Emmanuel Hebrard
email: hebrard@laas.fr

Marie-José Huguet
email: huguet@laas.fr

Nicolas Jozefowiez
email: jozefowiez@laas.fr

Adrien Maillard

Cédric Pralet
email: cedric.pralet@onera.fr

Gérard Verfaillie

Approximation of the Parallel Machine Scheduling Problem with Additional Unit Resources

Keywords: Scheduling, Approximation, Additional resource

We consider the problem of minimizing the makespan of a schedule on m parallel machines of n jobs, where each job requires exactly one of s additional unit resources. This problem collapses to P ||C max if every job requires a different resource. It is therefore NP-hard even if we fix the number of machines to 2 and strongly NP-hard in general.

Although very basic, its approximability is not known, and more general cases, such as scheduling with conflicts, are often not approximable. We give a (2 -2 m+1)-approximation algorithm for this problem, and show that when the deviation in jobs processing times is bounded by a ratio ρ, the same algorithm approximates the problem within a tight factor 1 + ρ (m-1) n . This problem appears in the design of download plans for Earth observation satellites, when scheduling the transfer of the acquired data to ground stations.

Introduction

We consider the problem of scheduling a set of n jobs on m parallel machines. Moreover, each job requires exactly one of s additional resources. These additional resources have a unit capacity, hence no two jobs requiring the same resource can be scheduled in parallel. The objective is to minimize the overall makespan of the schedule. This problem occurs in numerous applications where an exclusive resource must be shared. Our particular motivation, however, comes from the problem of planning the download of acquisitions made by agile observation satellites [START_REF] Pralet | Satellite Data Download Management with Uncertainty about the Generated Volumes[END_REF].

When a satellite makes an observation, the acquired data is compressed and stored onboard, waiting to be downloaded once a communication link with a ground station is established. The data of an acquisition corresponds to a set of exactly s files, each one corresponding to a frequency (observations are multifrequency optic recordings). There are s memory banks, and every file of a given observation is stored on a different one.

When flying over a ground station, some of the data stored on the memory banks can be downloaded. The objective is to download as many files as possible, possibly weighted by some priority function.

The satellite has a communication link with a ground station only for a short period called download window. The problem we consider is, given a subset of the files stored onboard, whether it is possible to download them all within the download window, or in other words, whether the optimal makespan is less than a given constant. Typically, this problem will be solved as a subproblem of a larger problem, including the selection of the subset of files to be downloaded.

Since there are m independent download channels, this problem is equivalent to parallel machine scheduling. Each file is a job, and we know exactly the duration of its download: it is linearly dependent on the size of the file (varying according to the type of observation and to the compression). Any file can be downloaded through any download channel, and on every channel, downloads must be sequential. We must therefore allocate the files to channels and sequence all the tasks on every channel. Moreover, in a given memory bank, files can be read, and thus downloaded, only one at a time. We can therefore view the set of files stored on the same memory bank as a set of jobs sharing the same mutually exclusive resource. In other words, we can model our problem as scheduling n jobs (files) on m machines (download channels) subject to s resources (memory banks), where all demands and capacities are unit.

Example 1. Consider two acquisitions, I a and I b , composed of 5 files to be downloaded to the ground. For each acquisition, each file is stored in a given memory bank (resource), R 1 , R 2 , R 3 , R 4 or R 5 . There are then 10 jobs to be downloaded.

For instance, job a 1 stands for the file of acquisition I a stored on memory bank R 1 . Job processing times and resource allocations are shown in Figure 1, and two possible download plans using three download channels (machines), M 1 , M 2 , M 3 are shown in Figure 2. Resources:

R 1 R 2 R 3 R 4 R 5 M 1 a 3 b 3 a 5 b 5 M 2 a 2 b 2 M 3 a 1 b 1 a 4 b 4 a 3 a 5 b 5 a 2 b 2 b 3 a 1 b 1 a 4 b 4
Figure 2: Two feasible solutions for the instance shown in Figure 1.

This problem is a generalization of P ||C max which is strongly NP-hard [START_REF] Blazewicz | Scheduling subject to resource constraints: classification and complexity[END_REF][START_REF] Garey | Strong" NP-Completeness Results: Motivation, Examples and Implications[END_REF]. Moreover, the particular case of 2 parallel machines is also NP-hard since the problem P 2||C max is NP-hard, though pseudopolynomial.

