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INTRODUCTION

About a quarter of a century ago, interactions be-
tween non-living organic matter and microbial plank-
ton were put into a hypothetical context (Pomeroy
1974), which was later formalized and coined the
microbial loop (Azam et al. 1983). Originally, the
microbial loop described the path of dissolved organic
matter (DOM), taken up by heterotrophic bacteria and
converted into living particulate organic matter

(POM), which in turn is grazed upon by protists. Via
the conversion of DOM into bacterial biomass, organic
carbon, which would otherwise not be accessible to
metazoa, becomes available for the higher trophic lev-
els. Since its original formulation, the concept has
influenced several generations of microbial ecologists,
and waves of specific research foci have addressed
several aspects of the microbial loop, starting with
measuring bacterial production (Fuhrman & Azam
1982) and grazing by protists (Fenchel 1984, Sherr et
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ABSTRACT: Our understanding of microbial food web interactions in the ocean is essentially based
on research performed in the euphotic layer, where the interactions between phytoplankton and
prokaryotic plankton, mainly heterotrophic Bacteria, are well established. In the euphotic layer, par-
ticularly in meso- and eutrophic waters, prokaryotic plankton are mainly top-down controlled by bac-
terivorous flagellates and viruses, affecting metabolically active, fast growing populations more than
dormant stages. In the meso- and bathypelagic realm of the ocean, however, prokaryotic plankton
are thought to be mainly bottom-up controlled, because the heterotrophic component of the prokary-
otic community is limited by the availability of organic carbon. However, deep-water prokaryotes
exhibit a number of peculiarities compared to prokaryotes in the euphotic layer, among which are a
large genome size and a gene repertoire indicative of a predominately surface-attached mode of life.
This indicates that deep-water prokaryotic activity might be primarily associated with particles. Our
present knowledge indicates that the microbial communities and their interactions in the deep ocean
are likely very different from those known from surface waters. Increasing efforts to shed light on the
microbial biota of the ocean’s interior will likely lead to the discovery of novel metabolic pathways in
prokaryotes and to the resolution of the current discrepancy between the geochemical evidence of
remineralization rates of organic matter and actual measurements.
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al. 1986), the turnover rates of specific organic com-
pounds (Fuhrman & Bell 1985) to the role of viruses as
predators (Bergh et al. 1989). All these major findings
were made using a black-box approach, disregarding
the different phylogenetic and largely also functional
groups within the individual components of the micro-
bial community as depicted in Fig. 1, until the advent
of molecular techniques in aquatic microbial ecology
in the early 1990s.

The estimated abundance of prokaryotes in the
global oceanic water column amounts to about 1029

cells (Whitman et al. 1998), distributed equally over the
3 main oceanic depth zones: the sunlit euphotic layer,
the mesopelagic layer (200–1000 m depth), and the
bathypelagic realm (1000–4000 m depth) (J. Aristegui
et al. unpubl. data). Abundance does not necessarily
equal importance; however, research over the past 2
decades has unequivocally shown that planktonic
microbes are the main drivers of the marine biogeo-
chemical cycles. Heterotrophic prokaryotes channel
about half of the primary production into the microbial
loop of the euphotic layer (Nagata 2000) and might
compete with eukaryotic phytoplankton for inorganic
nutrients (Obernosterer & Herndl 1995, Thingstad
2000). Besides heterotrophic prokaryotes, depending
on organic carbon for biosynthesis, there is a plethora
of autotrophic prokaryotes in the oceanic water col-
umn, competing for light and inorganic compounds as
energy sources for growth. Well-known photoauto-
trophs such as the genera Prochlorococcus and Syne-
chococcus are abundant members of the microbial
community in the euphotic zone and responsible for

much of the primary production in oligotrophic sub-
tropical gyres (Worden et al. 2000, DuRand et al. 2001).

Only recently, the importance of anaerobic ammo-
nium oxidation by Planktomycetes and ammonia oxi-
dizing Crenarchaeota have been discovered (Francis
et al. 2007). These novel pathways add significantly to
our understanding of the ocean’s nitrogen cycle, and
with more intensive sampling and new technologies,
e.g. (meta)genomic approaches (Nealson & Venter
2007), it is likely that we will discover many more
peculiar metabolic pathways in prokaryotes. New find-
ings emerging over the next decade will allow us to
obtain a refined view on the role of planktonic pro-
karyotic communities and their interactions with the
other groups of the microbial community, the protists
and viruses (Fig. 1). Ultimately, we should be able to
better link the biogeographic distribution of microbial
communities to the cycling of the major elements in the
ocean, and hence arrive at a mechanistic understand-
ing of the microbial loop in the different realms of the
ocean.

