
HAL Id: hal-01354411
https://hal.science/hal-01354411v1

Submitted on 17 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Method for Engineering Social Web Services
Zakaria Maamar, Noura Faci, Leandro Krug Wives, Hamdi Yahyaoui, Hakim

Hacid

To cite this version:
Zakaria Maamar, Noura Faci, Leandro Krug Wives, Hamdi Yahyaoui, Hakim Hacid. Towards a
Method for Engineering Social Web Services. 4th Working Conference on Method Engineering (ME),
Apr 2011, Paris, France. pp.153-167, �10.1007/978-3-642-19997-4_15�. �hal-01354411�

https://hal.science/hal-01354411v1
https://hal.archives-ouvertes.fr

Towards a Method for Engineering

Social Web Services

Zakaria Maamar1, Noura Faci2, Leandro Krug Wives3

Hamdi Yahyaoui4, and Hakim Hacid5

1Zayed University, Dubai, U.A.E
zakaria.maamar@zu.ac.ae

2Claude Bernard Lyon 1 University, Lyon, France
noura.faci@liris.cnrs.fr

3Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
wives@inf.ufrgs.br

4Kuwait University, Safat, State of Kuwait
hamdi@sci.kuniv.edu.kw

5Alcatel-Lucent Bell Labs, Paris, France
hakim.hacid@alcatel-lucent.com

Abstract This paper motivates the blend of social computing with
service-oriented computing, giving “birth” to social Web services. On
the one hand, social computing builds user applications upon the princi-
ples of collective action and content sharing. On the other hand, service-
oriented computing builds enterprise applications upon the principles of
service offer and demand and loose coupling. Thanks to this blend social
Web services can operate taking into account with whom they worked
in the past and with whom they would like to work in the future. To en-
gineer social Web services, this paper presents a four-step method that
addresses several questions related to the engineering exercise. These
questions are what relationships exist between Web services, what social
networks correspond to these relationships, how to build social networks
of Web services, and what social behaviors can Web services exhibit.
Experiences dealing with implementing social Web services are, also, re-
ported in the paper.

Keywords. Engineering, Service-oriented computing, Social computing,
Web service.

1 Introduction

It is largely known that those responsible for designing and developing enterprise
applications appreciate greatly the use of engineering methods while completing
their duties. Indeed these methods are road maps that indicate among other
things the steps to carry out, the notations to use, the meetings to schedule,
and the deliverables to turn in. With the increasing complexity and diversity of
today’s enterprise applications, different engineering methods (e.g., situational
and domain-specific) and scientific fora (e.g., ME’11) have been set up. The

2 Maamar et al.

purpose of these methods and fora is to keep up the pace with the challenges
that these applications pose on enterprise applications designers and developers.

Service-Oriented Architecture (SOA) paradigm and its flagship implementa-
tion technology namely Web services are among the latest trends in enterprise
applications design and development. According to Engels et al., SOA promotes
the separation of concerns, information hiding, strong cohesion, and loose cou-
pling [7]. The compliance with SOA principles results in business processes that
are flexible and capable of crossing organization boundaries. A Web service is
“a software application identified by a URI, whose interfaces and binding are ca-

pable of being defined, described, and discovered by XML artifacts and supports

direct interactions with other software applications using XML-based messages

via Internet-based applications” (3WC). When necessary Web services are put
together to offer new added-value composite services to users. Different meth-
ods and approaches to engineer Web services based-enterprise applications are
reported in the literature [10,11,16]. For example, Foster et al. use a model-
based approach to verify Web services composition interactions for a coordi-
nated SOA [10]. The adoption of Web services means the ability to support early
verification of service implementations against design specifications and that
compositions are built with compatible interfaces. Maamar et al. adopt goals to
engineer a specific type of Web services that they referred to as capacity-driven
Web services [16]. The goals are established to define the roles that capacity-
driven Web services play when implementing business applications, frame the
requirements that will be put on capacity-driven Web services, and identify
the processes in term of business logic that capacity-driven Web services will
carry out.

