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Abstract

The computational model of population protocols is a formalism that allows the
analysis of properties emerging from simple and pairwise interactions among a very
large number of anonymous finite-state agents. Significant work has been done so far
to determine which problems are solvable in this model and at which cost in terms of
states used by the agents and time needed to converge. The problem tackled in this
paper is the population proportion problem: each agent starts independently from each
other in one of two states, say A or B, and the objective is for each agent to determine
the proportion of agents that initially started in state A, assuming that each agent
only uses a finite set of states, and does not know the number n of agents. We propose
a solution which guarantees that in presence of a uniform probabilistic scheduler every
agent outputs the population proportion with any precision ε ∈ (0, 1) with any high
probability after having interacted O(log n) times. The number of states maintained
by every agent is optimal and is equal to 2d3/(4ε)e + 1. Finally, we show that our
solution is optimal in time and space to solve the counting problem, a generalization of
the proportion problem. Finally, simulation results illustrate our theoretical analysis.
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1 Introduction

In 2004, Angluin et al. [4] have proposed a model that allows the analysis of emergent global
properties based on pairwise interactions. This model, named the population protocol,
provides minimalist assumptions on the computational power of the agents: agents are
finite-state automata, identically programmed, with no identity, unaware of the population
size n, and they progress in their computation through random pairwise interactions. The
objective of this model is to ultimately converge to a state from which the sought property
can be derived from any agent [8]. Examples of systems whose behavior can be modeled
by population protocols range from molecule interactions of a chemical process to sensor
networks in which agents, which are small devices embedded on animals, interact each
time two animals are in the same radio range. A considerable amount of work has been
done so far to determine which properties can emerge from pairwise interactions between
finite-state agents, together with the derivation of lower bounds on the time and space
needed to reach such properties (e.g., [2, 6, 12, 14, 17]). Among them, is majority. Briefly,
each agent starts independently from each other in one of two input states, say A and B,
and the objective for each agent is to eventually output yes if a majority of agents started
their execution in input state A and no otherwise. Section 4 provides an overview of the
results recently obtained for the majority task.

In this paper, we focus on a related but more general question. Namely, instead of
having each agent answer yes if a majority of agents initially started their execution in
input state A, one may ask the following question:

”Is it feasible for each agent to compute quickly and with any high precision the pro-
portion of agents that started in the input state A?”.

Answering such a question is very important in the context of, for example, infectious-
disease surveillance of large-scale animal populations. In this context, different kinds of
alerts could be triggered according to the infected population proportion (e.g., Alert 1
is triggered if less than 0.05% of the population is infected, Alert 2 if this proportion
lies in [0.05%, 3.0%), Alert 3 if it lies in [3.0%, 10.0%), and so on . . .). Input state A
would manifest an excessive temperature of an animal while input state B would indicate
a safe temperature. By relying on the properties exhibited by our population protocol
(convergence time logarithmic in the population size and memory space proportional to
the sought precision), one can easily implement a regular and self-autonomous monitoring
of large-scale populations.

We answer affirmatively to this question, and we propose a population protocol that
allows each agent to converge to a state which, when queried, provides the proportion of
agents that started in a given input state. Specifically, each agent is a (2m+ 1)-finite state
machine, m ≥ 1, where m is the value associated to input state A and −m is the one
associated to input state B. Each agent starts its execution with m or −m, and each pair
of agents that meet, adopt the average of their values (or as close as they can get when
values are restricted to integers, as will be clarified in Section 5). The rationale of this
method [1, 3, 16] is to preserve the sum of the initial values, and after a small number of
pairwise interactions, to ensure that every agent converges with high probability to a state
from which it derives the proportion of agents that started in a given state. Technically, our
protocol guarantees that each agent is capable of computing with any precision ε ∈ (0, 1)
the proportion of agents that initially started in a specific input state by using 2d3/(4ε)e+1
states. This is achieved in no more than (−2 ln ε+ 8.47 lnn− 13.29 ln δ − 2.88) interactions
with probability at least 1− δ, for any δ ∈ (0, 1).