In a recent survey [START_REF] Emrah | Parallel machine scheduling with additional resources: Notation, classification, models and solution methods[END_REF], the authors give an overview of parallel machine scheduling with additional resources. To this purpose, the field β of the classical three-field notation α|β|γ for scheduling problems was extended to take into account additional resources in parallel machine scheduling [START_REF] Blazewicz | Scheduling subject to resource constraints: classification and complexity[END_REF]. In particular, β = resλσδ indicates that each job requires δ units of up to λ resources, each of capacity σ. A dot "." instead of one such value denotes that it is part of the input. Notice that P D2|res1..|C max is polynomially solvable [START_REF] Kellerer | Scheduling problems for parallel dedicated machines under multiple resource constraints[END_REF], which means that our problem has a polynomial time algorithm if there are no more than 2 additional resources. Moreover, the even more general problem P D|res1..Int|C max1 has a (3 + ǫ)-approximation algorithm [START_REF] Grigoriev | Scheduling jobs with time-resource tradeoff via nonlinear programming[END_REF].

Finally, it is also a particular case of the problem of scheduling with conflicts (SWC) [START_REF] Even | Scheduling with conflicts: online and offline algorithms[END_REF]. In this problem, n jobs should be scheduled on m parallel machines such that the makespan is minimized. Moreover, as in our case, two conflicting jobs cannot be processed concurrently. However, whereas in our case two jobs are conflicting if and only if they require the same resource, in SWC the set of conflicts can be an arbitrary graph. In other words we consider the particular case of SWC where the conflict graph is a set of disjoint cliques. The positive re-sults can therefore be inherited from SWC. For instance, it is polynomial for two machines (m = 2) and processing times in {1, 2} [START_REF] Even | Scheduling with conflicts: online and offline algorithms[END_REF], and there is a 4 3 -approximation algorithm for processing times in {1, 2, 3}. However, results are mainly negative: SWC is NP-hard when the processing times are in {1, 2, 3} even for two machines [START_REF] Bendraouche | Scheduling jobs on identical machines with agreement graph[END_REF], and APX-hard when they are in {1, 2, 3, 4} [START_REF] Even | Scheduling with conflicts: online and offline algorithms[END_REF].

The main contributions of the paper are as follows. Firstly, we give an algorithm that approximates the optimal solution for the problem described above within a tight factor 1 + ρ (m-1) n , where ρ is the ratio between maximum and minimum processing times. Secondly, we show that the same procedure is a (2-2 m+1)approximation algorithm in general, however, we show that this factor is tight only for m ≤ 2. Finally, we consider the case where jobs must be inserted by batches involving jobs that require distinct additional resources. These batches correspond to all the files constituting a single acquisition in our observation satellite planning application. We show that if the ratio ρ between maximum and minimum processing time is less than or equal to ⌊ s-1 m-1 ⌋ then the optimal schedule can be approximated within a factor 1 + s-1 n .

Throughout the paper, we use the following notations and conventions:

n: the number of jobs, denoted a 1 , . . . , a n res(a): the resource required by job a p a : the processing time of job a, whereas p min and p max stand for the minimum and maximum processing times, respectively s a and e a : the start and end times of job a in the schedule, respectively m: the number of machines, denoted M 1 , . . . , M m e M : the end time of the last job scheduled on machine M e min and e max : the completion time of the last job on the machine finishing first and last, respectively. That is, e min = min({e

M j | 1 ≤ j ≤ m})
and e max = max({e

M j | 1 ≤ j ≤ m})
s: the number of additional resources, denoted R 1 , . . . , R s .

L: the cumulated processing time of the jobs (n i=1 p a i) R: denotes the set of jobs requiring this resource.

L(R): stands for the load of the resource R, (a∈R p a)

The rest of the paper is organized as follows. In Section 2, we give some general results on an enqueueing heuristic method that can be applied for both online and offline scheduling. This heuristic shall be used in all other algorithms. Then, in Section 3, we prove approximation results for offline scheduling problems. Last, in Section 4, we consider the case of batch scheduling.

Online Scheduling

To solve our problem, we consider greedy heuristics which iteratively insert a job a into a partial schedule S. We can define these heuristics as an ordering on the jobs and an insertion procedure called ENQUEUE shown in Algorithm 1. This procedure shall be reused in all subsequent heuristics.