Recently, we started looking into Web services from a social perspective [14].
The purpose is to address some obstacles such as discovery and high-availability
that still hinder the widespread acceptance of Web services by IT practioners.
By imposing a social perspective on how Web services need to be handled at
design- and run-times, we could make Web services (using appropriate tools) es-
tablish networks of contacts (i.e., peers) with whom these Web services “feel com-
fortable” for example to work on common compositions and to recommend for
compositions. In this paper, we present our method to engineer Social Web
Services (SWSs). Briefly this method proceeds as follows: it identifies possible
relationships between Web services, builds social networks out of these relation-
ships, and finally, labels Web services as per their roles in these social networks.
In this paper the social perspective refers to the social relationships that people
come across daily and can be mapped onto relationships linking Web services.

This paper is organized as follows. Section 1 motivates the importance of
engineering methods with focus on SWSs as a case study. Section 2 introduces
a running scenario, discusses the overlap between social and service-oriented
computing, and provides a brief literature review of SWSs. Section 3 introduces
our engineering method. Prior to concluding in Section 5, some technical details
on SWSs are presented.

Towards a Method for Engineering Social Web Services 3

2 Background

We start with a running scenario that reveals the potential relationships between
Web services. Then we introduce the disciplines of social computing and service-
oriented computing and how both overlap giving “birth” to SWSs. Finally we
review some research works on SWSs.

2.1 Running scenario

We illustrate the use of social networks of Web services with a scenario related
to purchase orders. A customer places an order for a variety of products via Cus-

tomerWS. Based on this order, CustomerWS obtains details on the customer’s
purchase history from CRMWS (Customer Relationship Management). Then,
CustomerWS forwards these details to BillingWS to calculate the customer’s
bill and subsequently send the bill to CRMWS. This latter prepares the detailed
purchase order and sends it to InventoryWS for order completion. For the in-
stock products, InventoryWS sends a shipment request to ShipperWS to deliver
the products to the customer. For the out-of-stock products, InventoryWS sends
a supply request to the selected SupplierWS, which provides ShipperWS with
the products for subsequent shipments to the customer.

Traditionally the aforementioned Web services (e.g., CustomerWS, Ship-

perWS) are discovered and selected without considering or even acknowledg-
ing the interactions they had with other peers in previous compositions. Such
interactions would have been useful if captured properly using for instance so-
cial networks. During the preparation of an order, different relationships are
established. The first relationship is the selection that led into identifying Cus-

tomerWS instead of another Web service for example OrderSubmissionWS. Both
Web services compete against each other since they do the same job, which is
handling customers’ online orders. The second relationship is the dependencies
between Web services that can be recurrent. InventoryWS and ShipperWS have
constantly participated in several joint compositions. Finally, the third relation-
ship is the high availability of Web services. When ShipperWS fails, DeliveryWS

takes over automatically. If all these relationships had to be captured properly,
a Web service would:

– recommend the peers that it likes to collaborate with in case of composi-
tions, e.g., InventoryWS and ShipperWS ;

– recommend the peers that can substitute for it in case of failure, e.g., Ship-

perWS and DeliveryWS ;

– and, be aware of the peers that compete against it in case of selection,
e.g., CustomerWS and OrderSubmissionWS.

Collaboration, substitution, and competition are relationships commonly found
in people’s daily life.

4 Maamar et al.

2.2 Social computing meets service-oriented computing

With the emergence of Web 2.0, social computing is nowadays a hot discussion
topic. Some well-known social applications like FaceBook and Twitter exemplify
the successful embracement of Web 2.0. Plus different case studies look into
this topic ranging from social computing importance and challenges it raises like
privacy to the benefits of adopting social applications by organizations [2].

In [8] social computing is related to applications that support collaborative
work (GroupWare) and techniques for modeling, simulating, studying, and an-
alyzing the society (i.e., study the social behavior). Examples of applications
include on-line communities and tools, and interactive entertainment and train-
ing. Another definition sees social computing as an emerging paradigm that in-
volves a multi-disciplinary approach for analyzing and modeling social behaviors
on different media and platforms to produce intelligent applications [12]. Main
characteristics of social computing are connectivity, collaboration, and commu-
nity.