Our second contribution relates to the counting problem. The counting problem gener-
alizes the majority problem by requiring, for each agent, to converge to a state in which each
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agent is capable of, assuming the knowledge of n, computing nA or nB, where nA and nB
represent respectively the number of agents that started in state A and B. In the present
paper, we prove that the counting problem can be solved using O(n) states per agent. This
significantly improves upon a previous analysis [16] that shows that O(n3/2/δ1/2) states
allow each agent to converge to the exact solution in no more than a logarithmic number
in n of interactions, with δ ∈ (0, 1). What is very important to notice is that this drastic
improvement is due to an original convergence analysis that allows us to refine previous
results. Indeed, both [16] and the present paper rely on the same interaction rules, however
by precisely characterizing the evolution of the interacting agents, our present analysis is
highly tighter. We also demonstrate that any protocol that solves the counting problem re-
quires Ω(log n) parallel interactions to converge and Ω(n) local states. As will be detailed,
this shows that our algorithm is an optimal solution both in space and time to solve the
counting problem and optimal in space to solve the proportion one.

The remainder of this paper is organized as follows. Section 2 presents the popula-
tion protocol model. Section 3 specifies the problem addressed in this work. Section 4
provides an overview of the most recent population protocols. The protocol to compute
the population proportion is presented in Section 5. Analysis of the protocol is detailed
in Section 6. We show in Section 7, that our protocol is optimal both in space and time.
We have simulated our protocol to illustrate our theoretical analysis. Section 8 presents a
summary of these simulation results. Finally, Section 9 concludes.

2 Population protocols model

The population protocol model has been introduced by Angluin et al. [4]. This model
describes the behavior of a collection of agents that interact pairwise. The following def-
inition is from Angluin et al [7]. A population protocol is characterized by a 6-tuple
(Q,Σ, Y, ι, ω, f), over a complete interaction graph linking the set of n agents, where Q is
a finite set of states, Σ is a finite set of input symbols, Y is a finite set of output symbols,
ι : Σ→ Q is the input function that determines the initial state of an agent, ω : Q→ Y is
the output function that determines the output symbol of an agent, and f : Q×Q→ Q×Q
is the transition function that describes how any two distinct agents interact and locally
update their states. Initially all the agents start with a initial symbol from Σ, and upon
interactions update their state according to the transition function f . Interactions between
agents are orchestrated by a random scheduler: at each discrete time, any two agents are
randomly chosen to interact with a given distribution. Note that the random scheduler is
fair, meaning that any possible interaction cannot be avoided forever. The notion of time
in population protocols refers to as the successive steps at which interactions occur, while
the parallel time is equal to the total number of interactions averaged by n [8]. Agents
do not maintain nor use identifiers (agents are anonymous and cannot determine whether
any two interactions have occurred with the same agents or not). However, for ease of

presentation, the agents are numbered 1, 2, . . . , n. We denote by C
(i)
t the state of agent i

at time t. The stochastic process C = {Ct, t ≥ 0}, where Ct = (C
(1)
t , . . . , C

(n)
t ), represents

the evolution of the population protocol. The state space of C is thus Qn and a state of
this process is also called a protocol configuration.

3 The Proportion Problem

We consider a set of n agents, interconnected by a complete graph, that start their execution
in one of two states of Σ = {A,B}. Let nA be the number of agents whose initial state is
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A and nB be the number of agents that start in state B. The quantity γA = nA/n (resp.
γB = nB/n) is the proportion of the agents that initially started in state A (resp. in state
B). The output set Y is the set of all possible values of γA, that is a subset of [0, 1]. In

the following we introduce the notation γ = γA − γB. Let ωA(C
(i)
t ) be the approximation

of γA by agent i at time t.
A population protocol solves the proportion problem within τ steps (with preferably τ

in O(log n)) if for all δ ∈ (0, 1), for all ε ∈ (0, 1) and for all t ≥ τ , we have

P{|ωA(C
(i)
t )− γA| < ε for all i = 1, . . . , n} ≥ 1− δ.

4 Related Work

In 2004, Angluin et al. [4] have formalized the population protocol model, and have shown
how to express and compute predicates in this model. Then in [5] the authors have com-
pletely characterized the computational power of the model by establishing the equivalence
between predicates computable in the population model and those that can be defined in
the Presburger arithmetic. Since then, there has been a lot of work on population proto-
cols including the majority problem [2, 6, 12, 14, 17], the leader election problem [9, 15], in
presence of faults [11], and on variants of the model [10,13].