The algorithm ENQUEUE considers a job a and a partial schedule S. An invariant of this algorithm is that trailing jobs (i.e., the last jobs on their respective machines) require distinct resources. Therefore, the resource required by a is either required by a single trailing job, in which case a will follow that job on the same machine; or no trailing job requires the same resource, and it will be inserted at the back of one of the first available machines.

Algorithm 1: ENQUEUE(schedule : S, job : a) if there exists a machine M j whose last job in S requires res(a) then insert a at the back of machine M j in S else insert a at the back of a machine with mimimum completion time in S

In the following lemma, we show that the schedules obtained by applying the insertion procedure ENQUEUE on every job of any set, and in any order, are feasible and dense. In other words, there is no idle time between the first and last job on any machine in such schedules. From this, we can deduce an approximation factor of (2 -1 m) inherited by all algorithms introduced in this paper. Moreover, the density property will be useful in subsequent proofs. In particular, it entails an upper bound on the makespan: Lemma 1. Let σ be the makespan of a dense solution, then σ ≤ L -(m -1)e min .

PROOF. Immediate from the fact that one machine finishes at time σ, and m -1 machines finish at or after time e min . Lemma 2. A schedule obtained by a sequence of calls to ENQUEUE is feasible and dense, and for every machine M , all jobs a processed on M with e a ≥ e min require the same resources.

PROOF. We prove this proposition by induction on the number of jobs n. For 1 job, it trivially holds. Now, we suppose that it holds for n jobs, and show that it also holds for n + 1 jobs.

Let R M be the unique resource such that every job scheduled on machine M and finishing later than e min requires R M (or ∅ if e M = e min). Observe that since the schedule is feasible, there are no two machines

M 1 , M 2 such that R M 1 = R M 2 unless e M 1 = e M 2 =
e min (hence for any job a, there is at most one machine M j such that R M j = res(a)). When inserting the n + 1-th job a, there are two cases (illustrated in Figure 3):

Case 1: ∃j ∈ [1, . . . , m] s.t., res(a) = R M j .
Job a is processed on a machine M whose last job finishes first. It can start immediately after this last, i.e., at time e min , since there is no resource conflict with res(a) on the interval [e min , e max]. Now, e min and maybe e max can increase because of this insertion. In all machines but M , this does not invalidate the induction hypothesis. On M , there is now at most a single job on the interval [e min , e max], hence the induction hypothesis is also verified.

Case 2: ∃j ∈ [1, . . . , m] s.t., res(a) = R M j .
Job a is processed on the machine M j such that res(a) = R M j . It can start immediately after the last job of this machine, since e M j ≥ e min , and there is no other machine M i such that e M j ≤ e M i and R M j = R M i . Observe that in this case R M k remains unchanged for every machine M k , hence the induction hypothesis is also verified.

Theorem 1. If σ is the makespan of a schedule obtained by calling the procedure

ENQUEUE on every job, then there is a resource R such that σ ≤ L m +(1-1 m)L(R).
PROOF. The schedule is dense thus σ +e min (m-1) ≤ L by Lemma 1. Moreover, let R be the resource associated with a job finishing at time σ and let M be the

R 1 R 2 R 3 R 4 M 1 a 1 a 5 M 2 a 2 a 4 a 9 M 3 a 3 a 6 a 7 a 8
e min e max a 10 a 11

L(R))(m -1) ≤ L.
Corollary 1. A succession of calls to the procedure ENQUEUE, one for every job, in any order, is a (2 -1 m)-approximation algorithm.

PROOF. Let σ be the makespan of a schedule obtained by a succession of calls to ENQUEUE and σ * be the optimal makespan. Since σ * ≥ L m and for every resource R, σ * ≥ L(R) we have by Theorem 1 σ ≤ σ * + m-1 m σ * .

Notice that this Theorem holds for the on-line version of the problem since no assumption is made about the order in which jobs are given to Algorithm 1.

Moreover, the procedure ENQUEUE is optimal if s ≤ m since in that case two jobs requiring different resources would never be processed on the same machine.

In Example 2, we show that the given ratio is tight for any value of m.

Example 2. The n jobs to be scheduled on the set of m parallel machines consist of m -1 jobs with processing time m -1, m -1 jobs with processing time 1 and 1 job with processing time m, all requiring a different resource (that is s = n).

If we use ENQUEUE in input order, we obtain a makespan σ = 2m -1.