Service-oriented computing is, also, another discipline that attracts the at-
tention of academics and industry people. It aims at bridging the gap between
business services and IT services. As stated earlier, SOA and Web services have
enabled a new wave of business processes that are loosely-coupled and can cross
organization boundaries. The trend of offering business services through the
Internet in the form of software services [19] allows the expansion of business
services into global markets, ease of access for customers, and increased produc-
tivity for companies.

Would there be any overlap between social computing and service-oriented
computing? Our answer is affirmative. On the one hand, social computing builds
applications upon the principles of collective action and content sharing. On the
other hand, service-oriented computing builds applications upon the principle
of “I offer services that somebody else may need” and “I require services that
somebody else may offer”. Service offer and demand illustrate perfectly how
people behave in today’s society imposing a social dimension on the analysis of
Web services. SWSs can capitalize on their experiences to “identify” with whom
they worked in the past and with whom they would like to work in the future.

2.3 Social Web services in the literature

SWSs are at the cross road of service-oriented computing and social comput-
ing. Our literature review concluded to a lack of studies that address specific
questions related to SWSs engineering such as how to identify the interactions
(or relationships) between Web services and between users and Web services,
how to build social networks that capture these interactions, how to navigate
through these networks during Web services functioning, and how to maintain
social networks in response to changes in Web services. Some other studies adopt
SWSs to illustrate how Web services can help humans interact. For instance,
a social service network is proposed in [6]. It integrates Web 2.0 aspects to en-
rich Web services with semantics. The social aspects, here, are not based on

Towards a Method for Engineering Social Web Services 5

Web services interactions, but how users develop tags out of domain ontologies
(i.e., folksonomies) so they assign them to Web services.

Xie et al. suggest a framework for semantic service composition based on
social networks [20]. Trust between service providers, service consumers, and
services themselves is the social element that is taken into account in this compo-
sition. The framework consists of several modules including semantic extraction
and social network construction, social network storage, and trust computing.

Maaradji et al. propose SoCo for Social Composer. SoCo advises on the next
course of actions to take in response to events such as Web services selection [17].
The advices are built upon the interactions that occur between users and Web
services as well as the previously built compositions. SoCo consists of different
components including social knowledge extraction and modeling, recommenda-
tion manager, connection manager, and service repository.

Maamar et al. develop LinkedWS as a social networks model for Web ser-
vices discovery [14]. Different social networks permit to describe the situations
in which Web services are engaged for instance collaboration and recommenda-
tion. LinkedWS stresses out that Web services should not be treated as isolated
components that respond to users’ queries, only. Contrarily, Web services com-
pete against other, similar Web services during selection, collaborate with other,
different Web services during composition, and may replace other, similar Web
services during failure despite the competition. Competition and substitution
relationships raise an interesting point, which is Web services competing to take
part in compositions and at the same time collaborating to support each other
during failure. This kind of “behavior” is referred to as coopetition standing for
cooperation and competition [3].

Although short, the list of aforementioned research works shows the growing
interest in SWSs. To sustain this growth methods for engineering SWSs are
highly deemed appropriate to help highlight the relationships between Web ser-
vices, the social networks to build with respect to these relationships, and the
mechanisms that let Web services use these networks during functioning.

3 Our engineering method

Our engineering method consists of four steps that each addresses one of the
following questions: what kind of relationships can put Web services in contact,
what social networks correspond to these relationships, what components consti-
tute social networks of Web services, and what social behaviors can Web services
exhibit. SWSs that result out of our engineering method are regular Web ser-
vices that are connected to each other through social networks and exhibit social
behaviors based on their role in these networks. We recall that functionality rep-
resents the “service” that a Web service offers to users and peers as well.

