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Abstract. The Semantic Web aims at building cross-domain and distributed data-
bases across the Internet. SPARQL is a standard query language for such data-
bases. Evaluating such queries is however NP-hard. We model SPARQL queries
in a declarative way, by means of CSPs. A CP operational semantics is proposed.
It can be used for a direct implementation in existing CP solvers. To handle large
databases, we introduce a specialized and efficient light solver, Castor. Bench-
marks show the feasibility and efficiency of the approach.

1 Introduction

The Internet has become the privileged means of looking for information in everyday’s
life. While the information abundantly available on the Web is increasingly accessible
for human users, computers still have trouble making sense out of it. Developers have to
rely on fuzzy machine learning techniques [5] or site-specific APIs (e.g., Google APIs),
or resort to writing a specialized parser that has to be updated on every site layout
change.

The Semantic Web is an initiative of the World Wide Web Consortium (W3C) to
enable sites to publish computer-readable data aside of the human-readable documents.
Merging all published Semantic Web data results in one large global database. The
global nature of the Semantic Web implies a much looser structure than traditional
relational databases. A loose structure provides the needed flexibility to store unrelated
data, but makes querying the database harder. SPARQL [16] is a query language for the
Semantic Web that has been standardized by the W3C. Evaluating SPARQL queries is
known to be NP-hard [15].

The execution model of current SPARQL engines (e.g., Sesame [4], 4store [10] or
Virtuoso [7]) is based on relational algebra. A query is subdivided in many small parts
that are computed separately. The answer sets are then joined together. User-specified
filters are often processed after such join operations. Constraint Programming (CP), on
the other hand, is able to exploit filters as constraints during the search. A constraint-
based query engine is thus well suited for the Semantic Web.



Contributions. Our first contribution is a declarative model based on CSPs and an op-
erational semantics based on CP for solving SPARQL queries. Existing CP solvers
however are not designed to handle the huge domains linked with the Semantic Web
datasets. The second contribution of this work is a specialized lightweight solver, called
Castor, for executing SPARQL queries. On standard benchmarks, Castor is competitive
with existing engines and improves on complex queries.

Outline. The next section explains how data is represented in the Semantic Web and
how to query the data. Section 3 and 4 show respectively the declarative model and the
operational semantics to solve queries. Section 5 presents our lightweight solver imple-
menting the operational semantics. Section 6 evaluates the feasibility and efficiency of
the approach through a standard benchmark.

2 The Semantic Web and the SPARQL Query Language

The Resource Description Framework (RDF) [11] allows one to model knowledge as
a set of triples (subject,predicate,object). Such triples express relations, described by
predicates, between subjects and objects. The three elements of a triple can be arbi-
trary resources identified by Uniform Resource Identifiers (URIs)3. Objects may also
be literal values, such as strings, numbers, dates or custom data. An RDF dataset can be
represented by a labeled directed multigraph as shown in Fig. 1.

people:erdoes foaf:name "Paul Erdős" .
people:doe foaf:name "John Doe" .
journals:1942 dc:issued 1942 .
journals:1942 swrc:editor people:erdoes .
journals:1942/art1 dc:title "An Article" .
journals:1942/art1 dc:creator people:erdoes .
journals:1942/art1 dc:creator people:doe .

people:erdoes

Paul Erdős

journals:1942/art1

journals:1942 1942

An Article

people:doeJohn Doe

foaf:name swrc:editor

dc:issued

swrc:journal
dc:title

dc:creator

dc:creator

foaf:name

(a) Triple set (b) Graph representation

Fig. 1. Example RDF dataset representing a fictive journal edited by Paul Erdős and an article of
the journal written by Erdős and Doe. Here, people:erdoes and foaf:name are URIs whereas
"Paul Erdős" is a literal.

SPARQL [16] is a query language for RDF. A basic query is a set of triple pat-
terns, i.e., triples where elements may be replaced by variables. Basic queries can be
assembled in compound queries with composition, optional or alternative parts. Filters
add constraints on the variables. A solution of a query is an assignment of variables to

3 More precisely, RDF makes use of URI References, but the differences are not relevant to
this paper. The specification also allows subjects and objects to be blank nodes, i.e., resources
without an identifier. Without loss of generality, blank nodes will be considered as regular
URIs for the purpose of this paper.