This paper builds on findings over the past 2 to 3
decades and discusses our current perception of the
regulation of microbial processes in the oceanic water
column. First, the main components of the microbial
food web and their interactions in the euphotic layer
are summarized. Second, the functional differences
between the microbial loop in the upper sunlit ocean
and the deep ocean are discussed, and new emerging
problems in aquatic microbial ecology are highlighted
that have to be addressed to arrive at a mechanistic
understanding of microbial oceanographic processes.
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Fig. 1. Scheme of the microbial food web structure and cycling of organic and inorganic matter pool in the meso- and bathy-
pelagic realm. Arrows between the different biotic and abiotic compartments indicate the interactions as we know them from the
euphotic layer. Red question marks and crossed arrow indicate major uncertainties on the importance of these interactions

and lack of evidence that this flux is significant in the dark ocean, respectively. DOM: dissolved organic matter
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MICROBIAL PROCESSES IN SURFACE WATERS

Generally, each trophic level is either controlled by
resources (bottom-up) or by predation (top-down). In
surface water food webs, these 2 basic controls can
change rapidly, even over diel cycles (Kuipers et al.
2000, Winter et al. 2004a). In the sunlit surface ocean,
the microbial food web consists of 4 main functional
groups of organisms, i.e. photoautotrophic phytoplank-
ton, heterotrophic prokaryotes, heterotrophic protists,
and viruses (Fig. 1). The distinction of functional groups
is rather artificial, as evidence is accumulating that
there is a continuum among phytoplankton taxa from
entirely autotrophic to obligatory mixotrophic, and in
prokaryotes, chemoautotrophy is abundant as well.

Zubkov & Tarran (2005) found that some phytoplank-
ton do not rely solely on the uptake of inorganic nutri-
ents, but are also capable of directly taking up low mol-
ecular weight DOM. Prokaryotes in the surface ocean
have long been considered to be predominantly hetero-
trophic, despite their ability to efficiently compete with
phytoplankton for inorganic nitrogen and phosphate
(Thingstad 1987, Kirchman 1994). Recent evidence
suggests, however, that some heterotrophic bacteria are
capable of using solar radiation via proteorhodopsin, a
light-driven proton pump providing additional energy
(Béja et al. 2000, Giovannoni et al. 2005, Sabehi et al.
2005, Schwalbach et al. 2005, Frigaard et al. 2006,
Fuhrman et al. 2008). The extent to which this may
supplement heterotrophic metabolism is currently
discussed (see Fuhrman & Steele 2008, this Special).
Similarly, a large number of protistan plankton, the main
predators of prokaryotic plankton along with viruses,
is mixotrophic, i.e. capable of performing photosynthesis
(Andersson et al. 1989, Bennett et al. 1990, Sherr & Sherr
1994, Arenovski et al. 1995). Hence, the microbial food
web in surface waters is characterized by a mix of trophic
strategies in all the living compartments of the classic
microbial loop, making the trophic interactions sub-
stantially more complex than depicted in Fig. 1.

Phytoplankton primary production fuels hetero-
trophic prokaryotic activity either directly via extra-
cellular release, or indirectly via grazing losses to
higher trophic levels (Marañon 2005). Essentially, all
trophic levels, not only primary producers, release
copious amounts of organic matter (largely in dissolved
or colloidal form) into the ambient water, thus provid-
ing substrate for heterotrophic prokaryotes (Lignell
1990, Stoderegger & Herndl 1998, Stoderegger &
Herndl 1999, Nagata 2000, Conan et al. 2007). The
quality of the organic matter and the stoichiometric
balance between available carbon, nitrogen and phos-
phorus determines the efficiency of channeling the
DOM into either biomass production or remineraliza-
tion (Goldman et al. 1987, Obernosterer & Herndl

1995, del Giorgio & Cole 1998, 2000). However, it is
likely that micronutrients (such as Fe, Zn, etc.) also
exert some control on the growth efficiency (Tortell et
al. 1996) and ectoenzymatic activity of bacteria
(Fukuda et al. 2000). The prokaryotic carbon demand
in the euphotic zone is usually high and about 50 to
80% of primary production (Ducklow 1993, Reinthaler
& Herndl 2005, Mouriño-Carballido & McGillicuddy
2006). Thus, much of the newly produced DOM is
potentially retained in the surface ocean.