3.1 Overview

Like any engineering method, our method consists of steps and models that fall
into either analysis or design phase (Fig. 1). During the analysis phase a service

6 Maamar et al.

engineer performs two steps. First she establishes relationships between Web
services as per the nature of the case study that is under discussion (Section 2.1).
Afterwards the service engineer maps the relationships established previously
onto social networks, though the mapping is not always one-to-one. During the
design phase the service engineer performs two steps as well. First she defines
the characteristics of each social network in terms of number of nodes, types of
edges connecting these nodes, and weight formulas for these edges. Finally the
service engineer analyzes the social behaviors that Web services exhibit by being
part of these networks.

- Step 1 -

SR identification

- Step 2 -

SR:SN mapping

- Step 3 -

SN building

- Step 4 -

SN mining

Analysis phase Design phase

(SR: Social Relationship; SN: Social Network)

Figure1. General representation of SWSs engineering method

3.2 Step 1: what relationships can put Web services in contact?

As stated earlier the objective of this step is to identify the relationships that can
exist between Web services. The running scenario has shown three relationships
in response to the following cases:

1. Web services that offer semantically similar functionalities like ShipperWS

and DeliveryWS

– compete against each other during selection as only one Web service is
considered at a time [4].

– substitute for each other in case of failure so that application operation
continuity is maintained [15].

2. Web services that offer separate functionalities like CustomerWS and In-

ventoryWS collaborate in the development of new added-value composite
services [9].

3.3 Step 2: what social networks correspond to Web services’

relationships?

As stated earlier the objective of this step is to identify potential social net-
works that can put Web services in contact. Step 1 resulted in the identification
of competition, substitution, and collaboration relationships. Each relationship
constitutes a basis upon which a specific social network is developed. As a re-
sult, Web services can sign up with three types of social networks: competition,
substitution, and collaboration.

– The objective of a competition social network is to make Web services aware
of their competitors. This awareness triggers possible enhancements of Web
services in case they regularly turn out less competitive at selection time [1].

Towards a Method for Engineering Social Web Services 7

– The objective of a substitution social network is to make Web services highly
available in case failures arise [15]. The potential substitutes are reported in
this network, which eases their identification in the future.

– The objective of a collaboration social network is to keep track of all the
peers that worked with a Web service on the completion of compositions.
The potential collaborators are reported in this network, which eases their
identification in the future, as well.

In [14], social networks of Web services are classified into either positive
or negative. This is based on the impact that Web services have on each other
when they are in the same social network. A positive social network includes Web
services that work together since their functionalities are different and hence, can
be combined. Contrarily, a negative social network includes Web services that
cannot work together since their functionalities are similar and hence, cannot be
combined1. As per this classification, a competition social network is negative
while the other two are positive.

3.4 Step 3: how to build social networks of Web services?

As stated earlier the objective of this step is to identify the components upon
which the social networks of Step 2 are built. We refer to these components as
node and edge. In our engineering method nodes and edges correspond to Web
services and relationships, respectively.

Competition social network. Fig. 2 illustrates a simple competition social
network. Since this network involves similarly functional Web services only,
they are all in competition against each other and hence, all connected to
each other through bidirectional edges.
To evaluate the weight of a competition edge, which we refer to as
Competition Level (CompL, Equation 1) between two Web services wsi

and wsj , we use the Functionality Similarity Level (FSL) to compare their
respective functionalities and the No-Functionality Similarity Level (NFSL)
to compare their respective non-functional properties (QoS, e.g., reliability
level, response time). We assume that the non-functional properties of Web
services are defined with the same taxonomy. The use of FSL is shown in
Section 4.2.

CompLwsi,wsj
= FSLwsi,wsj

× (1 − NFSLwsi,wsj
) (1)

where:
– FSLwsi,wsj

corresponds to the similarity level between the functional-
ity of wsi and the functionality of wsj . This level is determined using
existing approaches such as [5] and should be either close to or equal
to 1.

1 Not all Web services can be combined as this depends on factors such as (i) Web
services belonging to the same domain for example travel (e.g., AirBookingWS and
TaxiBookingWS) and (ii) data dependencies between Web services (e.g., OutdoorAc-
tivityWS depending on the feedback of WeatherForecastWS).