However, it is possible to obtain the optimal makespan σ * = m by processing the longest job alone on a machine, and on each m-1 remaining machine, exactly one job with processing time m -1 and one job with processing time 1. We illustrate this example for n = 7 jobs, m = 4 parallel machines and s = 7 resources in Figure 4.

Resources:

R 1 R 2 R 3 R 4 R 5 R 6 R 7 M 1 a 1 M 2 a 2 M 3 a 3 M 4 a 4 a 5 a 6 a 7 M 1 a 1 a 4 M 2 a 2 a 5 M 3 a 3 a 6 M 4 a 7

Offline Scheduling

In this section, we study the greedy heuristic called MAXLOAD, shown in Algorithm 2. This heuristic gives a better approximation ratio than ENQUEUE thanks to the order in which it explores the jobs. It makes its choice based on the current load of a resource, that is the sum of the processing time of jobs requiring this resource that are not yet scheduled. At each step, it selects the resource R with the maximum current load. Then, the job a requiring R and having the maximum processing time is selected and is added to the partial schedule using the insertion procedure ENQUEUE. We show that the greedy heuristic MAXLOAD is a

(2 -2 m+1)-approximation algorithm for the parallel machine scheduling problem with additional unit resources. Moreover, the approximation factor tends to 1 when the ratio between maximum and minimum processing time of any job is bounded by a constant. In order to prove the approximation result, we first introduce some notations for sequences of jobs requiring the same resource.

Let

-→ R (a) denote the sequence of all jobs requiring R in the order they are selected by MAXLOAD, i.e., by non-increasing processing time, starting from a (included). We can extend the notion of load to such sequences:

L(-→ R (a)) = a i ∈ -→
R (a) p a i . Moreover, let [s, e] be an interval. We say that [s, e] is a stretch of the resource R if at any time in [s, e], there is a job requiring R in process.

Lemma 3. Let a 1 , a 2 be two jobs requiring the resources R 1 and R 2 , respectively, and let s a , e a be the start and end times of a job a.

If L(-→ R 1 (a 1)) > L(-→ R 2 (a 2)) and if s a 1 ≤ e a 2 ≤ e a 1 , then [s a 2 , e a 1] is a stretch of R 1 . PROOF. First, observe that L(-→ R 1 (a 1)) > L(-→ R 2 (a 2
)) implies that one of the two following propositions holds:

1. a 1 starts at least as early as a 2 .

2. a 1 follows directly another job of R 1 on the same machine.

Indeed, a 1 must be inserted before a 2 . It can either go on the earliest finishing machine, which guarantees that proposition 1 will be satisfied; or on the machine that ends with a job of R 1 , if it exists, which satisfies proposition 2. Now, suppose that the claim is false, i.e., there is a window in [s a 2 , e a 1] with no job requiring R 1 in process, and let a ′ 1 be the job of R 1 directly following that window. It precedes (or is)

a 1 , therefore L(-→ R 1 (a ′ 1)) > L(-→ R 2 (a 2))
. However, this is a contradiction since a ′ 1 satisfies neither of the two propositions above. Now, we can prove an intermediate theorem bounding the gap between the end e min of the dense part of the schedule and the total makespan σ.

Lemma 4. If p max is the maximum processing time of a job, and if the schedule returned by MAXLOAD is not optimal, then the completion times of the last jobs on any pair of machines are less than p max apart.

PROOF. We assume that the conclusion does not hold, that is, e max -e min > p max , and we show that it contradicts the premise.

Without loss of generality, we assume e M 1 ≤ . . . ≤ e Mm . By Lemma 2, we know that [e min , e max] is a stretch of a single resource that we shall call R m on the machine M m . Let a m be the first job requiring R m finishing in this stretch (i.e.,

such that e am ≥ e min). Moreover, let a 1 be the last job on machine M 1 and let R 1 be its resource. Since -→ R 1 (a 1) involves only one job a 1 we have L(

-→ R 1 (a 1)) ≤ p max
and since e maxe min > p max and [e min , e max] is a stretch of R m , we have

L(-→ R 1 (a 1)) < L(-→ R m (a m)). Therefore by Lemma 3, we know that [s a 1 , e max]
is a stretch of R m . By the same argument we can extend this stretch over all jobs directly preceding a 1 and requiring the same resource R 1 . Let a ′ m and a ′ 1 be the first jobs of these extended stretches, for R m and R 1 , respectively. We have

