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Abstract. Theories of embodied cognition and active vision suggest that 
perception is constructed through interaction and becomes meaningful because 
it is grounded in the agent's activity. We developed a model to illustrate and 
implement these views. Following its intrinsic motivation, the agent 
autonomously learns to coordinate its motor actions with the information 
received from its sensory system. Besides illustrating theories of active vision, 
this model suggests new ways to implement vision and intrinsic motivation in 
artificial systems. Specifically, we coupled an autonomous sequence learning 
mechanism with a visual system. To connect vision with sequences, we made 
the visual system react to movements in the visual field rather than merely 
transmitting static patterns.  

Keywords: Cognitive development; Intrinsic Motivation; Artificial 
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1   Introduction 

We address the question of how autonomous agents can learn sensorimotor 
contingencies—contingencies between the agent’s motor actions and the signal 
received from the sensors. We propose a model that learns such contingencies in 
rudimentary settings. The agent has primitive possibilities of interaction in a two-
dimensional grid, and distal sensors that reflect some remote properties of the grid. 
This novel learning process is driven by intrinsic motivations hard coded in the agent, 
and results in the agent gradually improving its capacity to exploit distal sensory 
information to orient itself toward targets in the grid. 

The idea that visual perception is actively constructed through interaction was 
proposed by theories of active vision [e.g., 1]. Specifically, O'Regan and Noë [2] 
proposed the sensorimotor hypothesis to vision. They used the metaphor of a 
submarine controlled from the surface by engineers, but with connections that have 
been mixed up by some villainous marine monster. They argue that the engineers 
would have to learn the contingencies between the commands they send and the 



signals they receive. O'Regan and Noë’s sensorimotor hypothesis to perception 
postulates that making sense of perception precisely consists of knowing these 
contingencies. Following these views, we seek to demonstrate that our agent can 
autonomously learn such contingencies. From an observer’s viewpoint, the agent 
would seem to learn to make sense of its perceptions with regard to its intrinsic 
motivations.  

To address this problem we rely on our previous work on intrinsically-motivated 
hierarchical sequence learning [3]. In this previous work, we implemented an original 
algorithm that learned regularities of interaction. We demonstrated that an agent could 
use this algorithm to learn sequential contingencies between touch interactions and 
move interactions to avoid bumping into obstacles. In this paper, we report an 
extension of this algorithm that allows the agent to learn contingencies when 
perception is not a direct feedback from motion. For example, unlike touch in our 
previous agent, vision does not directly result from motion. Yet, because our previous 
algorithm succeeded in learning “touch/motor” contingencies, we expect it to prove 
useful for learning “visio/motor” less direct contingencies. Specifically, we envision 
coupling the algorithm with a complementary sensory mechanism as suggested by 
theories of dual process [e.g., 4].  

More broadly, this work seeks to model and simulate ab-nihilo autonomous 
learning, sometimes referred to as bootstrapping cognition [5]. We relate this 
developmental approach to Piaget’s [6] notion of an early stage in human’s 
ontological development (pre-symbolic). For this work, though, this early-stage 
notion can also fit the framework of phylogenetic evolution of animal cognition, as 
discussed for example by Sun [7].  

Because this work focuses on autonomous cognitive development, we do not 
follow traditional methods of task modeling that use either a symbolic cognitive 
modeling approach [8] or a sub-symbolic approach (e.g., [9]). Instead, we situate 
ourselves in the area of studies on intrinsic motivation [10, 11] that seek to implement 
agents whose behavior organizes autonomously with no pre-assumed goal.  

2   Background 

This work implements an intrinsically-motivated schema mechanism [3, 12] coupled 
with a distal sensory system (Figure 1). In essence, the intrinsically-motivated schema 
mechanism implements Piaget’s [6] views that perception and action should be kept 
embedded in sensorimotor schemas rather than separated in the traditional perception-
cognition-action loop. We use the terms schemas, interaction patterns, and 
sensorimotor behaviors interchangeably, and we represent them as small white 
rectangles (primitive schemas) and gray rectangles (learned composite schemas) in 
Figure 1. 

The mechanism records past sequences of interaction as hierarchically organized 
interaction patterns (episodic memory in Figure 1). The mechanism also maintains a 
representation of the agent’s current situation (in what we have labeled working 
memory). The representation of the current situation takes the form of interaction 
patterns, in compliance with Gibson’s [13] ecological theory, according to which 



agents represent the world in the form of affordances, i.e., possibilities of interaction. 
The consistency of knowledge representation across the two memory systems makes 
it possible to match past episodes against the current situational representation to 
select forthcoming behavior.  