8 Maamar et al.

w
eight

w
eight

 w
eight

weight

w
eight

w
eight

weight

weight

weig
ht

Web service Competition relationship

Figure2. Illustration of a competition social network

– NFSLwsi,wsj
= ω1 × (|Pwsi,1

− Pwsj,1
|) + · · · + ωn × (|Pwsi,n

− Pwsj,n
|)

with Pwsi,k
is the value of the kth non-functional property of the ith Web

service (assumed to be between 0 and 1), ωk is a weighting factor repre-
senting the importance of a non-functional property, and

∑n

k=1 ωk = 1.

As per Equation 1 the more the competition level is close to one, the clos-
est wsi is to wsj . As a result wsi threatens the competitiveness capacity
of wsj . We recall that only one Web service can be selected at a time to
handle a user’s request. A competition social network is useful when a Web
service decides to reject processing a user’s request for different reasons such
as guaranteeing its non-functional properties [13]. This Web service’s com-
petition social network permits to identify its competitive Web services so
that this request is assigned to one of them upon its approval.

Substitution social network. Fig. 2, also, illustrates a substitution social
network after updating the edges’ name from competition to substitution. It
should be noted that not all edges are bidirectional. Since all Web services
in a substitution social network offer the same functionality, any peer can
be selected as a potential candidate that replaces a failing Web service.

To evaluate the weight of a competition edge, which we refer to as
Substitution Level (SubL) between wsi and wsj , we use the Functionality
Similarity Level (FSL) and the No-Functionality Similarity Level (NFSL)
like previously on top of the Reliability Level (RL) that shows how successful
wsi is when it replaces wsj (Equation 2).

SubLwsi,wsj
= FSLwsi,wsj

× RLwsi,wsj
× (1 − NFSLwsi,wsj

) (2)

where:

– FSLwsi,wsj
and NFSLwsi,wsj

are defined in Equation 1.

Towards a Method for Engineering Social Web Services 9

– RLwsi,wsj
=
P

SRwsi,wsjP
TRwsi,wsj

, with
∑

SRwsi,wsj
is the total number of

Successful Replacements that wsi made for wsj (i.e., no failure) and∑
TRwsi,wsj

is the Total number of Requests that wsi received to re-
place wsj . If wsi never replaced wsj then the substitution level is 0.

Collaboration social network. Fig. 3 illustrates a simple collaboration social
network. It is built when at least one composition of Web services is complete.
For navigation purposes in a collaboration social network, an entry node is
required and represented differently from the rest of nodes (Fig. 3). We refer
to this entry node as “focus” Web service. All edges coming out of this
“focus” Web service are unidirectional pointing towards other Web services.

w
eight

 w
eight

weight

w
eight�

Web service�Focus Web service� Collaboration relationship

Figure3. Illustration of a collaboration social network

To evaluate the weight of a collaboration edge, which we refer to as
Collaboration Level (ColL) between wsi (“focus”) and wsj , we track the
number of times that both Web services participated in joint compositions
with emphasis on the total number of compositions that wsi took part in.

ColLwsi,wsj
=

∑
JCwsi,wsj∑

TPwsi

(3)

where:
–

∑
JCwsi,wsj

is the total number of participations of wsi and wsj in
Joint Compositions.

∑
JCwsi,wsj

and
∑

JCwsj ,wsi
are equal.

–
∑

TPwsi
is the Total number of Participations of wsi in compositions.

3.5 Step 4: what social behaviors can Web services exhibit?

As stated earlier the purpose of this step is to identify the potential social behav-
iors that Web services can exhibit based on the details that each type of social
network (substitution, competition, and collaboration) carries on. Different types
of social behaviors exist in real life such as selfish, trustworthy, opportunistic,
malicious, vindictive, reliable, etc.

