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Abstract—Developmental theories suggest that cognitive agents 

develop through an initial sensorimotor stage during which they 
learn sequential and spatial regularities. We implemented these 
views in a computer simulation. Following its intrinsic 
motivations, the agent autonomously learns sensorimotor 
contingencies and discovers permanent landmarks by which to 
navigate in the environment. Besides illustrating developmental 
theories, this model suggests new ways to implement vision and 
navigation in artificial systems. Specifically, we coupled a 
sequence learning mechanism with a visual system capable of 
interpreting composite visual scenes by inhibiting items that are 
irrelevant to the agent’s current motivational state. 
 

Index Terms—Cognitive development; Visio-spatial learning; 
Intrinsic motivation; Navigation.  

I. INTRODUCTION 
This work addresses the question of how autonomous 

agents can discover and exploit spatial regularities in their 
environment during their initial developmental stage. 
Cognitive scientists have often argued that cognition is 
underpinned by an initial developmental stage during which 
the agent acquires sensorimotor contingencies. These 
arguments can be traced back to Piaget’s [1] notion of a 
sensorimotor developmental stage. Sun [2] proposed a review 
of these arguments where he credited Heidegger for the 
founding inspiration that interactive behavior (the notion of 
experience in phenomenology) is prior to knowledge.  

Following these arguments, we first implemented an 
algorithm that made artificial agents autonomously learn 
hierarchical sequences of interactions with their environment.  
We called this algorithm the intrinsically-motivated schema 
mechanism [3, 4]. This algorithm gave interesting results 
when the agent was put in an environment that offered 
sequential regularities to exploit. The agent, however, suffered 
when put in an environment that had a spatial structure (a two-
dimensional grid). It appeared that the agent needed additional 
skills to deal with space. Our goal now is to investigate these 
needed additional skills. We begin with studying the 
acquisition of permanence of locations in space, or topological 
permanence. We take topological permanence as a 
preliminary step before acquiring object permanence. 

 
We propose a model that represents a bee gathering pollen. 

Based on principles of intrinsic motivation (e.g., [5, 6]), the 
bee first learns to explore its environment, then learns to 
navigate between the hive and flower fields.  Such navigation 
illustrates how the agent learns to exploit topological 
permanence by using visual landmarks. 

More broadly, this work seeks to model and simulate ab-
nihilo autonomous learning, sometimes also referred to as 
bootstrapping cognition [7]. We relate this developmental 
approach to Piaget’s [1] notion of an early stage in human 
ontological development (pre-symbolic). For this work, 
though, this early-stage notion can also fit the framework of 
phylogenetic evolution of animal cognition, as discussed for 
example by Sun [2]. In our previous studies, we demonstrated 
that the intrinsically-motivated schema mechanism could be 
used to make an artificial agent learn sensorimotor 
contingencies—contingencies between the agent’s motor 
actions and the signals received from the sensors. The agent 
learned to use tactile perception to avoid bumping into walls 
[3]. The agent also used rudimentary visual perception to 
home to targets in the environment.  The agent, however, was 
unable to navigate, for example, toward targets hidden behind 
walls. This is the kind of limitation that we wish to overcome 
with an agent capable of exploiting topological permanence.  

We derived inspiration from the dual process hypothesis for 
vision (e.g., [8]) that suggests that vision is processed through 
two parallel pathways: a sensorimotor pathway that is 
sequential in nature, and an iconic pathway. We also derive 
inspiration from studies of real bees. Figure 1 shows the 
agent’s architecture. The part of this architecture that comes 
from our previous work is reviewed in the next section. The 
new elements are presented in the subsequent sections. 

II. THE SEQUENTIAL SYSTEM 
In essence, the intrinsically-motivated schema mechanism 

implements Piaget’s [1] views that perception and action 
should be considered embedded in sensorimotor schemas 
rather than separated in the traditional perception-cognition-
action loop. Schemas represent interaction patterns between 
the agent and the environment, and therefore encompass both 
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the agent’s actions and the environment’s regularities. In 
Figure 1, these interaction patterns are represented along the 
interaction timeline. For example, the two trapezoids at the top 
of the timeline represent the agent turning to the right. Each 
trapezoid represents what is seen by each eye while this 
primitive schema is enacted, as further explained in section V. 