The closest problem to the one we address is the computation of the majority. In
this problem, all the agents start in one of two distinguished states and they eventually
converge to 1 if γ > 0 (i.e. nA > nB), and to 0 if γ < 0 (i.e. nA < nB). In [12, 14] the
authors propose a four-state protocol that solves the majority problem with a convergence
parallel time logarithmic in n but only in expectation. Moreover, the expected convergence
time is infinite when nA and nB are close to each other (that is γ approaches 0). The
authors in [6,17] propose a three-state protocol that converges with high probability after
a convergence parallel time logarithmic in n but only if γ is large enough, i.e when |nA −
nB| ≥

√
n log n. Alistarh et al. [2] propose a population protocol based on an average-and-

conquer method to exactly solve the majority problem. Their algorithm uses two types of
interactions, namely, averaging interactions and conquer ones. The first type of interaction
is close to the one used in our protocol while the second one is used to diffuse the result
of the computation to the zero state agents. Actually, to show their convergence time,
they need to assume a rather large number of intermediate states (i.e. 2d states, with
d = 1, 000). This is essentially due to the fact that they need to prove that all the agents
with maximum positive values and minimal negative values will have sufficiently enough
time to halve their values. Note that in practice, their algorithm does not require more than
n state to converge to the majority, however their proof necessitates m+ 1, 000 logm log n
with log n logm ≤ m ≤ n states, and at least 432 logm log n interactions per agent to
converge to the majority, where m is the initial value associated to state A.

In [16], the authors have presented a solution to the counting problem. As previously
said, the counting problem generalizes the majority problem by requiring, for each agent,
to converge to a state in which each agent is capable of, assuming the knowledge of n,
computing nA or nB, where nA and nB represent respectively the number of agents that
started in state A and B. Both [16] and the present paper use the same interaction rules,
but of course the output functions in both papers are different. The originality of [16],
beyond tackling a new problem, was a proof of convergence based on tracking the euclidean
distance between the random vector of all agents’ values and the limiting distribution. In
the present paper, we provide a highly tighter analysis which shows that the interaction
rules together with the ”counting” and ”proportion” output functions are optimal solutions
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to solve both problems.

5 Computing the Proportion

Our protocol uses the average technique to compute the proportion of agents that started
their execution in a given state A. The set of input of the protocol is Σ = {A,B}, and
the input function ι is defined by ι(A) = m and ι(B) = −m, with m a positive integer.

This means that, for every i = 1, . . . , n, we have C
(i)
0 ∈ {−m,m}. At each discrete

instant t, two distinct indices i and j are chosen among 1, . . . , n with probability pi,j(t).
Once chosen, the couple (i, j) interacts, and both agents update their respective local

state C
(i)
t and C

(j)
t by applying the transition function f , leading to state Ct+1, given by

f(C
(i)
t , C

(j)
t ) = (C

(i)
t+1, C

(j)
t+1), with

(
C

(i)
t+1, C

(j)
t+1

)
=

(⌊
C

(i)
t + C

(j)
t

2

⌋
,

⌈
C

(i)
t + C

(j)
t

2

⌉)
and C

(m)
t+1 = C

(m)
t for m 6= i, j. (1)

The set Q of states is {−m,−m + 1, . . . ,m − 1,m}. The output function is given, for all
x ∈ Q by,

ωA(x) = (m+ x)/2m.

Finally, the set of output Y is the set of all possible values of ωA, i.e.

Y =

{
0,

1

2m
,

2

2m
, . . . ,

2m− 2

2m
,
2m− 1

2m
, 1

}
.

6 Analysis of the Proportion Protocol

We denote by Xt the random variable representing the choice at time t of two distinct in-
dices i and j among 1, . . . , n with probability pi,j(t), that is P{Xt = (i, j)} = pi,j(t).
We suppose that the sequence {Xt, t ≥ 0} is a sequence of independent and iden-
tically distributed random variables. Since Ct is entirely determined by the values of
C0, X0, X1, . . . , Xt−1, this means in particular that the random variables Xt and Ct are
independent and that the stochastic process C is a discrete-time homogeneous Markov
chain. As usual in population protocols, we suppose that Xt is uniformly distributed, i.e.
that is

pi,j(t) =
1

n(n− 1)
.

We will use in the sequel the Euclidean norm denoted simply by ‖.‖ and the infinite norm
denoted by ‖.‖∞ defined for all x = (x1, . . . , xn) ∈ Rn by

‖x‖ =

(
n∑
i=1

x2i

)1/2

and ‖x‖∞ = max
i=1,...,n

|xi|.