10 Maamar et al.

Selfish social behavior. Substitution reveals the selfishness of a Web service
when this latter refuses continuously to replace failing peers. However these
peers accept continuously to replace this Web service when it failed. A Web
service can use different reasons to back its refusal decisions including “fear”
of not meeting its non-functional properties or inappropriateness for replac-
ing a failing peer as per the competition social network (CompL close to 0).
To analyze selfishness the substitution relationship between wsi and wsj is
used as follows, where wsi substitutes wsj :
– If SubLwsi,wsj

= SubLwsj ,wsi
then the substitution relationship is bal-

anced between both.
– If SubLwsi,wsj

> SubLwsj ,wsi
then the substitution relationship is in

favor of wsj , i.e., wsj did not replace wsi as many as wsi did for wsj ;
Otherwise the substitution relationship is in favor of wsi.

Definition 1. Selfishness. A Web service wsi exhibits a selfish behavior if
the majority of its substitution relationships with peers are in its favor, i.e.,
the number of times that SubLwsi,wsj

< SubLwsj ,wsi
holds, is greater to a

threshold TSubL. �

A Web service that is known as selfish can be ignored by similar peers since
these ones cannot count on it when they fail. Corrective actions could be
taken by reviewing this Web service’s non-functional properties.

Malicious social behavior. Competition reveals the maliciousness of a Web
service when it accepts to handle user requests that it receives from other
peers, though this Web service is not sure to guarantee its QoS level. Ini-
tially these peers declined handling the user requests for reasons listed in
the description of the selfish social behavior, and hope that this Web ser-
vice will not disappoint them. This Web service is reported in these peers’
competition social networks.
To analyze maliciousness we introduce a function, called disappointment
Diswsi,wsj

that tracks of the number of times that wsi failed in maintaining
its QoS level for the user requests it receives from wsj over the total number

of requests that wsj passed on to wsi (Diswsi,wsj
=
P

Failwsi
(reqwsj

)P
reqwsi,wsj

).

– If Diswsi,wsj
= Diswsj ,wsi

then the disappointment relationship is bal-
anced between both.

– If Diswsi,wsj
> Diswsj ,wsi

then the disappointment relationship affects
wsj more than wsi;

Definition 2. Maliciousness. A Web service wsi exhibits a maliciousness
behavior if it is involved in a large number of disappointment relationships
with peers, i.e., the number of times that Diswsi,wsj

< Diswsj ,wsi
holds, is

greater to a threshold TDis. �

Dominant social behavior. Collaboration reveals the dominance of a Web
service over a peer when this Web service participates in the compositions
of this peer more than what this peer did in the compositions of this Web
service.

Towards a Method for Engineering Social Web Services 11

To analyze dominance the collaboration relationship between wsi and wsj

is used as follows:
– If ColLwsi,wsj

= ColLwsj ,wsi
then the collaboration relationship is

balanced between both.
– If ColLwsi,wsj

< ColLwsj ,wsi
then the collaboration relationship is in

favor of wsi, i.e., wsi did participate in the compositions of wsj more
than what wsj did by participating in compositions of wsj ; Otherwise
the collaboration relationship is in favor of wsj .

Definition 3. Dominance. A Web service wsi exhibits a dominant behav-
ior if the majority of its collaboration relationships with peers are not in its
favor, i.e., the number of times that ColLwsi,wsj

< ColLwsj ,wsi
holds, is

greater to a threshold TColL. �

4 Implementation

We discuss first, the tools that support service engineers in developing SWSs

and managing their respective social networks and then, report on our experience
of dealing with SWSs in the context of LinkedWS project.

4.1 Support tools

Service engineers who plan to convert Web services into SWSs use tools to per-
form this conversion along with other duties such as building SWSs’ networks,
exhibiting SWSs’ behaviors, finding substitutes for failing SWSs, etc.

The first tool called Functionality Assessment T ool (FAT) is used by ser-
vice engineers to establish relationships between SWSs based on their respective
functionalities (Steps 1 and 2). Functionality categorizes SWSs into either simi-
lar or different (Fig. 4). Multiple assessment techniques like those reported in [5]
and [18] can be integrated into the FAT . Out of the FAT , two values are ob-
tained: degree of similarity (ds) upon which competition and substitution social
networks are built and degree of complementarity (dc) upon which collaboration
social network is built.