Through interaction, the mechanism learns composite behaviors, in a bottom-up 
way, as the agent experiences their corresponding sequences through its activity. 
Composite behaviors consist of hierarchically-organized subsequences of lower-level 
behaviors, all the way down to pre-defined primitive behaviors (the sequential 
relation in the schema hierarchy is represented by arc arrows between the branches of 
the hierarchy in Figure 1).  

This schema mechanism implements intrinsic motivation by associating 
satisfaction values with schemas. The modeler initializes the agent with inborn 
satisfaction values associated with primitive schemas. The agent then selects newly-
learned schemas based on their expected satisfaction in specific contexts, balanced 
with the expectation of success in such contexts. That is, satisfaction values operate in 
a proactive way during the selection of forthcoming behavior. In turn, the agent 
makes a selection of composite schemas based on the satisfaction that effectively 
results from enacting these schemas. 

In this paper, we report an experiment where the agent has six primitive behaviors. 
Each primitive behavior consists of the association of primitive actuators with binary 
feedback. These six primitive interaction patterns are listed in the first six lines of 
Table 1. Similar to our previous work [3], the binary feedback corresponds to a 

Table 1. Primitive actuators and sensors. 

Symbols Actuators Sensors Description Intrinsic 
satisfaction 

^    (^) Turn left True Turn 90° left toward adjacent empty square 0    (indifferent) 
      [^]  False Turn 90° left toward adjacent wall -5   (dislike) 
>    (>) Forward True Move forward 0     (indifferent) 
      [>]  False Bump wall -8   (dislike) 
v    (v) Turn right True Turn 90° right toward adjacent empty square 0     (indifferent) 
      [v]  False Turn 90° right toward adjacent wall -5    (dislike) 
       *  Appear Target appears in distal sensor field 15   (love) 
       +  Closer Target approaches in distal sensor field 10   (enjoy) 
       x  Reached Target reached according to distal sensor 15   (love) 
       o   Disappear Target disappears from distal sensor field -15  (hate) 

 

 

 
Figure 1. The intrinsically-motivated schema mechanism coupled with the distal sensory 
system.  



proximal sense that can be thought of as touch. In our experiment, if the agent tries to 
move forward, he can either succeed and touch no wall, which leaves him indifferent; 
or bump into a wall, which he dislikes. When the agent turns, he receives tactile 
information about the adjacent square that he turned towards (touched a wall: dislike, 
or not touched: indifferent). 

3   The Model 

Now that we have presented the intrinsically motivated schema mechanism, we can 
examine the issue of implementing an agent that learns to coordinate actions with 
sensory inputs, when both are not a priori connected together within sensorimotor 
schemas.  

As a start, we have implemented the rudimentary distal sensory system depicted in 
Figure 2. This system consists of two eyes that detect the blue color in the 
environment (target in Figure 2). Each eye has a visual field that covers 90° of the 
agent’s surrounding environment. The two visual fields overlap in the line straight in 
front of the agent, including the agent’s location. Each eye generates a single integer 
value that indicates the amount of blue color detected, also reflecting the distance to a 
blue square if there is only one. This distal sensory system can thus be seen as a 
rudimentary monochromic visual system with a resolution of two pixels.    

We want the visual system to forward visual information to the agent’s situational 
representation in working memory to inform the selection of behavior. Inspired by the 
dual process argument, we first considered an iconic approach that would incorporate 
the two-pixel icon provided by the visual system as an element of context in our 
existing schemas. This approach proved inefficient because it added too much random 
combination in the schema mechanism and the agent was unable to learn the 
contingency between the perceived icons and the actions. Moreover, the 
combinatorial growth would be prohibitive with wider icons. 

To better support contingency learning, we looked for inspiration from studies of 
biological primitive organisms. We found useful insights from the limulus (horseshoe 
crab), an archaic arthropod whose visual system has been extensively studied [14]. 
Specifically, we retained the two following principles: 

 
Figure 2. The agent’s vision of its environment. 

 



1) Sensibility to movement: the signal sent to the brain does not reflect static shape 
recognition but rather reflects changes in the visual field. A horseshoe crab’s “eye is 
highly sensitive to images of crab-size objects moving within the animal’s visual 
range at about the speed of a horseshoe crab (15 cm/s)” [15, p. 172]. 

2) Visio-spatial behavioral proclivity: male horseshoe crabs move toward females 
when they see them with their compound eyes, whereas females move away from 
other females. 

Similar to our agent, horseshoe crabs’ eyes are fixed to their body and have poor 
resolution (roughly 40*25 pixels).  