The algorithm records past sequences of interactions as 
hierarchically organized schemas (in the hierarchical 
sequential sensorimotor memory, part of the sequential system 
in Figure 1). The algorithm also maintains a representation of 
the agent’s current situation (in the sensorimotor sequential 
integration system). This representation of the current 
situation also takes the form of schemas, which complies with 
Gibson’s [9] ecological theory because schemas represent the 
agent’s situation in the form of affordances, i.e., possibilities 
of interaction. The consistency of knowledge representation 
across these two systems makes it possible to match past 
episodes against the current situational representation in order 
to select appropriate behavioral response (this matching is 
represented by the double arrow between the sensorimotor 
sequential integration system and the premotor follow-up 
system).  

Through interaction, the mechanism learns composite 
schemas (represented in the sequential system as a series of 
sub-schemas) in a bottom-up way, as the agent experiences the 
schemas’ corresponding sequences. Composite schemas 
consist of hierarchically-organized subsequences of lower-

level schemas, all the way down to pre-defined primitive 
schemas (In Figure 1, arc arrows represent the sequential 
relations in the schema hierarchy).  

Lastly, the algorithm implements a novel mechanism of 
intrinsic motivation: schemas have satisfaction values that 
operate in a proactive way during the selection of the next 
schema to try to enact. The modeler initializes the agent with 
inborn satisfaction values associated with primitive schemas. 
These settings represent the agent’s behavioral tendencies or 
intrinsic motivations. Through the agent’s activity, the schema 
mechanism “recursively” organizes the agent’s behaviors as 
increasingly elaborated schemas. These schemas capture and 
exploit the environment’s regularities to increase the agent’s 
satisfaction. For example, in our previous experiments, we 
gave negative satisfaction values to primitive schemas that 
represented bumping into walls, and positive satisfaction 
values to primitive schemas that represented the target 
enlarging in the visual field, which resulted in the agent 
learning elaborated composite schemas for homing to targets. 

III. THE MODEL 
Now that we have presented the sequential mechanism, we 

can introduce our current model. Our bee has three kinds of 
effectors (represented in the sensorimotor system in Figure 1): 
a) motion effectors make the bee move, either one square 
forward, turn 45° to the left, or turn 45° to the right. 
b) Manipulation effectors: collect pollen from a flower or 

 
 

Figure 1. The agent’s architecture. 



 

deposit pollen into the nest. c) Eye saccade effectors: control 
the eye saccades, as we will further explain in section IV.  

The bee also has three kinds of receptors: a) touch receptors 
provide feedback from the environment, and indicate whether 
she bumped into a wall when trying to move forward, or 
rubbed against a wall when turning. b) Chemical receptors (for 
“taste”) indicate if she has found pollen or the nest. Chemical 
receptors have a hard-coded (inborn reflex) connection to 
manipulation effectors, which causes pollen to be collected 
from flowers, or to be deposited into the nest. c) Visual 
receptors generate signals that reflect features in the visual 
scene. In our previous work, visual receptors only sent signals 
to the sequence learning mechanism—signals that reflected 
only dynamic features (changes in the visual field). We have 
now added static signals sent to the static system. Static 
signals reflect features in the visual field that the bee assumes 
to denote permanent properties of the world, as we will 
explain in section IV. 

Additionally, we want our agent’s intrinsic motivation to 
vary with the agent’s internal state, to give the agent an 
incentive to navigate between different places in the 
environment. To achieve this, we first considered a 
mechanism that would change the primitive schemas’ inborn 
satisfaction values depending on the agent’s internal state. 
When trying to implement this approach, however, several 
problems arose. First, it was not clear how to readjust the 
satisfaction values of past experience in sequential memory. 
Secondly, the agent had trouble dealing with the complexity of 
the visual scene. The agent’s motivational state should, 
indeed, guide the way the agent explores the visual scene, but 
it was not clear how this could be implemented. To support 
variation in motivations, and, accordingly, elaborated vision of 
composite scenes, we looked for inspiration from studies of 
real bees and other hymenopterans. Specifically, we focus on 
the following three principles: 

1) Hymenopterans use visual landmarks to navigate 
between nesting and foraging areas [10]. 