In most parts of the surface ocean, the microbial food
web and particularly the prokaryotic community relies
mainly on autochthonously produced fresh DOM from
phytoplankton primary production. However, in oligo-
trophic regions, allochthonous organic matter from lat-
eral transfer or dust input from the atmosphere might
be an important subsidy of autochthonously produced
organic matter (del Giorgio et al. 1997, Aristegui et al.
2003, Dachs et al. 2005).

In the sunlit surface ocean, prokaryotic activity in the
top half of the euphotic layer is influenced either
directly (Herndl et al. 1997) or indirectly, via changing
the DOM availability by solar radiation as depicted in
Fig. 2 (Obernosterer et al. 1999a, 2001a,b, Pausz &
Herndl 1999, Obernosterer & Herndl 2000). Bacterial
groups and strains exhibit remarkable differences in
sensitivity to natural levels of solar radiation and in the
recovery from solar radiation-induced DNA damage
(Arrieta et al. 2000, Alonso-Sáez et al. 2006). While
members of the Gammaproteobacteria and Bac-
teroidetes groups are largely resistant to solar radia-
tion, Alphaproteobacteria appear to be sensitive
(Alonso-Sáez et al. 2006). However, these differences
have only limited impact on the overall bacterioplank-
ton community composition in surface waters (Winter
et al. 2001). Overall, bacterioplankton activity seems to
be higher under light conditions than under dark con-
ditions, indicating, on the one hand, photohetero-
trophic growth such as shown for Prochlorococcus spp.
(Church et al. 2006) and, on the other hand, the depen-
dence of heterotrophic prokaryotes on the production
of photosynthetic extracellular release by phytoplank-
ton during the light period (Church et al. 2004). As an
adaptation to harmful UV-B radiation, surface pro-
karyotic plankton have the potential to express pho-
tolyase as an efficient repair mechanism for induced
DNA damage (Aas et al. 1996, Kaiser & Herndl 1997,
Arrieta et al. 2000), while phytoplankton produce
mycosporine-like amino acids as photoprotective pig-
ments (Karentz et al. 1991) which can be taken up by
zooplankton as well.

The extracellular enzymatic activity of prokaryotes
plays a key role in the processing of DOM. Prokaryotes
preferentially utilize high molecular weight DOM, due
to its higher bioreactivity compared to the bulk of low
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molecular weight DOM (Amon & Benner 1994, Benner
2002). This high molecular weight DOM is either
directly derived from phytoplankton extracellular
release or released during grazing by metazoans.
Hoppe et al. (2002) demonstrated that the enzymatic
hydrolysis of DOM is tightly linked to the uptake of the
resulting oligo- or monomers. However, it is often
neglected that, depending on the complexity of the
DOM, several similar types of enzymes are expressed
by prokaryotes that likely increase the efficiency in
cleaving and assimilating DOM (Arrieta & Herndl
2002).

Shifts in the community composition of surface water
prokaryotes are commonly attributed to selective graz-
ing losses, either through bacterivorous flagellates or
viruses (Fuhrman & Noble 1995). Thus, top-down con-
trol is thought to prevail over bottom-up control in the
euphotic layer, particularly in meso- and eutrophic
coastal systems (Billen et al. 1990, Gasol 1994, Tanaka

& Rassoulzadegan 2004, Duffy et al. 2007, Frank et al.
2007). In open ocean surface waters, in contrast, bot-
tom-up control seems to prevail over top-down control
(Carlson et al. 2002, 2004), although shifts from bot-
tom-up to top-down control over diel cycles have been
reported as well (Kuipers et al. 2000).

Efficient grazing requires sufficiently high contact
rates with prokaryotes for both viruses and flagellates.
Generally, a threshold of around 105 prokaryotes ml–1