L(-→ R 1 (a ′ 1)) + p max < L(-→ R m (a ′ m)
), because the stretch on R m is longer than the one on R 1 by at least e maxe min > p max . Now, let a 2 be the last job of M 1 that does not require R 1 and let R 2 be its resource (a 2 directly precedes a ′ 1). Since we switched from that job to a job of R 1 , we know that L(

-→ R 2 (a 2)) -p a 2 ≤ L(-→ R 1 (a ′ 1)
). Therefore we have L(

-→ R m (a ′ m)) > L(-→ R 2 (a 2))
. Now, we can use Lemma 3 again to stretch on R m over that stretch on R 2 . This argument can be applied to extend the stretch on R m over every preceding job on M 1 . Since the schedule is dense by Lemma 2, the stretch on R m can be extended to time 0 and hence we have shown that there is a job requiring the resource R m in process at all times. It follows that if e maxe min > p max , then the schedule is optimal.

Theorem 2. If σ is the makespan of a schedule obtained by the procedure MAXLOAD,

then either σ is optimal or σ ≤ L m + (1 -1 m)p max .
PROOF. The schedule is dense thus σ +e min (m-1) ≤ L by Lemma 1. Moreover, by Lemma 4, either σ is optimal or σ-e min ≤ p max , and hence σ+(σ-p max)(m-1) ≤ L.

Corollary 2. If pmax p min ≤ ρ then MAXLOAD approximates the optimal schedule within a factor 1 + ρ m-1 n .

PROOF. By Theorem 2, if σ is the makespan of a schedule returned by MAXLOAD and σ * is the optimal makespan, we have: σ ≤ σ * + (1 -1 m)p max . However, we have L n ≥ p min hence ρ L n ≥ p max , and since σ * ≥ L m then ρ mσ * n ≥ p max . We inject this into the first inequality to obtain:

σ ≤ σ * + ρ m-1 n σ * .
Lemma 5. Let a j be a job starting strictly after t ≥ 0 in a schedule returned by MAXLOAD. Either there exists a job processed at time t and requiring the same resource as a j , or every job in process at time t has been inserted before a j .

PROOF. Suppose that there is no job processed at time t and requiring the same resource as a j , and consider a job a i processed at t. If they are processed on the same machine, it follows immediately that a i had been inserted before a j .

Otherwise, suppose that a j has been inserted before a i , and let e ′ min and e ′ max be the earliest and latest machine completion times just before the insertion of a i . Since a i starts at t or before we have e ′ min ≤ t. Now since a j was inserted before a i , it finishes before or at e ′ max , and since it starts after t, it is included in the interval [e ′ min , e ′ max] and we have e ′ min ≤ t < e ′ max . However, the job processed at time t on the same machine as a j does not require the same resource as a j , which contradicts Lemma 2. Theorem 3. MAXLOAD is a (2 -2 m+1)-approximation algorithm.

PROOF. Suppose that the schedule returned by MAXLOAD has a makespan σ >

(2 -2 m+1)σ * . It entails s > m > 1 and K = σe min > 0 since otherwise MAXLOAD is optimal. By Lemma 2 we know that [e min , σ] is a stretch on some resource R m+1 on a machine M 1 . Therefore, we have L(R m+1) ≥ K. This stretch must have started at a time t greater than 0, otherwise the schedule would be optimal. So there exists a time point in [0, t) such that none of the jobs in process at that time require R m+1 . Moreover, there are m such jobs, all with distinct resources, since the schedule is dense up until e min > t. By Lemma 5, we know that these jobs have all been inserted before the first job a m+1 of the stretch of R m+1 . It follows that each one of these m resources has a load of at least K.

The total load (L = n i=1 p a i) is therefore at least (m + 1)K, and thus σ * ≥ m+1 m (σe min) or e min ≥ σ -m m+1 σ * . The claim now follows from Lemma 1 and from σ * ≥ L m .

In Example 3, we show that this ratio is tight only for m ≤ 2 (for m = 2 we have a tight ratio of 4 3). However, it tends to 2, and is not tight, when m grows.