Functionality

is either

Similar Different

result in

result in

Competition Substitution Collaboration

Figure4. SWSs categorization based on functionality

12 Maamar et al.

The second tool called N etwork Management T ool (NMT) is used by ser-
vice engineers to build networks of SWSs and oversee changes in these net-
works (Step 3). A social network is either built from scratch or extended after
adding new nodes/edges to it. For each type of social network discussed in Step 3,
the collaboration, substitution, and competition levels (ColL, SubL, CompL) are
calculated using the NMT .

The third tool called N etwork MIning T ool (NIT) is used by service en-
gineers to analyze the details in the three social networks so that the social
behaviors of each SWS are exhibited (Step 4).

4.2 Experience with LinkedWS

The development of LinkedWS is thoroughly detailed in [14]. We briefly illustrate
the use of the FAT and NMT .

Building upon the work of Min et al. [18], the FAT associates a Web
service (s) with a profile that consists of precondition, input, output, effect,
and QoS. The FAT establishes the degree of similarity ds(si, dsj) (i.e., FSL)
(Equation 4) between si and sj using a matching score (ms) function defined in
Equation 5.

Figure5. WSMC interface for ShipperWS

ds(si, sj) =

∑
k wk × ms(csik

, csjk
)

∑
k wk

(4)

where k is the total number of concepts being similar and wk is the weight asso-
ciated with the matching score between a pair of concepts. The resulting degree
of similarity is between 0 (completely dissimilar) and 1 (maximum similarity).

ms(csi
, csj

) = f1 × f2 × f3 (5)

Towards a Method for Engineering Social Web Services 13

where f1 = eαl with α as a constant, f2 = eβh
−e−βh

eβh+e−βh with β as a smoothing

factor, and f3 = eλl
−e−λl

eλl+e−λl with λ as another smoothing factor.

To replace a failing Web service (e.g., ShipperWS) using a substitution social
network, we implemented the Web Services Matching Component (WSMC that
is part of the NMT). The WSMC is triggered when a Web service fails taking
as input the WSDL document of this Web service (Fig. 5). The WSMC permits
to a service engineer to navigate through the substitution social network of a
failed Web service.

To build the substitution social network of ShipperWS (Fig. 6), we identi-
fied manually (using jUDDI) some similar peers such as DeliveryWS, ShipMse,
GoodDelivery, and GoodTransport. Equation 4 assesses the initial weights of the
edges that connect ShipperWS to these Web services. Once the substitution so-
cial network becomes effective these weights are reevaluated as per Equation 2.
For instance the total number of Successful Replacements (

∑
SRwsi,ShipperWS)

that wsi made for ShipperWS is updated where wsi could for example corre-
spond to DeliveryWS.

Figure6. ShipperWS ’s substitution social network

14 Maamar et al.

5 Conclusion

In this paper we discussed a method to engineer social Web services. This en-
gineering took into account the fact that Web services compete against similar
peers during selection, collaborate with different peers during composition, and
replace similar peers during failure. These three cases constitute the basis of
developing networks of social Web services. The engineering method consists of
four steps. In the first step, the objective is to shed the light on the potential
relationships between Web services. In the second step, the objective is to as-
sociate these relationships, once identified, with social networks. In the third
and four steps, the objectives are to build and analyze these networks so that
the social behaviors of Web services are established. Finally, a set of tools like
functionality assessment supporting the engineering method were listed. Future
work would consist of putting social Web services into action like we did in the
LinkedWS project, which should permit a further refinement of the method.

References

1. M. Alrifai, D. Skoutas, and T. Risse. Selecting Skyline Services for QoS-based Web
Service Composition. In Proceedings of the the 19th International World Wide Web
Conference (WWW’2010), Raleigh, North Carolina, USA, 2010.

2. Y. Badr and Z. Maamar. Can Enterprises Capitalize on Their Social Networks?
Cutter IT Journal, 22(10), October 2009.

3. M. Bengtsson and S. Kock. Coopetition in Business Networks to Cooperate and
Compete Simultaneously. Industrial Marketing Management, 29(5), 2000.