has been assumed (Fenchel 1986, Weinbauer 2004).
However, this threshold value ignores the fact that
there is indication that both flagellates and viruses
graze primarily selectively. Evidence has been pre-
sented that flagellates preferentially graze on highly
active bacterial populations, while bacteria with low
metabolic activity or in a dormant state experience
only low grazing pressure (del Giorgio et al. 1996).
Viruses are commonly reported to be highly species- or
even strain-specific (Winter et al. 2004b, Hewson &
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Fig. 2. Interaction of hydrodynamics, photochemistry and the microbial food web in the euphotic layer as influenced by solar radi-
ation. During the day, the surface layers of the water column become stratified due to warming by solar radiation leading to
diurnally stratified top layers (Obernosterer et al. 2001a). All organisms in this stratified layer are exposed to a high dose of solar
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Fuhrman 2007). This specificity, however, remains to
be shown for complex prokaryotic communities, since
the members of viral communities are distributed
across different biomes (Sano et al. 2004). Predominant
viral versus flagellate control of the prokaryotic com-
munity can change rapidly, and pronounced diel
cycles in bacteriophage production have been re-
ported (Winter et al. 2004a). Regardless of whether
viruses or flagellates are the dominant factors control-
ling prokaryotic abundance, the selective grazing
pressure on highly active prokaryotic populations
leads to the well-documented situation that the most
active prokaryotic populations in a community are
commonly not the most abundant ones in marine sys-
tems (Bouvier & del Giorgio 2007).

DIFFERENCES OF MICROBIAL PROCESSES IN
SURFACE WATERS VERSUS DEEP WATERS

Generally, prokaryotic abundance and biomass pro-
duction decline exponentially from surface waters to
the bathypelagic layers by about 2 and 3 orders of
magnitude, respectively (Reinthaler et al. 2006). Tradi-
tionally, the deep waters and particularly the bathy-
pelagic realm have been considered to be a homo-
geneous environment with rather constant DOM
concentrations and low temperature. However, recent
research suggests that the dark ocean is more hetero-
geneous than commonly assumed, with relatively
high cell-specific activity. Nevertheless, intermediate
waters and the bathypelagic ocean harbor a simpler
food web than the sunlit surface waters, due to the
absence of phytoplankton that serves as the major food
source for zooplankton in the surface ocean (Lenz et al.
1993, Pakhomov & Perissinotto 1997). However, this
lack of phytoplankton is partly compensated by a
major prokaryotic autotrophic component in the meso-
pelagic waters, recently discovered and described in
more detail below.

Deep-water prokaryotic communities exhibit some
general features that make them distinctly different
from euphotic assemblages. There is a general ten-
dency of increasing nucleic acid content per cell with
depth (Reinthaler et al. 2006). This indicates a larger
genome size than found in surface water prokaryotes
which, in turn, might be indicative of an opportunistic
life style (Lauro & Bartlett 2007). Moreover, most of the
deep water prokaryotes lack the gene responsible for
the expression of photolyase (Lauro et al. 2006). More
genes associated with a preferential surface-attached
life mode have been detected in deep than in surface
waters (DeLong et al. 2006, Lauro et al. 2007).

Despite the decline in prokaryotic abundance with
depth by about 2 orders of magnitude, prokaryotic

richness decreases only by about 30% from the
euphotic to the bathypelagic layer as determined by
molecular fingerprinting techniques (Moeseneder et
al. 2001b, Hewson et al. 2006, Agogué et al. 2007).
There is substantial stratification of the prokaryotic
populations, overall showing distinct clusters for differ-
ent water masses (DeLong et al. 2006). This stratifica-
tion might reflect differences in the organic matter
field with depth (Moeseneder et al. 2001b, DeLong et
al. 2006) or, alternatively, adaptations to pressure and
temperature, as deep water prokaryotes are frequently
phylogenetically most closely affiliated with sea-ice
prokaryotes (Vezzi et al. 2005, Lauro et al. 2006). Mor-
ris et al. (2004) found that the uncultured Chloroflexi-
type SAR202 cluster dominated the bacterial commu-
nity below 500 m depth in the Atlantic, where this
cluster contributes up to 40% to the total bacterial
abundance (Varela et al. 2008).

While the relative contribution of Bacteria to total
prokaryotic abundance decreases with depth, the con-
tribution of Archaea and, more specifically, the Cre-
narchaea increases with depth (Karner et al. 2001,
Moeseneder et al. 2001a, Teira et al. 2006). The role of
deep water Crenarchaea is currently being discussed;
however, there is evidence that at least some are
chemoautotrophs. The only isolate so far, Nitrosop-
umilus maritimus, belonging to the Marine Crenar-
cheaota Group I, as well as genomic and compound-
specific stable isotope data and microautoradiography
coupled with fluorescent in situ hybridization (FISH)
analyses indicate that, at least in the mesopelagic
zone, a substantial fraction of Crenarchaeota uses
CO2 as a carbon source and ammonia oxidation as an
energy donor (Herndl et al. 2005, Könneke et al. 2005,
Ingalls et al. 2006, Wuchter et al. 2006). In the bathy-
pelagic realm, however, ammonia oxidation is likely
not an important energy source considering the low
ammonia concentrations commonly found there. Cor-
responding to that, the bathypelagic crenarchaeal
community is predominantly heterotrophic (Teira et al.
2006, Kirchman et al. 2007).