Example 3. Consider a problem with m parallel machines, m + 1 resources and the following jobs: resource jobs processing time

R 1 a 1 , . . . , a m-1 ∀1 ≤ i ≤ m(m -1), p a i = p R 2 a m , . . . , a 2m-2 R m a (m-1) 2 , . . . , a m(m-1) R m+1 a m(m-1)+1 , . . . , a m 2 ∀m(m -1) + 1 ≤ i ≤ m 2 , p a i = p m
MAXLOAD might enqueue all jobs of resources R 1 to R m before enqueueing any job requiring R m+1 since the load of R m+1 is equal to p. The makespan obtained with this insertion order is equal to mp. Indeed, on each machine there are m -1 jobs of any one resource in R 1 to R m . Moreover, every job requiring the last resource R m+1 will be scheduled on the same machine, which completion time is thus mp.

However, it is possible to obtain a makespan of (m -1)p + p m by interleaving the jobs requiring resource R m+1 with jobs requiring other resources. More precisely, job a m(m-1)+i should be the i th job on machine M i , with all other jobs on that machine being those requiring resource R i . We illustrate this example in Figure 5. The difference between σ and σ * is thus:

mp -((m -1)p + p m) = (1 - 1 m)p
which shows that Theorem 2 provides a tight bound for any value of m. However, the ratio between σ and σ * is:

mp (m -1)p + p m = 1 + m -1 m(m -1) + 1
This lower bound is equal to the upper bound given by Theorem 3 for m ≤ 2, however, it is strictly smaller for m > 2.

Resources:

R 1 R 2 R 3 R 4 R 5 M 1 a 1 a 2 a 3 M 2 a 4 a 5 a 6 M 3

Batch Scheduling

In our acquisitions download planning application presented in Section 1, jobs are grouped by batches of s jobs, each one requiring a different resource. In this application, jobs represent files and a batch is a set of files linked to an acquisition, resources correspond to memory banks and parallel machines to telecommunication channels. Indeed, it is preferred to group the download of all the files of an acquisition for at least three reasons. First, if for some reason the download is interrupted, any acquisition for which a single file is not yet downloaded is lost.

By grouping all the files of an acquisition, we reduce the probability of these occurrences. Second, some acquisitions have higher priority and we might want to download them first if possible. Third, all files of a single acquisition must be downloaded during the same fly-by of the chosen ground station. We therefore consider a "pseudo" on-line version of the problem where jobs arrive by batches:

we must completely schedule a batch before moving to the next one.

Example 4. Consider again Example 1. Now we assume that jobs are given in two batches, containing the 5 files of acquisitions I a and I b , respectively. Figure 6 is a feasible solution for this setting.

M 1 a 3 a 5 b 5 M 2 a 2 b 1 b 4 M 3 a 1 a 4 b 2 b 3
Figure 6: A batch solution of the instance shown in Figure 1.

It is therefore important, in our application, to have an efficient method, albeit following a predefined batch order. By Theorem 1, we know that using the insertion procedure ENQUEUE in any order is a (2 -1 m)-approximation. The greedy heuristic ENQUEUEBATCH, given in Algorithm 3, follows the given batch order, and uses the ENQUEUE in any order within a batch. We assume that we have n = αs jobs each requiring one of s resources, and each resource supplies for exactly α jobs. In other words, we have α batches of s jobs. Under these assumptions, we show that if all jobs have relatively similar processing times, i.e., if ρ = pmax p min ≤ ⌊ s-1 m-1 ⌋, then ENQUEUEBATCH approximates the optimal schedule within a factor 1 + s-1 n .

Theorem 4. If p max ≤ ⌊ s-1 m-1 ⌋p min and if σ is the makespan of a schedule obtained by procedure ENQUEUEBATCH, then either σ is optimal, or σ ≤ L m +(1-1 m)p max .

PROOF. We first prove the following proposition by induction on α (this proof is illustrated in Figure 7):

If there are α batches of s jobs, the schedule returned by ENQUEUEBATCH is such that e maxe min ≤ p max .