URIs or literals appearing in the dataset. Substituting the variables in the query by their
assigned values in the solution gives a subset of the dataset. A SPARQL query may also
define a subset of variables to return, a sort order, etc., but those are not relevant for this
paper and are omitted.

More formally, let U , L and V be pairwise disjoint infinite sets representing URIs,
literals, and variables, respectively. A SPARQL problem instance is defined by a pair
(S,Q) such that S⊂U×U×(U∪L) is a finite set of triples corresponding to the dataset,
and Q is a query. The syntax of queries is recursively defined as follows4. The semantics
will be defined in the next section.

– A basic query is a set of triple patterns (s, p,o) such that s, p ∈ U ∪V and o ∈
U ∪L∪V . The difference with RDF datasets is that we can have variables in place
of URIs and literals.

– Let Q1 and Q2 be queries. Q1 .Q2, Q1 OPTIONALQ2 and Q1 UNIONQ2 are compound
queries.

– Let Q be a query and c be a constraint such that every variable of c occurs at least
once in Q. QFILTERc is a constrained query. The SPARQL constraint expression
language used to define c includes arithmetic operators, boolean operators, com-
parisons, regular expressions for string literals and some RDF-specific operators.

Given a dataset S, we respectively denote US and LS the set of URIs and literals that
occur in S. Given a query Q, we denote vars(Q) the set of variables appearing in Q.

3 A CSP Declarative Modeling of SPARQL Queries

A solution to a SPARQL problem instance (S,Q) is an assignment σ of variables of Q
to values from US∪LS, i.e., a set of variable/value pairs. Given a solution σ and a query
Q, we denote σ(Q) the query obtained by replacing every occurrence of a variable
assigned in σ by its value. The goal is to find all solutions. We denote sol(S,Q) the set
of all solutions to (S,Q).

Contrarily to classical CSPs, a solution σ does not have to cover all the variables
occurring in Q. For example, if a variable x appears only in an optional part that is not
found in a solution σ , x will not appear in the solution σ . Such variables are said to be
unbound.

In this section, we define the set of solutions of a SPARQL problem instance by
means of CSPs, thus giving a denotational semantics of SPARQL queries. Note that,
while doing so, we transform a declarative language, SPARQL, into another one based
on CSPs which may be solved by existing solvers.

3.1 Basic Queries

A basic query BQ is a set of triple patterns (s, p,o). In this simple form, an assignment
σ is a solution if σ(BQ)⊆ S.

4 To keep things clear, we make some simplifications to the language. These assumptions do not
alter the expressive power of SPARQL.



The SPARQL problem (S,BQ) may be viewed as a graph matching problem from
a query graph associated with BQ to a target graph associated with S [3], as illustrated
in Fig. 2. However, even the simple basic form of query is more general than classical
graph matching, such as graph homomorphism or subgraph isomorphism. Variables on
the edges (the predicates) can impose additional relationships between different edges.
This problem is thus already NP-hard.

SELECT *
WHERE {

?p foaf:name ?name .

?journal swrc:editor ?p .

?article swrc:journal ?journal .

?article dc:creator ?p .

}

?p

?name

?article

?journal

foaf:name swrc:editor

swrc:journal

dc:creator

(a) SPARQL query (b) Associated pattern graph

Fig. 2. Example of a basic query searching for journal editors having published an article in the
same journal. Variables are prefixed by a question mark, e.g., ?name. Executing the query on
the dataset of Fig. 1 results in the unique solution {(p,people:erdoes), (name,“Paul Erdős”),
( journal, journals:1942), (article, journals:1942/art1)}.

We formally define the set sol(S,BQ) as the solutions of the CSP (X ,D,C) such that

– X = vars(BQ),
– all variables have the same domain, containing all URIs and literals of S, i.e., ∀x ∈

X ,D(x) =US∪LS,
– constraints ensure that every triple of the query belongs to the dataset, i.e.,

C = {Member
(
(s, p,o),S

)
| (s, p,o) ∈ BQ} ,

where Member is the set membership constraint.

3.2 Compound Queries

More advanced queries, e.g., queries with optional parts, cannot directly be translated
into CSPs. Indeed some queries rely on the non-satisfiability of a subquery, which is
coNP-hard. CSPs can only model NP problems.