It is well-known that these norms satisfy ‖x‖∞ ≤ ‖x‖ ≤
√
n‖x‖∞.

Lemma 1 For every t ≥ 0, we have

n∑
i=1

C
(i)
t =

n∑
i=1

C
(i)
0 .
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Proof. The proof is immediate since the transformation from Ct to Ct+1 described in
Relation (1) does not change the sum of the entries of Ct+1. Indeed, from Relation (1), we

have C
(i)
t+1 + C

(j)
t+1 = C

(i)
t + C

(j)
t and the other entries do not change their values.

We denote by ` the mean value of the sum of the entries of Ct and by L the row vector
of Rn with all its entries equal to `, that is

` =
1

n

n∑
i=1

C
(i)
t and L = (`, . . . , `).

Our analysis is orchestrated as follows. By relying on the mathematical tool derived
in Theorem 2, we show in Theorem 5 that the stochastic process Ct belongs to the ball
of radius

√
n/2 and center L in the 2-norm, with any high probability, after no more

than O(log n) parallel time. Then, assuming that the stochastic process Ct belongs to the
ball of radius

√
n/2 and that ` − b`c 6= 1/2, we demonstrate that the stochastic process

Ct belongs to the open ball of radius 3/2 and center L in the infinite norm, with any
high probability after no more than O(log n) parallel time (Theorem 6). In practice this
means that all the entries of the subsequent configurations will be among the three closest
integer values of `. Then by applying Theorem 5 and Theorem 6 (if ` − b`c 6= 1/2) or
Theorem 4 (otherwise), we derive our main theorem (see Theorem 7) which shows that in
both cases the stochastic process Ct belongs to an open ball of radius 3/2 and center L in
the infinite norm, with any high probability in O(log n) parallel time. Finally, we have all
the necessary tools to construct an output function which solves the proportion problem
in O (log n− log ε− log δ) parallel time, and with O(1/ε) states, for any ε, δ ∈ (0, 1) (see
Theorem 8). In order to simplify the writing we will use the notation Yt = ‖Ct−L‖2 when
needed and we denote by 1{A} the indicator function which is equal to 1 if condition A is
satisfied and 0 otherwise.

The following Theorem is a conditional version of Theorem 6 of [16].

Theorem 2 For every 0 ≤ s ≤ t and y ≥ 0, we have

E (Yt | Ys ≥ y) ≤
(

1− 1

n− 1

)t−s
E (Ys | Ys ≥ y) +

n

4
. (2)

Proof. From Relations (1) we have, for every t ≥ 0,

Yt+1 = Yt −
1

2

n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
1{Xt=(i,j)}.

Multiplying on both sides by 1{Ys≥y} gives

Yt+11{Ys≥y} = Yt1{Ys≥y} −
1

2

n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
1{Ys≥y}1{Xt=(i,j)}.

(3)
Taking the expectations and using the fact that Xt and Ct are independent, we get

E
(
Yt+11{Ys≥y}

)
= E

(
Yt1{Ys≥y}

)
− 1

2
E

 n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
1{Ys≥y}

 pi,j(t).

5



Since

pi,j(t) =
1

n(n− 1)
,

we obtain

E
(
Yt+11{Ys≥y}

)
= E

(
Yt1{Ys≥y}

)
− 1

2n(n− 1)
E

 n∑
i=1

n∑
j=1

[(
C

(i)
t − C

(j)
t

)2
− 1{C(i)

t +C
(j)
t odd}

]
1{Ys≥y}

 .

It has been shown in [16], that

n∑
i=1

n∑
j=1

(
C

(i)
t − C

(j)
t

)2
= 2nYt.

If qt denotes the number of odd entries of Ct, we have

n∑
i=1

n∑
j=1

1{C(i)
t +C

(j)
t odd} = 2qt(n− qt).

The function g defined, for x ∈ [0, n], by g(x) = x(n−x) has its maximum at point x = n/2,
so we have 0 ≤ g(x) ≤ n2/4. This gives

n∑
i=1

n∑
j=1

1{C(i)
t +C

(j)
t odd} ≤

n2

2
.