4. T. Bui and A. Gacher. Web Services for Negotiation and Bargaining in Electronic
Markets: Design Requirements and Implementation Framework. In Proceedings of
the 38th Hawaii International Conference on System Sciences (HICSS’2005), Big
Island, Hawaii, USA, 2005.

5. B. Di Martino. Semantic Web Services Discovery based on Structural Ontology
Matching. International Journal of Web and Grid Services, 5(1), 2009.

6. K. El-Goarany, I. Saleh, and G. Kulczycki. The Social Service Network - Web 2.0
Can Make Semantic Web Services Happen. In Proceesings of the 10th IEEE Con-
ference on E-Commerce Technology (CEC’2008) and the 5th IEEE Conference on
Enterprise Computing, E-Commerce, and E-Services ((EEE’2008), Washington,
DC, USA, 2008.

7. G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.P. Richter, M. Voß, and
J. Willkomm. A Method for Engineering a True Service-Oriented Architecture.
In Proceedings of the Tenth International Conference on Enterprise Information
Systems (ICEIS’2008), Barcelona, Spain, 2008.

8. W. Fei-Yue, C. Kathleen M., Z. Daniel, and M. Wenji. Social Computing: From
Social Informatics to Social Intelligence. IEEE Intelligent Systems, 22(2), March
2007.

9. M. Fluegge, I. J. G. Santos, N. Paiva Tizzo, and E. R. M. Madeira. Challenges and
Techniques on the Road to Dynamically Compose Web Services. In Proceedings
of the 6th International Conference on Web Engineering (ICWE’2006), Palo Alto,
California, USA, 2006.

Towards a Method for Engineering Social Web Services 15

10. H. Foster, S. Uchitel, J. Magee, J. Kramer, and M. Hu. Using a Rigorous Ap-
proach for Engineering Web Service Compositions: A Case Study. In Proceedings
of the 2005 IEEE International Conference on Services Computing (SCC’2005),
Orkando, Florida, USA, 2005.

11. B. Karakostas and Y. Zorgios. Engineering Service Oriented Systems: A Model
Driven Approach. IGI Global Publishing, 2008.

12. I. King, J. Li, and K. Tong Chan. A Brief Survey of Computational Approaches in
Social Computing. In Proceedings of the International Joint Conference on Neural
Networks (IJCNN’2009), Atlanta, Georgia, USA, 2009.

13. Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. Towards an Agent-based and
Context-oriented Approach for Web Services Composition. IEEE Transactions on
Knowledge and Data Engineering, 17(5), May 2005.

14. Z. Maamar, L. Krug Wives, Y. Badr, S. Elnaffar, K. Boukadi, and N. Faci.
LinkedWS: A Novel Web Services Discovery Model Based on the Metaphor of
“Social Networks”. Simulation Modelling Practice and Theory, Elsevier Science
Publisher, 19(10), 2011.

15. Z. Maamar, Q. Z. Sheng, S. Tata, D. Benslimane, and M. Sellami. Towards an
Approach to Sustain Web Services High-Availability Using Communities of Web
Services. International Journal of Web Information Systems, 5(1), 2009.

16. Z. Maamar, S. Tata, K. Yétongnon, D. Benslimane, and P. Thiran. A Goal-based
Approach to Engineering Capacity-driven Web Services. The Knowledge Engi-
neering Review Journal, Special issue on Web and Mobile Information Services,
2010 (forthcoming).

17. A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi. Towards a Social Network
Based Approach for Services Composition. In Proceedings of the 2010 IEEE In-
ternational Conference on Communications (ICC’2010), Cap Town, South Africa,
2010.

18. L. Min, S. Weiming, H. Qi, and Y. Junwei. A Weighted Ontology-based Semantic
Similarity Algorithm for Web Services. Expert Systems with Applications, 36(10),
December 2009.

19. M. Papazoglou. Web Services: Principles and Technology. Prentice Hall, 2007.
20. X. Xie, B. Du, and Z. Zhang. Semantic Service Composition based on Social

Network. In Proceedings of the 17th International World Wide Web Confer-
ence (WWW’2008), Beijing, China, 2008.