Q1 .Q2. Two patterns can be concatenated with the join or concatenation symbol (.).
The solution set of a concatenation is the cartesian product of the solution sets of both
queries. Such cartesian product is obtained by merging every pair of solutions assigning
the same values to the common variables. Note that the operator is commutative, i.e.,
Q1 .Q2 is equivalent to Q2 .Q1. The set of solutions is defined as follows:



sol(S,Q1 .Q2) =

{σ1∪σ2 |σ1 ∈ sol(S,Q1),

σ2 ∈ sol(S,σ1(Q2))} .
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sol

2
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The figure on the right depicts an example. A triangle represents the search tree of a
subquery. Circles at the bottom of a triangle are the solutions of the subquery. Circles
1, 2 and 3 represent sol(S,Q1). Solution 1 is extended into the solutions 4 and 5 in the
search tree of sol(S,σ1(Q2)). Solutions 4, 5 and 6 are the solutions of the concatenation.
If Q1 and Q2 are both basic queries, we can compute the concatenation more efficiently
by merging both sets of triple patterns and solve the resulting basic query as shown in
Section 3.1.

Q1 OPTIONALQ2. The OPTIONAL operator solves its left-hand side subquery Q1 and tries
to solve its right-hand side subquery Q2. If a solution of Q1 cannot be extended into a
solution of Q1 .Q2, then that solution of Q1 becomes a solution of the query too. More
formally,

sol(S,Q1 OPTIONALQ2) =

sol(S,Q1 .Q2) ∪
{σ ∈ sol(S,Q1) | sol(S,σ(Q2)) =∅} .

1

4

sol

5

sol

3

6

sol

2
sol

Q1

Q2

Compared to the example for the concatenation operator, circle 2 in the figure becomes
a solution of the compound query. The inconsistency check makes the search difficult.
Indeed, in the simple case, Q2 is a basic query and is thus solved by a CSP. However, as
checking the consistency of a CSP is NP-hard, checking its inconsistency is coNP-hard.
To ensure the semantics are compositional, we impose that if Q1 OPTIONALQ2 is a sub-
query of a query Q, then variables occurring in Q2 but not in Q1 (vars(Q2)\vars(Q1))
do not appear elsewhere in Q. Such condition does not alter the expressive power of the
language [1].

Q1 UNIONQ2. Disjunctions are introduced by the UNION operator. The solution set of the
union of two queries is the union of the solution sets of both queries. The solutions of
the two queries are computed separately:

sol(S,Q1 UNIONQ2) = sol(S,Q1) ∪ sol(S,Q2) .
Q1

1

sol

2

sol

Q2
3

sol

3.3 Filters

The FILTER operator removes solutions of Q not satisfying the constraint c, i.e.,

sol(S,QFILTERc) = {σ ∈ sol(S,Q) | c(σ)} ,



where c(σ) is true if c is satisfied by σ . The SPARQL reference [16] defines the seman-
tics of the constraints, also in the event of unbound variables.

The FILTER operator may be used a posteriori, to remove solutions which do not
satisfy some constraints. This is usually done by existing SPARQL engines. However,
such constraints may also be used during the search process in order to prune the search
tree. A goal of this paper is to investigate the benefit of using CP, which actively exploits
constraints to prune the search space, for solving SPARQL queries.

When the FILTER operator is directly applied to a basic query BQ, the constraints
may be simply added to the set of member constraints associated with the query, i.e.,
sol(S,BQFILTERc) is equal to the set of solutions of the CSP (X ,D,C∪{c}), where
(X ,D,C) is the CSP associated with (S,BQ). Of course, finding all solutions to the CSP
(X ,D,C∪c) is usually more quickly achieved than finding all solutions to (X ,D,C) and
then removing those which do not satisfy c.

Filters applied on compound queries can sometimes be pushed down onto sub-
queries [18]. For example (Q1 UNIONQ2)FILTERc can be rewritten as (Q1 FILTERc)
UNION (Q2 FILTERc). Such query optimization is common in database engines.

4 A CP Operational Modeling of SPARQL Queries

The denotational semantics of SPARQL can be turned into an operational semantics us-
ing conventional CP solvers provided they allow posting constraints during the search.
Examples of such solvers are Comet [6] or Gecode [8]. We detail the operational se-
mantics of SPARQL queries, i.e., how the set sol(S,Q) is computed. This model can be
used for a direct implementation in existing solvers.