It follows that

E
(
Yt+11{Ys≥y}

)
≤
(

1− 1

n− 1

)
E
(
Yt1{Ys≥y}

)
+

n

4(n− 1)
P{Ys ≥ y},

that is

E
(
Yt1{Ys≥y}

)
≤
(

1− 1

n− 1

)t−s
E
(
Ys1{Ys≥y}

)
+

n

4(n− 1)
P{Ys ≥ y}

t−1∑
i=0

(
1− 1

n− 1

)i
.

Since
t−1∑
i=0

(
1− 1

n− 1

)i
≤
∞∑
i=0

(
1− 1

n− 1

)i
= n− 1,

we get

E
(
Yt1{Ys≥y}

)
≤
(

1− 1

n− 1

)t−s
E
(
Ys1{Ys≥y}

)
+
n

4
P{Ys ≥ y},

and thus we have

E (Yt | Ys ≥ y) ≤
(

1− 1

n− 1

)t−s
E (Ys | Ys ≥ y) +

n

4
,

which completes the proof.

Lemma 3 The sequence Yt = ‖Ct − L‖2 is decreasing with t.
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Proof. See [16].

Theorem 4 For all δ ∈ (0, 1), if `− b`c = 1/2 and if there exists a constant K such that
‖C0 − L‖∞ ≤ K, then, for every t ≥ (n− 1) (2 lnK + lnn− ln δ), we have

P{‖Ct − L‖∞ 6= 1/2} ≤ δ.

Proof. If `− b`c = 1/2 then, since all the C
(i)
t are integers, we have |C(i)

t − `| ≥ 1/2, for
every i = 1, . . . , n. It follows that

‖Ct − L‖2 ≥
n

4
.

If there exists i such that |C(i)
t − `| > 1/2 then we have ‖Ct − L‖2 > n/4. Conversely, if

|C(i)
t − `| = 1/2, for every i then we have ‖Ct − L‖2 = n/4. We thus have shown that

‖Ct − L‖2 =
n

4
⇐⇒ ‖Ct − L‖∞ =

1

2
. (4)

Thus, if ‖Ct − L‖2 > n/4 then there exists i such that |C(i)
t − `| > 1/2. In this case and

for this value of i, since the C
(j)
t are integers and since `− b`c = 1/2, we necessarily have

|C(i)
t − `| ≥ 3/2. This means, in this case, that

‖Ct − L‖2 ≥ (n− 1)

(
1

2

)2

+

(
3

2

)2

=
n

4
+ 2.

We then have
‖Ct − L‖2 >

n

4
⇐⇒ ‖Ct − L‖2 ≥

n

4
+ 2,

and
‖Ct − L‖2 <

n

4
+ 1 =⇒ ‖Ct − L‖2 <

n

4
+ 2 =⇒ ‖Ct − L‖2 =

n

4
.

Thus
‖Ct − L‖2 <

n

4
+ 1⇐⇒ ‖Ct − L‖2 =

n

4
. (5)

From Theorem 2 in which we set s = 0 and y = 0, we obtain

E(‖Ct − L‖2 − n/4) ≤
(

1− 1

n− 1

)t
E(‖C0 − L‖2).

Let τ = (n− 1) (2 lnK + lnn− ln δ). For t ≥ τ , we have(
1− 1

n− 1

)t
≤ e−t/(n−1) ≤ e−τ/(n−1) =

δ

nK2
.

Moreover, since ‖C0 − L‖2 ≤ n‖C0 − L‖2∞ ≤ nK2, we get E(‖C0 − L‖2) ≤ nK2 and thus
E(‖Ct − L‖2 − n/4) ≤ δ. Using the Markov inequality, for t ≥ τ , we obtain

P{‖Ct − L‖2 − n/4 ≥ 1} ≤ δ.

Putting together equivalences (4) and (5) leads to

‖Ct − L‖2 −
n

4
< 1⇐⇒ ‖Ct − L‖∞ =

1

2

and then, for t ≥ τ ,

P{‖Ct − L‖∞ 6= 1/2} = P{‖Ct − L‖2 − n/4 ≥ 1} ≤ δ

which completes the proof.
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Theorem 5 For all δ ∈ (0, 4/5), if there exists a constant K such that K ≥
√
n/2 and

‖C0 − L‖ ≤ K then, for all t ≥ nθ, we have

P{‖Ct − L‖2 ≥ n/2} ≤ δ,

where θ = 2 lnK − lnn+ 3 ln 2− 2 ln 2

2 ln 2− ln 3
ln δ.

