6 2� are
given within brackets.

hi P 5� (6 2�)

Initial wave packet

Width, DZ0 (Å) 0.5

Position, Z0 (Å) 6.5

Grid parameter

Type X, Y, Z FFT

X, Y-range (Å) 0.0–11.52

NX;Y 600 (1500)

Z-range (Å) �0.75–15.0

NZ 324 (500)

Complex absorbing potential

Z-range (Å) 6.5–15.0

Strength (a.u.) 5.79 � 10�5

SPFs per degree of freedom, X, Y, Z 9, 9, 9
Propagation time (fs) 450

Table 2

Parameters used to represent the H/LiF(001) PES in a suitable form for the MCTDH
equations of motion using the POTFIT algorithm. Dw

rms and D
rw
rms represent the rms error

on all grid points and on relevant grid points, respectively. maxð�Þ and maxð�rÞ
represent the maximum error on all grid points and on relevant grid points,
respectively.

Natural potential basis

Nx; Ny 25, 25
Nz Contr [47]

Relevant region of the fit

Z (Å) >0.5
V (eV) <3

POTFIT accuracy

Niter 4
D
rw
rms ; D

w
rms (meV) 0:15; 5:03

maxð�rÞ; maxð�Þ (meV) 4:54; 306
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are populated (see Fig. 1).
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particular, theoretical spectra display, in agreement with experi-
ment, high first order diffraction peaks along the h100i direction,
and a clear predominance of the specular peak along the h110i
one. A closer look to Fig. 3(a) reveals some disagreement between
theory and experiments. The experimental spectrum show first
order diffraction peaks more intense than the specular one,
whereas the simulated one display a more intense specular peak.
However, as also shown in Fig. 3(a), if we increase the normal
energy in our simulations the first order peaks increase and the
specular one decreases. In fact, as shown in the inset of this Fig.,
for high enough normal energies, we recover the experimental
trend. Thus, from this analysis, we can conclude that out quantum
theoretical results reproduce the experimental ones with a energy
shift. Similar agreement with experiments has been previously
obtained using a classical binning method and the same PES [42].
Interestingly, we should also point out that the diffractogram
shown in the inset of Fig. 3 agrees with the 2D diffraction pattern
recorded by Winter et al. [3] for the same incidence normal energy.
Here, we should also point out that the disagreements found
between theory and experiment, are most likely due, beyond
experimental uncertainties, to the accuracy of the DFT functional
used in computing the single point configurations energies needed
to built the PES. Here, we have not performed a systematic
search for the functional reproducing best the experimental
measurements because, on the one hand, there are not enough
experimental measurements to carried out properly this search
(see Ref.[48,49]), and on the other hand, it was no the aim of this
study to reproduce a particular experiment, but to carry out an
analysis that could be extrapolated to any system, even a to
fictitious one.

Finally, we have also performed a comparison between the
spectra obtained at fast grazing incidence and the spectra that it
would be obtained at normal incidence if only the peaks populated
at fast grazing incidence were considered, i.e., if only the peaks
perpendicular to the crystallographic incidence direction were
considered. In Fig. 4 we show such comparison along two crystal-
lographic incidence directions, h100i and h110i, for several normal
incidence energies. As we are only interested in relative intensities,
in Fig. 4, we have renormalized the probability of the normal inci-
dence peaks to the probability of the specular peak obtained at fast
grazing incidence. From this figure, we can extract several interest-
ing conclusions: (i) for the lower normal energies, for which only
the first order peaks have a significantly intensity, spectra at
normal and grazing incidence almost overlap. For higher normal
energies, when second order peaks start to show up, the quantita-
tive agreement between both spectra gets a little worse. (ii) The
variation of the spectrum at fast grazing incidence as a function
of En is qualitatively well reproduced by normal incidence simula-
tions. For example, the decrease of the first order peaks and the
increase of the second order ones along the h110i direction,
obtained at fast grazing incidence, is well reproduced by a normal
incidence simulation, although at normal incidence second-order
peaks are populated faster than at fast grazing incidence. This wor-
sen of the agreement between normal and grazing incidence
results (for a fixed hi) when the normal energy increases, it is
related to the deterioration of the grazing incidence conditions. A
more quantitative analysis of our results can be performed from
the relative intensities of the different diffraction peaks, as they
come out from the simulations, listed in Table 3.

The latter results have important implications from the simula-
tion point of view. They show that with a single normal incidence
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energy simulation, which requires much less computational
resources than a fast grazing incidence calculation, we can simu-
late reasonably well the diffraction spectra obtained at grazing
incidence, at a given normal incidence energy, along any incidence
direction. In other words, by just performing a single cheap calcu-
lation, one can simulate reasonable well several experimental
conditions.

4. Summary

We have performed MCTDH quantum dynamics calculations,
based on a first-Principles 3D potential energy surface, aimed at
evaluating several options to reduce the computational effort
required to analyze experimental spectra obtained at fast grazing
incidence conditions. Taking H/LiF(001) as a benchmark system,
we have shown that grazing incidence conditions are fulfilled at
incidence polar angles (hi � 5�) higher than the ones typically used
in experiments, i.e., we have shown that, for a given normal inci-
dence energy, the same results can be obtained by using lower
total energies than those used in experiment. We have also shown
that diffraction at normal incidence can be used, at a first approx-
imation, to simulate fast grazing incidence, simply by analyzing
diffraction peaks perpendicular to the crystallographic incidence
direction considered in each specific experiment. Thus, one single
cheap calculation at normal energy could be used to simulate
diffraction spectra measured in GIFAD and GIFMD experiments
along several incidence directions and angles. Although here, we
have to take into account that the ability of normal incidence sim-
ulations to reproduce grazing incidence results worsen when the
normal incidence energy increases.

Finally, we should point out that the two approximations ana-
lyzed here, are valid within the same incidence conditions as the
ASC approximation. However, to keep the full dimensionality of
the system presents some advantages: (i) one can used the same
potential and dynamics method to analyze both GIFAD (GIFMD)
and quasi-GIFAD (quasi-GIFMD) experiments; (ii) one can used
only one slow normal incidence calculation to simulate several
experiments carried out, at the same normal incidence, for several
crystallographic directions.
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Table 3

Theoretical relative intensities used to draw spectra shown in Fig. 4.

Ez (eV) 0.2 0.3 0.4
Nor. Graz. Nor. Graz. Nor. Graz.

h100i
Ið2;�2Þ=Ið0;0Þ 0.001 0.001 0.011 0.011 0.059 0.066

Ið1;�1Þ=Ið0;0Þ 0.092 0.108 0.246 0.315 0.527 0.815

h110i
Ið0;1Þ=Ið0;0Þ 0.031 0.035 0.015 0.014 0.008 0.009

Ið0;2Þ=Ið0;0Þ 0.010 0.007 0.060 0.020 0.281 0.027

5


	Diffraction of H from LiF(001): From slow normal incidence to fast grazing incidence
	1 Introduction
	2 Theoretical approach
	3 Results and discussion
	4 Summary
	Acknowledgements
	References