If there is no job at all, this property trivially holds. p max , which would contradict the induction hypothesis. Therefore, at most ⌊ s-1 m-1 ⌋ -1 jobs have been allocated to machine M 1 . In other words, among the s jobs of the batch, one has been assigned to machine m and at most ⌊ s-1 m-1 ⌋ -1 to machine M 1 , so there are s -⌊ s-1 m-1 ⌋ jobs to distribute over the m -2 other machines. It follows that at least one machine will be allocated strictly more than ⌊ s-1 m-1 ⌋ jobs, because the following relation is a tautology:

R 1 R 2 R 3 R 4 R 5 R 6 R 7 a 1 a 7 e α+1 1 e α+1 4 ≤ e α i > pmax ≤ 2pmax a 2 a 3 a 4 a 5 a 6 M 1 M 2 M 3 M 4
s -⌊ s-1 m-1 ⌋ > ⌊ s-1 m-1 ⌋(m -2) ⇔ s ⌊ s-1 m-1 ⌋(m -1) ⇐ s > s -1
Now, let M j be the machine that was allocated at least ⌊ s-1 m-1 ⌋ 1 jobs (1 < j < m). Consider the schedule when adding the (⌊ s-1 m-1 ⌋ + 1) th job of batch α + 1 on machine M j . Since this is not the first job of the batch to be allocated to machine M j , it cannot require the same resource as the previous one. Therefore machine M 1 must finish later than the start of this (⌊ s-1 m-1 ⌋ + 1) th job on machine M j . In other words, we have e α+1 1 ≥ e α j + ⌊ s-1 m-1 ⌋p min . By applying inequality (1) as above, we have e α+1 1 ≥ e α+1 mp max . Therefore, the assumption that the induction hypothesis does not lift to α + 1 is contradicted. Now, by Lemma 2 and the induction above, we have that the schedule returned by ENQUEUEBATCH is dense and such that e max -e min ≤ p max . We can therefore apply Lemma 1 (with σ = e max) and we have:

σ ≤ σ * + (1 - 1 m)p max (2)
Corollary 3. If p max ≤ ⌊ s-1 m-1 ⌋p min then ENQUEUEBATCH approximates the optimal schedule with a ratio 1 + s-1 n .

PROOF. If the makespan of the schedule produced by ENQUEUEBATCH is not optimal, then we can write from Theorem 4 and from L ≤ mσ * :

σ ≤ σ * + (1 - 1 m)p max (3) Moreover, we have L n ≥ p min hence ⌊ s-1 m-1 ⌋ L n ≥ p max , that is ⌊ s-1 m-1 ⌋ mσ * n ≥
p max and therefore m(s-1) (m-1)n σ * ≥ p max . We inject this into inequality (3) to obtain: σ ≤ σ * + (s-1)(m-1)σ * n(m-1)

= (1 + s-1 n)σ * , which concludes our proof.

If the ratio ρ = pmax p min is strictly greater than ⌊ s-1 m-1 ⌋ then the gap between the makespan of a schedule returned by Algorithm 3 and the optimal makespan cannot be bounded by a function of p max . We show that however small the gap between the ratio pmax p min and ⌊ s-1 m-1 ⌋ is, there exist instances for which this gap is arbitrarily large. Given an instance I, that is, a pair (m, s) and a sequence of batches of jobs, let σ I and σ * I denote, respectively, the makespan of a schedule returned by Algorithm 3 and the optimal makespan. Theorem 5. ∀ǫ, γ > 0 and for any m > 1, there exists an instance I such that

pmax p min ≤ ⌊ s-1 m-1 ⌋ + ǫ and σ I > σ * I + γ. R 1 R 2 R 3 R 4 R 5 M 1 M 2 M 3 M 1 M 2 M 3 36 40
Figure 8: Illustration of the proof of Theorem 5, with m = 3, ǫ = 1 2 and γ = 4. There are 6 batches of 5 jobs with unit processing time, then 12 batches in which the job requiring resource R 1 is of length 2.5. The schedule returned by Algorithm 3 (top) has a makespan of 40, whereas the optimal schedule (bottom) has a makespan of 36.

Proof. Let x be a integer such that x(m -1) > γ, and let k = 1 ǫ . We build an example (see Figure 8) with 2m -1 resources and (1 + k)xm batches of 2m -1 jobs.

In the first xm batches, all jobs have a processing time 1. On each of the kxm subsequent batches, the jobs of the resources R 2 , . . . , R 2m-1 also have processing time 1, but the job requiring resource R 1 has processing time 2 + 1 k . After inserting the first xm batches, the schedule is dense by Lemma 2. Moreover, since all processing times are equal and since m divides xm, the completion time on every machine is exactly x(2m -1). Now, in the last kxm batches, the sum of the processing times of the jobs requiring R 1 is kxm(2+ 1 k). Therefore, the schedule returned by Algorithm 3 has a total makespan of at least 3xm-x+2kxm.