2) Hymenopterans estimate the distance they travel 
between landmarks (based on time and on visual flow), and 
use this estimation for navigation [11]. 

3) Hymenopterans use visual fixation and saccades 
(through body and head movements) to observe and recognize 
elements of the visual scene [12]. 

Notably, hymenopterans use additional navigation methods 
(e.g., solar compass based on sky light polarization, and path 
integration) that we chose not to implement to keep our model 
general. Some studies have also proposed anatomical 
architectures of the bee’s brain that inspired our agent’s 
architecture [13].  These studies drove us to implement a 
second pathway that would process static features in the visual 
field and associate such static features with the agent’s 
motivational state. We call this second pathway the static 
system (Figure 1).  

The static system relies on the assumption that landmarks 
can be individually distinguished and that landmarks are static 
in the animal’s world. This assumption is consistent with 
experiments on the hymenopterans’ iconic memory [10]. 

Accordingly, in our experiment, each landmark has a unique 
color that the agent can distinguish. We also implemented a 
decay function in the static feature memory. Our bee uses this 
decay to estimate the distance she has traveled since passing a 
landmark until she reaches the pollen or the nest. In the static 
system in Figure 1, icons composed of three elements 
represent the association of static visual features (a square 
element), motivation (a hive or flower element), and distance 
traveled (a clock element). 

We found that the static system could impact the agent’s 
behavior by sending an inhibitory signal to the sensorimotor 
sequential integration system (open arrow in Figure 1), as we 
explain in the next section.  

IV. THE VISUAL SYSTEM 
The agent’s visual system consists of two eyes that detect 

colored squares (grid cells) in the environment. Each eye is 
controlled by a semiautomatic saccade mechanism that makes 
the eye “fix” singularities. A singularity is any square salient 
from the uniform background (i.e., any colored square that 
contrast with the uniform dark green walls). The saccade 
mechanism is semiautomatic in that it results from the 
conjunction of a bottom-up and a top-down process. The 
bottom-up process makes the eye automatically scan the visual 
field in search of singularities. The top-down process allows 
the motivational system to inhibit some known squares. That 
is, the motivational system prevents the saccade mechanism 
from fixing squares that the motivational system knows and 
assesses as irrelevant to the current context and motivation 
(based on the square’s static visual features). Figure 2 
illustrates these principles. 

The scanning starts from the agent’s longitudinal axis and 
goes sideward up to a maximum 45° angle (to the left for the 
left eye, and to the right for the right eye). If it finds a non-
inhibited square, the eye fixes this square and returns a 
corresponding signal. This signal reflects both a static feature 

 

 
 

Figure 2. The agent’s visual system. 
 



 

and a dynamic feature. The static feature is an iconic 
representation of the square: in our case a single-pixel colored 
“icon”. The dynamic feature indicates either if this square 
appeared in the visual field, got closer (enlarged), or 
disappeared from the visual field during the last interaction 
cycle. 

In Figure 2, the gray areas represent the surface covered by 
each eye’s saccade. In this scenario, the agent moved forward 
from cell a4 to b4. The left eye found no singularity in its 45° 
angular span, assuming that square f5 (blue) was inhibited by 
the static system. During the previous interaction cycle, 
however, square c6 (turquoise) disappeared from the visual 
field. The left eye, therefore, sent no static feature, but did 
send a disappear dynamic feature (represented by the agent’s 
white left eye with a “o” symbol in Figure 2). Simultaneously, 
the right eye fixed square e3 (green) which appeared larger 
than it did during the previous interaction cycle. The right eye, 
therefore, signaled a green icon static feature and a closer 
dynamic feature (represented by the agent’s green right eye 
and the “+” symbol in Figure 2). Because the saccade stopped 
before reaching square e1 (yellow), the square remained 
unseen, even though it was within the 45° visual span (dotted 
line). 