From these insights, we modeled the visual system so that it updated the schema 
mechanism only when a change occurred in the visual field. We identified four 
different signals that each eye would generate: appear, closer, reached, and 
disappear. Additionally, to generate a visio-spatial behavioral proclivity, the schema 
mechanism receives an additional intrinsic satisfaction associated with each of these 
signals. These four signals are listed with their satisfaction values in the last four lines 
of Table 1. For example, an eye sends the signal closer when the amount of blue color 
has increased in this eye’s visual field over the last interaction cycle, meaning the 
square has gotten closer (with this regard, our agent’s visual acuity is more than two 
pixels because the agent can detect the enlargement of the target’s span in the visual 
field).  We associate the closer signal with a positive inborn satisfaction value (10) to 
generate the proclivity to move toward blue squares. 

With these settings (as reported in Table 1), we expect our agent to learn to 
coordinate its actions with its perception and orient itself toward the blue square. We 
must note that nothing tells the agent a priori that moving would, in some contexts, 
get it closer, or that turning would shift the blue color in the visual field. These are the 
kind of contingencies that the agent will have to learn through experience. 

After an initial learning phase, we expect to see different behaviors emerge. One 
possible behavior is the diagonal strategy depicted in the left side of Figure 3.  This 
behavior consists of alternatively moving forward and turning toward the blue square 
until the agent becomes aligned with the blue square. At this point, the agent will 
continue to move forward. 

Another possible behavior is the tangential strategy depicted in the right side of 
Figure 3. The tangential strategy consists of approaching the blue square in a straight 
line. The trick with the tangential strategy is that the agent cannot accurately predict 
when he should turn toward the blue square before he passed it. The tangential 
strategy thus consists of moving on a straight line until the blue square disappears 
from the visual field, then returning one step backward, and then turning toward the 
blue square. 

 
Figure 3. Two possible strategies: diagonal strategy (left) and tangential strategy (right). 

 



Of course, such specific strategies have probably little to do with real horseshoe 
crabs. These strategies would only arise due to the coupling of our environment’s 
topological structure with our agent’s sensorimotor system, intrinsic motivations, and 
learning skills. 

4   The Experiment 

We use the vacuum environment implemented by Cohen [16] as an experimental test 
bed for our agent. This environment is based on Russell and Norvig’s [17] general 
vacuum cleaner environment. Figure 3 shows the agent in this environment. Filled 
squares around the grid are walls that the agent will bump into if he tries to walk 
through them. The agent’s eyes are represented by quarters of circles that turn a blue 
color when they detect a blue square; the closer the blue square, the more vivid the 
eye’s color. When both eyes send a reached signal, this signal triggers an additional 
systematic eating behavior (with no additional satisfaction value) that makes the agent 
“eat” the blue square and makes the blue square disappear. The observer can thus see 
the agent’s behavior as a quest for food. The observer can click on the grid to insert a 
new blue square when the agent has eaten the previous one. 

We provide online videos of different runs of the agent . At the beginning, these 
videos show the agent acting frantically because it has not yet learned the contingency 
between its actions and its perceptions. The agent picks random behaviors when it has 
no knowledge of what to do in a specific context. It learns to categorize contexts in 
terms of possibilities of behavior, in parallel with learning interesting composite 
behaviors. After the initial pseudo random activity, the videos show the agent more 
often orienting itself toward the blue square. After eating one or two blue squares, the 
agent starts to stick to a specific strategy.  Our website shows example videos where 
the agent learned the diagonal strategy1 and where it learned the tangential strategy2.  
Traces of these runs are reported in Table 2 and Table 3, and discussed below to 
provide a deeper view of the learning process. 

In the traces, the numbers indicate the interaction-cycle counter also displayed in 
the bottom-right corner of the video. The symbols used to represent the agent’s 
primitive behaviors are ^ (turn left), > (try to move forward), v (turn right). The 
symbols that represent the eyes’ signals are * (appear), + (closer), x (arrived), o 
(disappear). The eye signals are represented on each side of a | character, the left eye 
signal being on the left and the right eye signal on the right. When none of the eyes 
sends a signal, the | character is omitted. The entire sensorimotor pattern is displayed 
within parentheses when a true feedback is received and within angle brackets when a 
false feedback is received. For example, the agent bumped a wall on step 8 and 9, and 
turned toward an adjacent wall on steps 11 and 24. Simultaneously, a blue square 
appeared in the left eye’s visual field on step 10, and disappeared on step 11. 