To run a query Q in a dataset S, we define a global array of CP variables X =
vars(Q). The initial domain of each variable x ∈ X is D(x) = US ∪LS. The set of con-
straints C is initially empty. To explain the posting of constraints and the search, we use
Comet as a notation. The following code solves the query Q.

solveall<cp> {

} using {

sol(Q);

output(); // print the solution
}

The first (empty) block posts the constraints, the second describes the search. The
sol(Q) function will be defined for every query type. It posts constraints and intro-
duces choice points. Choice points are either explicit with the try keyword or implicit
when labeling variables with label. When a failure is encountered, either explicitly
with cp.fail() or implicitly during the propagation of a constraint, the search back-
tracks to the latest choice point and resumes the execution on the other branch. A back-
track also occurs after outputting a solution at the end of the using block to search for
other solutions. We assume a depth-first search expanding branches from left to right.

As we do not label all variables in every branch, the domain of some variables may
still be untouched when outputting a solution. Such variables are considered unbound
and are not included in the solution. Indeed, we always label all variables of a basic



query. Unbound variables do not appear in the basic queries along one branch, due to
disjunctions introduced by UNION or inconsistent optional subqueries. No constraints
are posted on such variables. Their domains are not reduced.

Figure 3a shows the sol function for a basic query with a filter. The filter is posted
with the triples constraints and prunes the search tree from the beginning. In some cases,
specific propagators can be used, e.g., for the comparison or arithmetic operators. In all
cases we can fall back on an off-the-shelf SPARQL expression evaluator to propagate
the condition with forward checking consistency, i.e., when all but one variables are
assigned, propagation is realized on the domain of the uninstantiated variable.

Filters on compound queries however can only be checked after each solution of the
subquery as shown in Fig. 3b. Note that the condition c is not posted as there may be
unbound variables that need to be handled according to the SPARQL specification.

function sol(BQFILTERc) {

forall((s, p,o) in BQ)

cp.post(Member((s, p,o),S));
cp.post(c);
label(vars(BQ));

}

function sol(QFILTERc) {

sol(Q);

if( ! c )

cp.fail();

}

(a) Basic query with filter (b) Compound query with filter

Fig. 3. Filters applied on basic queries are posted as constraints. In all other cases, they are
checked after solving the subquery.

Concatenations are computed sequentially as shown in Fig. 4a. The OPTIONAL oper-
ator is similar to the concatenation and is shown in Fig. 4b. First, sol(Q1) is computed.
Before executing the second subquery Q2, a choice point is introduced. The left branch
computes sol(Q2), hence providing solutions to Q1 .Q2. If it succeeds, the right branch
is pruned. Otherwise, the right branch is empty and therefor sol(Q1) is returned as a
solution. Note that this only works with depth first search exploring the left branch first.
Finally, for the UNION operator the two subqueries are solved in two separate branches
as shown in Fig. 4c.

It is clear that this operational semantics of SPARQL queries computes the set of
solutions defined by the declarative modeling.

5 Castor: a Lightweight Solver for the Semantic Web

We now present Castor, a lightweight solver designed to compute SPARQL queries.
A query does not involve many variables and constraints. The main challenge is to
handle the huge domains associated with the variables. Existing CP solvers do not scale
well in this context as shown in the experimental section. The key idea of Castor is to
avoid maintaining and backtracking data structures that are proportional to the domain
sizes. On the one hand we do not use advanced propagation techniques that need such



function

sol(Q1 .Q2) {

sol(Q1);

sol(Q2);

}

function

sol(Q1 OPTIONALQ2) {

sol(Q1);

Boolean cons(false);

try<cp> {

sol(Q2);

cons := true;

}|{

if(cons)

cp.fail();

}

}

function

sol(Q1 UNIONQ2) {

try<cp> {

sol(Q1);

}|{

sol(Q2);

}

}

(a) Concatenation (b) Optional (c) Union

Fig. 4. Compound queries are solved recursively.

expensive structures. On the other hand backtracking is a cheap operation allowing us
to explore large trees fast enough to compensate for the loss of propagation.

In this section, we first present the database schema we use to store an RDF dataset.
Then, we explain the three major components of the solver: the variables and the rep-
resentation of their domains, the constraints and their propagators, and the search tech-
niques used to explore the tree.

5.1 Database Schema

To run a query on a dataset, we need data structures to represent the dataset. We settled
on an SQLite database. Such a relational database provides efficient lookups through
the use of indexes. We use a standard schema designed for RDF applications [9]. It
mainly consists of two tables.

– One table contains the set of all values occurring in the dataset, i.e., US ∪LS. The
values are numbered sequentially starting from 1.