This visual mechanism has two advantages: first, it 
facilitates the agent’s processing of composite visual scenes 
by inhibiting irrelevant items; second, it provides a place to 
implement the effects of the agent’s motivational states on the 
agent’s behavior. By simply inhibiting the landmarks that are 
known to be farther away from the target of current interest 
than the agent’s current estimated position, we get our agent to 
navigate from landmark to landmark toward the target, guided 
by the agent’s homing tendency. The agent associates each 
landmark with the time traveled between the landmark and a 
specific target (in number of interaction cycles). This time is 
stored and subsequently adjusted in static memory. The effects 
of this mechanism are further explained in the next section 
with an example experiment.  

V. THE EXPERIMENT 
We use the grid environment represented in Figure 3, 

adapted from Cohen’s [14] work. The bee is initially in d1. 
Dark green squares are walls that the bee will bump into if she 
tries to fly through them (f1-f6, c6-f6, and i6-l6). Square f6 
(turquoise) is the wall corner that the bee can distinguish as a 
singularity. Walls also surround the grid so the bee cannot exit 
the grid. She does not know a priori what possibility of 
interaction each element of the grid offers to her. Her 
sequential system only gives her intrinsic motivation to visit 
and taste each singularity. 

Square e5 (violet) is the nest where she can deposit pollen. 
Blue squares are flowers from which she can collect pollen 
(h3, j4, k7, l8, l9). All these flowers look and feel the same to 
her. Flowers are removed from the grid after she collects 
pollen from them. She cannot collect pollen from another 
flower until she has deposited her previous load back into the 
nest. Other colored squares are singularities that she can fly 
over and use as landmarks (b2, a9, h8, g1, i2, l5). The 

interaction cycle number is displayed in square l6.  
A representative run is provided as a video online1 and the 

corresponding trace is displayed in Figure 5 (formatted with a 
method developed from a previous study [15]). The trace 
shows the first 600 interaction cycles during which the bee 
explored the environment and harvested the five blue flowers, 
gathering the pollen into the nest between successive visits to 
each flower. Time goes upwards and the trace is split into four 
columns. Figure 4 shows the legend for a sample portion. The 
left and right squares and trapezoids indicate the bee’s 
perception of her environment: either the color currently seen 
by the corresponding eye, or white if no eye fixation. The 
trapezoid shapes reflect the shift in the visual field when the 
bee is turning. Red rectangles indicate wall bumping, and dark 
green trapezoids indicate wall rubbing while turning (both 
perceived through touch). On the left side of the trace, vertical 
lines indicate the bee’s estimated distance to the target. The 
bee estimates this distance when she recognizes nearby 
landmarks whose distance to the target was learned earlier. 
The line is violet when the bee is looking for the nest and blue 
when she is looking for flowers. Violet hive icons represent 
pollen-depositing manipulations, and blue flower icons 
represent pollen-collecting manipulations. 

At the beginning (steps 0-60), the trace shows babbling 
behavior as the bee learns sensorimotor contingencies  (as 
discussed in our previous study [3]). She rubs and bumps into 
walls on steps 4 through 14. She discovers the nest on step 17. 
The trace shows the yellow landmark (b2) passing back and 
forth through the visual field during steps 21 to 38 until she 
reaches it on step 39. The blue line remains on the left because 
she has not yet estimated any distance to a flower. 

After step 60, she exhibits a more confident and systematic 
exploration behavior and finds the first flower (k7) on step 97. 
This causes the other flowers to be inhibited from her visual 
field. She passes by h8 (yellow-green) on step 104. Because 
this landmark has not been visited yet, it has no estimated 
distance to the nest attached (no violet line).  

 
1 http://e-ernest.blogspot.com/2011/03/ernest-91-gathers-pollen.html 

 
 

Figure 3. The experimental grid. 
 



 

 

The bee gets an estimated distance to the nest on step 115 
when arriving in a9’s (green) vicinity. Although already 
known as farther to the nest than a9, f6 (turquoise) is not 
inhibited at this point because f6 is not sufficiently refreshed 
in static feature memory. This causes her to move away again 
from the nest toward f6 from step 120, before returning to a9 
on step 132, and finally finding her way back to the nest via 
b2 (yellow). 