Proof. Let (Tk)k≥0 be the sequence of instants defined by T0 = 0 and

Tk+1 = Tk +

⌈
(n− 1) ln

(
8E(YTk | YTk ≥ n/2)

n

)⌉
. (6)

From Theorem 2, we have, for every k ≥ 0, by taking y = n/2, t = Tk+1 and s = Tk,

E
(
YTk+1

| YTk ≥ n/2
)
≤
(

1− 1

n− 1

)Tk+1−Tk
E (YTk | YTk ≥ n/2) +

n

4
.

Using the fact that for all x ∈ [0, 1), 1 − x ≤ e−x and by definition of the sequence (Tk),
we have (

1− 1

n− 1

)Tk+1−Tk
≤ e−(Tk+1−Tk)/(n−1) ≤ n

8E (YTk | YTk ≥ n/2)
.

This leads to

E
(
YTk+1

| YTk ≥ n/2
)
≤ 3n

8
. (7)

Using the conditional Markov inequality, we get

P{YTk+1
≥ n/2 | YTk ≥ n/2} ≤

2E
(
YTk+1

| YTk ≥ n/2
)

n
≤ 3

4
.

For every k ≥ 0, we introduce the sequence (αk)k≥1 defined by

α0 =
3n

8K2
and αk = max

{
P{YTk ≥ n/2 | YTk−1

≥ n/2}, 3n

8K2

}
, for k ≥ 1.

For k ≥ 1, using the fact that the sequence Yt is decreasing (see Lemma 3), we have

E(YTk | YTk−1
≥ n/2) ≥ E(YTk1{YTk≥n/2}

| YTk−1
≥ n/2)

= E(YTk | YTk ≥ n/2, YTk−1
≥ n/2)P{YTk ≥ n/2 | YTk−1

≥ n/2}
= E(YTk | YTk ≥ n/2)P{YTk ≥ n/2 | YTk−1

≥ n/2},

which can be written as

E(YTk | YTk ≥ n/2) ≤
E(YTk | YTk−1

≥ n/2)

P{YTk ≥ n/2 | YTk−1
≥ n/2}

and, using (7), as

E(YTk | YTk ≥ n/2) ≤ 3n

8P{YTk ≥ n/2 | YTk−1
≥ n/2}

.

On another hand, using again the fact that the sequence Yt is decreasing (see Lemma 3)
and since YT0 = Y0 = ‖C0 − L‖2 ≤ K2, we have, for k ≥ 0,

E(YTk | YTk ≥ n/2) ≤ E(YT0 | YTk ≥ n/2) ≤ K2.
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Putting together these two inequalities gives, for k ≥ 1,

E(YTk | YTk ≥ n/2) ≤ min

{
3n

8P{YTk ≥ n/2 | YTk−1
≥ n/2}

,K2

}
≤ 3n

8
min

{
1

P{YTk ≥ n/2 | YTk−1
≥ n/2}

,
8K2

3n

}
=

3n

8αk
.

By definition of α0, we have for every k ≥ 0,

E(YTk | YTk ≥ n/2) ≤ 3n

8αk
.

Using this inequality in the definition of the sequence (Tk) given by (6), we obtain, for
k ≥ 0,

Tk+1 ≤ Tk + d(n− 1) ln(3/αk)e ≤ Tk + (n− 1) ln(3/αk) + 1.

Summing the differences Ti+1 − Ti for i = 0 to k − 1, we obtain, for k ≥ 1,

Tk ≤ (n− 1)

(
k ln(3)− ln

(
k−1∏
i=0

αi

))
+ k. (8)

For k ≥ 1, since YTk is decreasing (see Lemma 3), we have P{YTk ≥ n/2 | YTk−1
< n/2} = 0,

and so

P{YTk ≥ n/2} = P{YTk ≥ n/2 | YTk−1
≥ n/2}P{YTk−1

≥ n/2} ≤ αkP{YTk−1
≥ n/2},

which leads to

P{YTk ≥ n/2} ≤
k∏
i=1

αi. (9)

Since P{YTk ≥ n/2 | YTk−1
≥ n/2} ≤ 3/4 and K ≥

√
n/2, we obtain by definition αk ≤ 3/4

for every k ≥ 0. Now, for all δ ∈ (0, 1) there exists k ≥ 1 such that

k∏
i=1

αi < δ ≤
k−1∏
i=1

αi.