An important albeit poorly recognized aspect in the
oxygenated deep waters is the magnitude of CO2 fixa-
tion. It has been estimated that dark CO2 fixation in the
meso- and bathypelagic waters amounts to about
1 mmol C m–2 d–1 (Herndl et al. 2005). This is a substan-
tial supplement to the surface ocean-derived organic
carbon flux into the deep ocean. Moreover, it provides
a source of new organic matter production in the dark
ocean besides the modified surface water-derived
organic matter. Hence, dark CO2 fixation might be
considered to be the dark ocean’s ‘primary produc-
tion’, although this dark organic matter production
might still depend indirectly on sunlit surface water
primary production to provide energy sources like
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ammonia. The extent to which this source of primary
production in the deep ocean drives the meso- and
bathypelagic food web remains to be shown.

THE DISSOLVED MATTER FIELD AND
PROKARYOTIC METABOLISM

The stratification of heterotrophic prokaryotic popu-
lations with depth is most likely a reflection of the shift
in the quality and quantity of DOM, rather than of
changes in the grazing pressure (see below, ‘Biotic
interations in the microbial world’). With increasing
depth, the bulk DOM is successively depleted in phos-
phorus (DOP) and nitrogen (DON), leading to an over-
all increase in the DOC:DON:DOP ratio (Benner 2002).
Consequently, the bathypelagic DOM pool is charac-
terized by carbon-rich low molecular weight DOM,
supposed to be degradation products from the re-
mineralization of organic matter by the microbial com-
munity (Benner 2002). There is recent evidence that
about 25% of the detrital carbon pool (dissolved and
particulate) and about 50% of the detrital nitrogen
pool of the deep-water DOM is of prokaryotic origin
(Kaiser & Benner 2008); however, the majority of DOM
in the dark ocean has not yet been identified on a mol-
ecular level.

The lower reactivity of deep-water DOM and POM,
compared to surface water DOM, is reflected in sub-
stantially lower prokaryotic growth yields in the deep
ocean (Reinthaler et al. 2006), which decrease from
~20% in the surface ocean to 2% in the bathypelagic.
Concomitantly with the lower growth yield, deep-
water prokaryotes express more extracellular enzymes
on a per-cell level than surface water prokaryotes (Bal-
tar et al. in press). Even cell-specific alkaline phos-
phatase activity is higher in the ocean’s interior than in
surface waters, even though phosphate is available in
high concentrations in deep waters and heterotrophic
prokaryotes in this environment are usually consid-
ered to be limited by organic carbon availability, rather
than phosphate. This high alkaline phosphatase activ-
ity has been interpreted as a strategy to acquire carbon
moieties of the refractory DOM, rather than phosphate
(Hoppe & Ullrich 1999). The higher growth efficiency
in surface water prokaryotes, in contrast, is accompa-
nied by a generally lower cell-specific ectoenzymatic
activity (Baltar et al. in press).

It seems that prokaryotes in the dark ocean have to use
substrate that is generally considered to be energetically
less favorable for growth. For example, prokaryotic cells
require much more L-amino acids as building blocks for
protein synthesis than D-amino acids, while, at the same
time, increasing ratios of D-/L-amino acid uptake by bulk
prokaryotic plankton with depth have been found (Pérez

et al. 2003). Moreover, Teira et al. (2006) found that about
twice as many cells of bathypelagic Crenarchaeota take
up D-amino acids compared to L-amino acids. Conse-
quently, deep-water prokaryotes apparently have to
invest relatively more energy to support growth than
surface water prokaryotic communities.