                                                             
1 http://e-ernest.blogspot.com/2011/01/ernest-82-can-find-his-food.html 
2 http://e-ernest.blogspot.com/2011/01/tengential-strategy.html 



Table 2. Trace of diagonal strategy learning. 
11 2(> |+) 3(v*|o) 4(vo| ) 5(v) 6(^) 7(>) 8[>] 9[>] 10(^*| ) 11[vo| ] 
12(^*| ) 13(^o|*) 14(^ |o) 15(>) 16(v |*) 17(v*|o) 18(>+| ) 19(^o|*) 
20(v*|o) 21(>+| ) 22(>+| ) 23(>o| ) 24[v] 25[>] 26(^) 27(>) 28[v] 29(v 
|*) 30(v*|o) 31(>+| ) 32(^o|*) 33(v*|o) 34(>+| ) 35(^o|*) 36(v*|o) 
37(>+| ) 38(^o|*) 39(> |+) 40(^ |o) 41(v |*) 42(> |+) 43(v*| ) 44(^o| ) 
45(> |o) 46(^) 47(>) 48(v) 49(^) 50(v) 51(v |*) 52(> |+) 53(v*|o) 54(>+| 
) 55(^ |*) 56(>+|+) 57(^o| ) 58(v*| ) 59(>x|x) 60(vo|o) 61(v) 62(v) 
63(v) 64(v) 65(v) 66(v) 67(v) 68(v) 69(v |*) 70(> |+) 71(v*|o) 72(>+| ) 
73(^o|*) 74(> |+) 75(v*|o) 76(>+| ) 77(^o|*) 78(> |+) 79(v*|o) 80(>+| ) 
81(^ |*) 82(>x|x) 83(>o|o) ... 

 
The beginning of the trace in Table 2 shows pseudo random behavior. On steps 21 

to 23, the agent learned the sequence consisting of getting closer twice, then loosing 
the detection. On step 36 to 39, it learns a step of the stairstep progression necessary 
for the diagonal strategy: turn-right, move-forward, turn-left, move-forward, with the 
appropriate visual signals associated. It eats its first blue square on step 59. By 
clicking on the grid, we inserted the second blue square on step 69. From then on, the 
agent enacted a perfect diagonal strategy and reached the second blue square on step 
82. The video shows that the agent continues enacting the diagonal strategy to reach 
subsequent blue squares. 

Table 3 reports the trace of a run where the agent learned the tangential strategy. In 
this run, the agent learned the behavior consisting of moving forward and getting 
closer to the blue square (on the right eye) from the beginning (from step 2 to 6). Due 
to the positive satisfaction experienced, it sticks to this behavior until it loses the 
detection on step 7. A partial component of the returning sequence is then discovered 
on steps 7 to 11, but the agent then gets away from the blue square. This partial 
returning sequence is then enacted again in steps 47 through 51, and followed by a 
move forward and getting closer in both eyes on step 52, but then, the agent moved 
away again. The agent finally learns to stick to moving forward when in alignment 
with the blue square during steps 60 to 62. It finally eats its first blue square on step 
62. By clicking on the grid, we added the second blue square on step 75. From then 
on, the agent was able to put together all the subsequences of the tangential strategy 
that it has learned. It enacts a perfect tangential strategy to reach the second blue 
square on step 88. The video shows that the agent then keeps enacting the tangential 
strategy to reach subsequent blue squares. 

Table 3. Trace of tangential strategy learning. 
1 2(> |+) 3(> |+) 4(> |+) 5(> |+) 6(> |+) 7(> |o) 8(v |*) 9(v*|o) 10(>+| 
) 11(^ |*) 12(^o| ) 13(^ |o) 14(^*| ) 15(>o| ) 16(>) 17(>) 18(^*| ) 
19(vo| ) 20(v) 21(^) 22(>) 23(^*| ) 24(^o|*) 25(^ |o) 26(^) 27(v) 28(v 
|*) 29(^ |o) 30(^) 31(>) 32(^*| ) 33(^o|*) 34(v*|o) 35(>+| ) 36(^o|*) 
37(v*|o) 38(>+| ) 39(^ |*) 40(v |o) 41(>o| ) 42(>) 43(^*| ) 44(^o|*) 
45(> |+) 46(> |+) 47(> |o) 48(v |*) 49(v*|o) 50(>+| ) 51(^ |*) 52(>+|+) 
53(v |o) 54(vo| ) 55(v |*) 56(v*| ) 57(v |o) 58(^ |*) 59(>+|+) 60(>+|+) 
61(>+|+) 62(>x|x) 63(>o|o) 64(v) 65(v) 66(v) 67[v] 68(^) 69[v] 70(v) 
71(v) 72(v) 73[v] 74[>] 75(^*| ) 76(^o|*) 77(> |+) 78(> |+) 79(> |+) 
80(> |+) 81(> |+) 82(> |o) 83(v |*) 84(v*|o) 85(>+| ) 86(^ |*) 87(>+|+) 
88(>x|x) 89(^o|o) ... 
 