After depositing the pollen on step 163, she uses the 
estimated distance to pollen now attached to b2 (yellow), a9 
(green), and h8 (yellow-green) to navigate again toward the 
northeast field where she finds the second flower (l8) on step 
206. She fumbles again on her way back to the nest. On the 
third round, the distance values and inhibition mechanism are 
then settled and she navigates a direct way out to the northeast 
field; she finds l9 (flower); then she navigates a direct way 
back to the nest (steps 320-363), using the appropriate 
landmarks (h8, a9, b2). 

In the fourth round, she navigates to h8 again (step 396). 
From here, she turns in search of flowers, which she sees in 
the southeast field (h4) and reaches on step 405. Then she 
navigates back to f6 (turquoise). When arriving in f6’s vicinity 
from the southeast field, though, a9 is hidden behind the walls, 
and h8 is inhibited because it is estimated to be farther away 
from the nest (as learned when going to the northeast field). 
Because she has no uninhibited landmarks at this point, she 
starts spinning in place (steps 426-447) until h8 decays enough 
to become uninhibited. Then she finds her way back to the 
nest via h8.   

In the last round, she finds the last flower (i2) via landmark 
g1. She finds her way back with less waiting because the 
landmarks’ distance and inhibition values start to re-adjust to 
the southeast field, and she reaches the nest on step 597. 

These results demonstrate that the agent can learn both 
sequential regularities in its sensorimotor interaction with the 
environment, and topological permanence of landmarks and 
areas of interest. The agent was able to reach targets of interest 
spread around in a first area, then explore a second area and 
readapt to the topology of the second area. 

VI. RELATED WORK AND DISCUSSION 
While this work is inspired by methods of landmark 

navigation in mobile robots (e.g., [16]), it goes beyond mere 
navigation in that it simultaneously supports exploration and 
route discovery based on the agent’s intrinsic motivations. 
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Figure 5. The activity trace. 
 

 
 

Figure 4. The legend of the trace. 
 



 

Some studies also associate landmark navigation with the 
construction of cognitive maps [17], which we also envisage 
in future developments. 

Our work also differs from traditional cognitive modeling 
[18] in that we do not yet seek to model how cognitive agents 
reflect upon symbols. Our agent’s architecture, as depicted in 
Figure 1, is only cognitive insofar as animals such as bees are 
considered cognitive. This architecture focuses on a pre-
symbolic learning stage that we consider important because it 
keeps the agent’s knowledge grounded in the agent’s activity. 

We also drew lessons from studies that examined the 
hymenopterans’ brain from a functional perspective (e.g., 
[13]). These studies highlight three main brain regions: the 
mushroom body, which we relate to our sensorimotor 
integration system, the premotor region, which we relate to 
our sequential system, and the protocerebrum, which we relate 
to our static system.  They also identify specific neurons 
(ventral unpaired medial neurons) involved in reward-based 
learning that we relate to our motivational associative system. 
They report two pathways from the mushroom body: one 
toward the premotor region that we relate to our update 
pathway to the sequential system, and one toward the 
protocerebrum that we relate to our static feature pathway. 
They report the absence of a direct significant connection 
between the premotor region and the protocerebrum, which 
supports our similar modeling choice. 

The question of whether hymenopterans use cognitive maps 
for navigation is still considered open, although many 
specialists doubt the possibility [11]. Our work illustrates how 
hymenopterans may navigate without cognitive maps. 

VII. CONCLUSION 
This work demonstrates that it is possible to implement an 

agent that autonomously learns and exploits topological 
permanence in rudimentary settings. We did so in an 
architecture that associates an intrinsically-motivated sequence 
learning mechanism with a static visual mechanism. The static 
visual mechanism processes composite visual scenes, and 
identifies and memorizes landmarks in association with 
internal motivational states. The visual system impacts the 
agent’s behavior by inhibiting irrelevant items in the visual 
field. Through exploration, the agent finds targets of interest 
and learns the route toward such targets via intermediary 
landmarks. This work opens the way to more complex models 
in which an agent will learn topological maps and have more 
control over its ocular saccades. Such developments inform 
our understanding of navigation in natural organisms, and 
suggest new techniques to implement vision and navigation in 
autonomous robots. 
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