Previously, sediment trap data generated the general
view of a sharply decreasing POM flux with depth;
however, particles over a large size spectrum might be
more important in deep waters than hitherto assumed.
This is in part supported by the high nucleic acid con-
tent of deep-water prokaryotes and by genomic evi-
dence suggesting a preferentially attached life-mode
(Lopez-Lopez et al. 2005, DeLong et al. 2006, Martin-
Cuadrado et al. 2007). The variability in surface water
prokaryotic activity over short-time (diel) scales is
largely driven by phytoplankton primary production
and extracellular release of DOM (Pausz & Herndl
2002) and by solar radiation, including harmful UV-
radiation, influencing mostly the upper half of the
euphotic layer (Obernosterer et al. 2001a). Deep-water
prokaryotes, however, might be exposed to spatial
variability of nutrient concentrations, i.e. refractory
DOM and less refractory colloidal and particulate
matter sedimenting at different velocities from the
euphotic layer into the ocean’s interior. Consequently,
the resulting heterogeneity, governed by colloidal and
truly detrital matter, might lead to a heterogeneous
distribution of deep-water microbes. Clearly, there is a
need for refined sampling techniques that take the
fragile nature of bathypelagic detrital matter and the
presumably non-random distribution of deep-water
microbes into account. Conventional sampling devices
are certainly not suited for this purpose.

BIOTIC INTERACTIONS IN THE MICROBIAL
WORLD

In contrast to prokaryotic communities in the
euphotic layer, deep-water communities have so far
been assumed to be bottom-up controlled. This view,
however, is not supported by recent findings. The
prokaryote:flagellate ratio only slightly decreases from
about 10 in surface waters to around 5 in bathypelagic
waters (J. Aristegui et al. unpubl.), while the virus:
prokaryote ratio increases from about 10 in the
euphotic layer to up to 100 in the bathypelagic North
Atlantic (Parada et al. 2007). Although lysogeny
(where the prophage is transmitted through cell divi-
sion of the host) may be the dominant strategy for
viruses in the low-abundance host environment of the
deep ocean (Weinbauer et al. 2003), the relatively high
abundance of viruses in deep waters cannot be re-
conciled with a random distribution of prokaryotes.
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Similarly, it has been hypothesized that a certain
threshold is required to maintain bacterivory in flagel-
lates (Fenchel 1982, 1986). Thus, it remains enigmatic
how these 2 groups of predators can survive in the
ocean’s interior, considering that the abundance of
prokaryotes in the bathypelagic is 2 orders of magni-
tude lower than in surface waters. The knowledge of
microbial food web interactions we have accumulated
over the past decades is based on surface waters, and
it is likely that viruses and flagellates either behave
fundamentally different in deep waters compared to
surface waters, or that bacterivorous grazing and viral
infection are largely restricted to colloidal or particu-
late matter, where prokaryotic abundances are likely
to be orders of magnitude higher than in the nutrient-
deprived surrounding waters. If the assumption is true
that microbes in the ocean’s interior are more depen-
dent on particle rain than microbes in the euphotic
zone, the resulting non-random distribution of deep-
water microbes might facilitate synergistic interactions
in the cycling of matter. The potential implication of
microzones for microbes has been suggested for some
time; however, most measurements still ignore a
potential non-random distribution of microbes in the
oceanic water column (Azam & Malfatti 2007).

THE CHALLENGE REMAINS IN THE
(POST)GENOMIC ERA: MICROBIAL PROCESSES

VERSUS GEOCHEMICAL EVIDENCE

Despite the substantial insights we have gained over
the past few years on the metabolism and diversity of
microbes in the ocean, the gap between geochemical
estimates of ocean carbon flow and microbial rate mea-
surements still exists (Reinthaler et al. 2006). Particu-
larly for the deep ocean, we still lack a mechanistic
understanding of microbial processes in conjunction
with the physico-chemical environment, which makes
it impossible to resolve the biogeochemical fluxes in
the largest biome of the ocean — but now there is hope.
Microbial oceanography is rapidly developing, linking
hydrology, biogeochemistry, microbial ecology and
genomics together to create a new scientific field (Karl
2007). The available tools range from remote sensing
to single cell analyses, from cost-effective sequencing
technology such as pyrosequencing (Sogin et al. 2006)
to compound-specific stable isotope analyses linked to
genomic approaches. Taken together, these tools will
allow us to obtain an inventory of all microbial proteins
and assign functions to them.

Open ocean observatories like the Hawaii ocean
time-series (HOT) and the Bermuda Atlantic time-
series (BATS) have revealed long-term trends in the
upper layers of the open ocean and the in situ monitor-

ing systems that are currently being developed will
allow us to obtain near-real time data on the dynamics
of the microbial communities in the ocean’s interior
over the next 2 decades. With these tools, we will be
able to shed light onto the deep sea microbial commu-
nities and decipher natural variability from anthro-
pogenically induced alterations in the largest oceanic
subsystem, the dark ocean.
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