Other runs show that the agent always learns a strategy within the first hundred 
steps, and that the most frequently found strategy is the diagonal strategy, with the 
settings defined in Table 1. The experiment therefore demonstrates that the agent 
always succeeds in learning sensorimotor contingencies. 

The pre-defined primitive satisfaction values impact the frequency of the resulting 
strategies; for example, a negative satisfaction value for turning would favor the 
tangential strategy because it incites the agent to minimize turning. In addition, the 
location where the experimenter introduces new blue squares influences the resulting 
strategy. For example, placing blue squares next to walls disfavor the tangential 
strategy because the agent would often bump the wall, which it does not like. The 
experimenter thus plays a role in training the agent. 

5   Results and discussion 

This work demonstrates a technique for implementing vision as an embodied process 
in an artificial agent. In this technique, the visual system does not send static images 
to the central system, but rather sends signals denoting change in the visual field. 
Notably, this technique allows the agent to see static objects, because changes in the 
visual field can result from the agent’s own movements. This technique is consistent 
with studies of horseshoe crabs that show male horseshoe crabs can orient themselves 
toward static females because their visual system reacts to female-like objects that 
appear to be moving (relatively to their own speed) in a uniform background (a sandy 
shallow ocean bottom or beach) [14]. 

By succeeding in learning the contingencies between actions and sensors, our 
model illustrates a sensorimotor theory of vision [2]. O'Regan and Noë argue that this 
approach would also be consistent with complex visual systems, including human 
vision. This argument rests upon experiments that show that human vision requires 
eye movements [e.g., 18]. In future studies, we will further investigate this theory by 
endowing our agent with the capacity to move its eyes independently from its body, 
and with better eye resolution, so it can learn contingencies between eye saccades and 
the received visual signals.  

This work also demonstrates that our intrinsically motivated schema mechanism 
can be used as a general framework to model perception and action. The principles of 
this study can be followed to model other senses, based on the detection of features 
other than basic changes in the visual field. Moreover, this framework helps model 
aspects of ontogenetic development of cognition in a novel way because: 

a) The agent’s goals emerge from low-level drives. The agent does not encode 
strategies or task procedures defined by the programmer, but rather autonomously 
constructs a strategy, as opposed to traditional cognitive models [8]. This accounts for 
theories of cognition that see natural cognitive systems not as being born with an 
explicit final goal to achieve, but rather pushed by primitive drives [e.g., 6].  

b) The agent’s instances are capable of "individuating" themselves through their 
experience, i.e., acquiring their own cognitive individuality that was not encoded in 
their "genes". This accounts for the role of individual experience in cognitive 
development. 



6   Related Work 

Few studies have investigated the sensorimotor hypothesis to vision. Moller & 
Wolfram [19] proposed a model that learned to distinguish between dead-ends and 
corridors in visual scenes. Their agent internally simulated its own way through the 
scene, based on its own experience previously acquired through interaction, to 
discover a dead-end or a corridor. Moller and Wolfram’s objectives, however, differ 
from our own in that they focused on visual processing of complex images rather than 
on initial sensorimotor contingency learning. Their work, nevertheless, motivates us 
to endow our agent with the capacity to simulate courses of action internally to more 
efficiently distinguish scenes and choose forthcoming behaviors.  

Other studies refer more loosely to the sensorimotor hypothesis of vision to 
categorize images of objects through representing the objects’ functions [e.g., 20, 21]. 

In the domain of modeling the visual system of natural organisms, Barlow and 
coauthors [15] proposed a computerized model of the horseshoe crab’s visual neural 
system. This model, however, did not simulate the horseshoe crab’s behavior, nor did 
it functionally represent the connection between the animal’s perceptions and its 
behaviors. 

7   Conclusion 

This work demonstrates that it is possible to implement a sensorimotor theory of 
vision in rudimentary settings. To do so, we proposed a novel intrinsically motivated 
schema mechanism coupled with a visual system that detects dynamic features in the 
visual field. The agent has primitive drives that push it to learn to coordinate motor 
actions with sensory information to enact behaviors that, in turn, increase the agent’s 
fulfillment of its primitive drives. This work opens the way to more complex models 
where the eye’s resolution will be increased and where the agent will have the 
capacity to move its eyes independently from its body. Such developments inform our 
understanding of visual systems in natural organisms and suggest new techniques to 
implement vision in autonomous robots. 
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