– Another table contains the triples. The table has three columns containing only the
identifier number of the value. Indexes are created on all column combinations to
allow fast lookups in the table.

We only consider the value identifiers in the solver. We thus loose information about
what the values represent. To get such information back quickly, e.g., for evaluating
an expression, we load the table of values in memory before starting the search. We
estimate a value to take on average 80 bytes. Large datasets contain around 108 values,
taking 8 GB of memory. Having such amount of memory available is not uncommon in
today’s servers.

5.2 Variables and Domains Representation

Variables in Castor are integers taking values from 1 up to the number of values in the
dataset. There is no direct relation between two numbers. As such, the ordering of the



values in the domain of a variable does not matter if bound consistency is not consid-
ered. We exploit this property in the data structures of the domains. When backtracking,
we only need to restore the sizes of each domain. Such structures are also used in the
code computing subgraph isomorphisms presented in [20].

We represent the finite domain D(x) of a variable x by its size and two arrays dom

and map. The size first values of dom are in the domain of the variable, the others have
been removed (see Fig. 5). The map array maps values to their position in the dom array.

4 7 6 3 2 9 8 1 5dom:

size
in domain removed

8 5 4 1 9 3 2 7 6map:
1 2 3 4 5 6 7 8 9

Fig. 5. Example representation of the domain {2,3,4,6,7,9}, such that size= 6, when the initial
domain is {1, . . . ,9}. The size first values in dom belong to the domain; the last values are those
which have been removed. The map array maps values to their position in dom. For example,
value 2 has index 5 in the dom array. In such representation, only the size needs to be restored on
backtrack.

The following invariants are enforced.

– Arrays dom and map are coherent, i.e., map[v] = i⇔ dom[i] = v.
– The domain D(x) is the set of the first size values of dom, i.e.,

D(x) = {dom[i] | i ∈ {1, . . . ,size}}.
– Any reduction of the domain does not modify the previously removed values (i.e.,

the values from size+1 up to the end of the dom array).

The last invariant allows us to restore only size when backtracking. Indeed, the parti-
tion between removed values and values left in the domain will be the same. The order
of the values before size may have changed however. The last invariant is respected
when using depth-first search, since we keep removing values along one branch before
backtracking.

The basic operations on the domain all have a constant time complexity. Checking
if a value is still in the domain can be done with the property v∈D(x)⇔ map[v]≤ size.
To remove a value, we swap it with the latest value in the domain and decrease size.
For example, to remove value 3 in Fig. 5, we swap the values 3 and 9 in dom, update
map accordingly and decrease size by one.

To restrict the domain to a set of values, we mark each values to keep, i.e., we
swap the value with the left-most non-marked value in dom and increase the count of
marked values. We then set the domain size to the count of marked values. The complete
operation has a linear time complexity w.r.t. the number of values kept.



5.3 Constraints and Propagators

There are two kinds of constraints in SPARQL queries: triple patterns and filters. Filters
on compound queries are only checked after assigning all their variables. Filters on ba-
sic queries and triple patterns are posted and exploited during the search. As for domain
representation, the goal is to minimize trailable structures that need to be backtracked.
In the current prototype of Castor, no such structures exist for constraints.

A constraint in Castor is an object that implements two methods: propagate and
restore. When the constraint is created, it registers to events of the variables. The
propagate method is called when one of the registered events occurs. The restore

method is called when the search backtracks. Currently, each variable has two events:
bind, occurring when the domain becomes a singleton, and change, occurring when the
domain has changed. To know which values have been removed from a variable since
the last execution of the propagator, we store (locally to the constraint) the size of the
domain at the end of the propagate method. Removed values are between the new and
the old size in the dom array at the next call of the method. The restore method is used
to reset the stored sizes after a backtrack. Propagators are called until the fix-point is
reached.

Triple patterns. A triple pattern is a table constraint. It reacts on the bind event of the
variables. When a variable is bound, we fetch all the consistent triples from the SQLite
database and restrict the domains of the remaining unbound variables.

Filters. Checking filters on compound queries is done by an expression evaluator fol-
lowing SPARQL specifications. The evaluator considers all variables with a domain size
larger than 1 as unbound. Filters on basic queries are posted together with the triple pat-
terns. The propagator achieves forward checking consistency. As soon as all variables
but one are bound, we iterate over the values in the domain of the unbound variable,
keeping only values making the expression true.