However, we can build an optimal schedule as follows: on a machine M , we put only the jobs requiring the resource R 1 . The makespan on this machine will thus be xm+kxm(2+ 1 k) = 2xm+2kxm. Then, on the m-1 remaining machines, we schedule the xm(2m-2)+kxm(2m-2) remaining jobs. Since they all have a processing time of 1, it is easy to see that they can be scheduled within a makespan of 2xm + 2kxm, which is therefore the overall optimal makespan σ * .

We can verify that we indeed have σσ * = (3xmx + 2kxm) -(2xm + 2kxm) = x(m -1) > γ.

In our application, there are 3 download channels (m = 3) and 5 memory banks (s = 5). It follows that Algorithm 3 is a 1 + 4 n -approximation if no file is more than twice larger than any other. Unfortunately, this condition is not guaranteed to hold in our application. Indeed, the hypothesis of our industrial partner was a maximum ratio of 1 4 between minimum and maximum image sizes. However, if the compression rates have a normal distribution, the procedure ENQUEUEBATCH should often be efficient. Indeed if the standard deviation is of 5 6 or less, we can expect that most of the images will have a size in the range [5 3 , 10 3], which satisfies the condition of Theorem 3.

Conclusion

We have introduced a heuristic insertion algorithm for parallel machine scheduling problems with additional unit resources which is a (2 -2 m+1)-approximation. Second, we have shown that if the maximum processing time p max and minimum processing time p min of a job are such that p max ≤ ρp min for a given value of ρ, then the approximation factor tends toward 1 when the size of the problem grows. Table 1: Summary of the results obtained (note that for the results given in the "absolute properties" column, we always have L m ≤ σ *).

Next, we have shown that a slightly different heuristic restricted to proceed along a predefined batch order is a (2 -1 m)-approximation. Moreover, if the ratio between maximum and minimum processing time ρ is bounded by ⌊ s-1 m-1 ⌋, then the approximation factor becomes 1+ s-1 n . All the results obtained are summarized in Table 1. They are important in a planning application for observation satellites.

Figure 1 :

 1 Figure 1: An instance with two acquisitions using five memory banks (additional resources)

Figure 3 :

 3 Figure 3: Illustration of the proof of Lemma 2. Job a 10 falls into the second insertion case whilst job a 11 falls into the first case.

Figure 4 :

 4 Figure 4: Illustration of Example 2, for m = 4 machines. The schedule on the left is obtained by calling ENQUEUE on a 1 up to a 7 in lexicographic order. The schedule on the right is optimal.

Algorithm 2 :

 2 MAXLOAD(set of jobs : T) S ← ∅ while T = ∅ do let R be a resource with maximum load a∈R∩T p a pick a job a ∈ R ∩ T with maximum p a , and remove it from T ENQUEUE(S, a) return S

Figure 5 :

 5 Figure 5: Illustration of Example 3, for m = 4 machines. The schedule on the top is obtained by calling MAXLOAD. The schedule on the bottom is optimal.

Algorithm 3 :

 3 ENQUEUEBATCH(set of batches : B) while B = ∅ do remove β from B while β = ∅ do Pick and remove a job a from β ENQUEUE(S, a) return S

Figure 7 :

 7 Figure 7: Illustration of the proof of Theorem 4 with s = 7 and m = 4 and pmax p min ≤ ⌊ s-1 m-1 ⌋ = 2. We start from the hypothesis that e α+1 4 e α+1 1

 max or σ = σ * 1 + s-1 n

 The problem we consider is a subproblem of P |res.11|C max where each job requires exactly one additional resource. Alternatively, one can see the s unit resources as s dedicated parallel machines, and the m parallel machines as a single cumulative resource of capacity m (jobs require exactly one unit of the cumulative

resource in this case). This alternative is a subproblem of P D|res1.1|C max where again each job requires exactly one additional resource. There is no known approximation algorithm for either P |res.11|C max or P D|res1.1|C max

[START_REF] Emrah | Parallel machine scheduling with additional resources: Notation, classification, models and solution methods[END_REF]

however we show one for the subproblem considered in this paper.

The notation Int indicates that the processing time of a job depends on the number of units of resources it receives.

Acknowledgments

The motivation for this work originates from a study supported through a grant from CNES and Astrium (contract 4500166027 "Planification Flexible").

We would especially like to thank Jean Jaubert (CNES), Pierre Blanc-Paques (Astrium) and Thierry Desmousceaux (Astrium).