Some filters can be propagated more efficiently with specialized algorithms. The
propagator for x 6= y waits for a value to be assigned to one of the two variables and
removes it from the domain of the other variable. There is no need to iterate over all
values in the domain. The constraint x = y achieves arc consistency by removing from
D(y) the values that have been removed from D(x) and vice versa, reacting to the change
event.

5.4 Search

The search tree is defined by using a labeling strategy. At each node, a variable is
chosen and a child node is created for each of the values in the domain of the variable.
The standard smallest domain heuristic is used for choosing the variable. The order of
the values is defined by their current order in the dom array representation.

The search tree is explored with a depth-first search algorithm. Such exploration is
required for efficient backtracking of the domains (Section 5.2) and efficient inconsis-
tency check of optional subqueries (Section 4).



To enable posting constraints during the search, we introduce subtrees. A subtree
has a set of constraints and a set of variables to label. It iterates over all assignments of
the variables satisfying the constraints, embedding the backtrack trail. At each assign-
ment, Castor can create a new subtree or output the solution, depending on the query.
When a subtree has been completely explored, the domains of the variables are restored
to their state when the subtree was created and the constraints are removed. The search
can then continue in the previous subtree.

6 Experimental Results

To assess the feasibility and the performances of our approach, we have run queries
from the SPARQL Performance Benchmark (SP2Bench) [17]. SP2Bench consists of a
deterministic program generating an RDF dataset of configurable size, and 12 repre-
sentative queries. The datasets represent relationships between fictive academic papers
and their authors, following the model of academic publications in the DBLP data-
base. The benchmark includes both basic and compound queries, but only makes use of
simple comparison filters. We removed unsupported solution modifiers like DISTINCT

and ORDER BY from the queries. We focus on the queries identified as difficult by the
SP2Bench authors (q4, q5, q6 and q7) as well as one simpler query (q2) and two queries
involving the UNION operator (q8 and q9). We thus consider 8 queries as q5 comes in
two flavors.

We compare the performances of three engines: the state-of-the-art SPARQL engine
Sesame [4], the lightweight solver Castor described in Section 5 and a direct implemen-
tation of the operational semantics in Comet [6]. The Comet implementation loads the
whole dataset in memory. It uses the built-in table constraint for the triple patterns and
built-in expressions for the filters. Sesame was run both using an on-disk store and an
in-memory store.

We have generated 6 datasets of 10k, 25k, 250k, 1M and 5M triples. We have per-
formed three cold runs of each query over all the generated datasets, i.e., the engines
were restarted and the databases cleared between two runs. Such setting corresponds
to the one used by the authors of SP2Bench. All experiments were conducted on an
Intel Pentium 4 2.40 GHz computer running Ubuntu Linux 10.10 with 2 GB of DDR-
400 RAM and a 160 GB Maxtor 6Y160P0 ATA/133 disk. We report the time spent to
solve the queries, not including the time needed to load the datasets. We checked that
all engines find the exact same set of solutions.

Figure 6 shows the execution time of the considered queries. Note that both axes
have logarithmic scales. We now discuss the results for each query.

Simple query. Query q2 has the form BQ1 OPTIONALBQ2. BQ1 is a basic query with
9 variables and 9 triple patterns. The optional part BQ2 has a single triple pattern with
only one variable not appearing in BQ1. Executing subquery BQ2 can thus be done by
one access to the database. Sesame and Castor perform equally well. Comet however
suffers from the heavy data structures.

Filters. Queries q4 and q5a are similar. Both are basic queries with one filter. Query q4
has 7 variables, 8 triple patterns and a filter x1 < x2 on two variables x1 and x2. Query
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Fig. 6. Experimental results for Sesame with on-disk store (Sdisk), Sesame with in-memory store
(Smem), Comet (Com) and Castor (Cas). The x-axis represents the dataset size in terms of number
of triples. The y-axis is the query execution time. Both axes have a logarithmic scale. The number
of solutions is written in parentheses.



q5a has 6 variables, 6 triple patterns and a filter x1 = x2. The CP engines are able to out-
perform Sesame on q5a thanks to their efficient propagation of the equality constraint.
We suspect this constraint to be post-processed in Sesame. Query q4 however shows the
opposite situation. It has many more solutions than q5a (2.65 ·106 versus 1.01 ·105 for
the dataset with 1M triples). As such, filtering is not the bottleneck anymore. Solving
the query mostly involves pure database access.

The two flavors of q5, q5a and q5b, compute exactly the same set of solutions.
The latter encodes the equality constraint into its 5 triple patterns using 4 variables.
Unsurprisingly, the CP engines perform similarly on both queries as they exploit the
filters early-on during the search. Sesame handles the filter-less query much better than
q5a. This shows the relevance of our approach, especially considering filters are present
in about half of the real-world queries [2].

Negations. A negation in SPARQL is a compound query that has the form (Q1 OPTIONAL

Q2) FILTER (!bound(x)), where x is a variable appearing only in Q2. The filter removes
all solutions assigning a value to x, i.e., we keep only solutions of Q1 that cannot be
extended into solutions of Q1 .Q2. Query q6 is one such negation with additional fil-
ters inside Q2. Query q7 has no additional filters, but Q2 is itself a nested negation.
Counter-intuitively, q6 is actually more difficult than q7. Possible reasons are given in
[17]. Castor has better results than Sesame for the former query and behaves similarly
to Sesame on the latter.

Unions. The compound queries q8 and q9 use the UNION operator. The former adds
inequality filters in both its subqueries. The subqueries of the latter contain only two
triple patterns each. Yet, q9 generates many solutions. Neither Comet with its heavy
structures nor Sesame with its on-disk store are able to go beyond 50k triples. Castor and
Sesame with in-memory store are close to each other. In query q8, the two alternative
subqueries have some duplicate triple patterns. Exploiting such property might explain
the relative flatness of Sesame’s execution time compared to Castor.

Conclusion. Table 1 shows the relative speed of Castor w.r.t. Sesame using an in-
memory store. The goal of Castor is to use CP to solve very constrained queries, i.e.,
queries where filters eliminate many solutions. Such queries (e.g., q5a and q6) are han-
dled much more efficiently by Castor than by Sesame. On queries relying more on
database access (e.g., q2 and q9), the CP approach is still competitive.

Table 1. Speedup of Castor w.r.t. Sesame with in-memory store. The letter ‘C’ (resp. ‘S’) means
only Castor (resp. Sesame) was able to solve the instance within the time limit.

q2 q4 q5a q5b q6 q7 q8 q9

10k 6.75 2.95 94.15 6.51 5.13 1.21 61.52 3.60
50k 3.03 1.38 799.26 5.01 6.38 0.84 68.91 1.94

250k 1.54 0.41 C 3.93 C 1.24 39.32 1.34
1M 1.19 S C 2.79 — — 15.99 1.29
5M 1.19 — C 2.00 — — 3.81 1.24



7 Discussion

We proposed a declarative modeling and operational semantics for solving SPARQL
queries using the Constraint Programming framework. We introduced a specialized
lightweight solver implementing the semantics. We showed that the approach outper-
forms the state of the art on very constrained queries, and is competitive on most other
queries.

Related work. Mamoulis and Stergiou have used CSPs to solve complex XPath queries
over XML documents [13]. XML documents can be viewed as graphs, like RDF data5,
but with an underlying tree structure. Such structure is used by the authors to design
specific propagators. However, they cannot be used for SPARQL queries.

Mouhoub and Feng applied constraint programming to solve combinatorial queries
in relational databases [14]. Such queries involve joining multiple tables subject to rel-
atively complex arithmetic constraints. The problem is similar to SPARQL. However,
the authors do not deal with large datasets. Their experiments are limited to tables with
800 rows. Such size is not realistic for RDF data.

Other work aims at extending the standard SQL query language to support explicit
constraint satisfaction expressions [12, 19]. This allows to solve CSPs within relational
databases.

Future work. Two paths are possible. On the one hand, we can create a full-in-memory
engine, getting rid of the SQLite database. More advanced propagators for the table
constraint could then be used. While such engine would not scale well, it could still be
of interest for very complex queries on small to medium-sized datasets. On the other
hand, we can make a heavier database usage, eliminating the need to load all values
in memory. The current propagators for triple patterns and equality constraints already
do not need to know the meaning of a value. The query can also be preprocessed to
reduce the initial domain before the variables are created to further reduce the memory
consumption.

In both cases, specialized propagators need to be written for the various SPARQL
expressions. Other consistency levels, e.g., bound consistency, may be considered for
such tasks. Different variable selection heuristics can be investigated. More comprehen-
sive benchmarks with other engines also needs to be done.
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5 XML is in fact one of the syntaxes of RDF
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