We then have, since α0 = 3n/(8K2),

− ln

(
k−1∏
i=0

αi

)
= − ln

(
k−1∏
i=1

αi

)
− ln(α0)

≤ − ln(δ)− ln(n)− ln(3) + 3 ln(2) + 2 ln(K).

Moreover, since αk ≤ 3/4, we have δ ≤ (3/4)k−1 which gives

k − 1 ≤ − ln(δ)

2 ln(2)− ln(3)
.

Putting these results into (8) and using the definition of θ, gives

Tk ≤ (n− 1)θ + 1− ln(δ)

2 ln(2)− ln(3)
≤ nθ.

9



Note that this last inequality is valid because we have supposed δ ≤ 4/5. This is the case
in practice, nevertheless to deal with the case where δ ∈ (4/5, 1) it suffices to replace θ by
θ + 1.

We finally obtain, for t ≥ nθ, from (9) and using the fact that Yt is decreasing

P{Yt ≥ n/2} ≤ P{Ynθ ≥ n/2} ≤ P{YTk ≥ n/2} ≤
k∏
i=1

αi ≤ δ,

which completes the proof.

Theorem 6 For all δ ∈ (0, 1), if ‖C0 − L‖ ≤
√
n/2 and ` − b`c 6= 1/2 then we have, for

every t ≥ 1600(n− 1) (lnn− ln δ − 4 ln 2 + ln 3) /189,

P{‖Ct − L‖∞ ≥ 3/2} ≤ δ.

Proof. Let λ be defined by

λ =


`− b`c if `− b`c < 1/2

`− d`e if `− b`c > 1/2

Note that λ is positive in the first case and negative in the second one. In both cases we
have |λ| < 1/2 and `− λ is the closest integer to `.

If ‖C0−L‖ ≤
√
n/2 then, since ‖Ct−L‖ is decreasing, we also have ‖Ct−L‖ ≤

√
n/2,

for every t ≥ 0. It follows that

‖Ct − L‖∞ ≤ ‖Ct − L‖ ≤
√
n/2.

Since |λ| ≤ 1/2, this means that, for every i = 1, . . . , n, we have

−1

2
−
√
n

2
≤ λ−

√
n

2
≤ C(i)

t − `+ λ ≤ λ+

√
n

2
≤ 1

2
+

√
n

2
.

Let B = d1/2 +
√
n/2e. For k ∈ {−B,−B + 1, . . . , B}, we denote by αk,t the number of

agents with the value `− λ+ k at time t, that is

αk,t =
∣∣∣{i ∈ {1, . . . , n} | C(i)

t = `− λ+ k
}∣∣∣ ,

where the absolute value of a set is its cardinality. It is easily checked that

B∑
k=−B

αk,t = n. (10)

Moreover we have, by definition of αk,t,

B∑
k=−B

(`− λ+ k)αk,t =

n∑
i=1

C
(i)
t = n`,

which gives using (10)
B∑

k=−B
kαk,t = nλ. (11)

10



In the same way, again by definition of αk,t, we have

B∑
k=−B

(`− λ+ k)2αk,t =
n∑
i=1

(
C

(i)
t

)2
= ‖Ct‖2.

Observing that ‖Ct − L‖2 = ‖Ct‖2 − n`2 and using (10) and (11), we obtain

B∑
k=−B

k2αk,t = ‖Ct − L‖2 + nλ2. (12)

Since ‖Ct−L‖2 is decreasing, using the hypothesis ‖C0−L‖2 ≤ n/2, we obtain ‖Ct−L‖2 ≤
n/2 and thus

B∑
k=−B

k2αk,t ≤
n

2
+ nλ2. (13)

Let x be defined by

x =
B∑
k=0

αk,t.

We then have
−1∑

k=−B
αk,t = n− x

and
−1∑

k=−B
kαk,t ≤

−1∑
k=−B

−αk,t = −(n− x).

Using (11), we get
B∑
k=1

kαk,t = nλ−
−1∑

k=−B
kαk,t ≥ nλ+ n− x.

We also have using the two previous inequalities

B∑
k=−B

k2αk,t =

B∑
k=1

k2αk,t +

−1∑
k=−B

k2αk,t ≥
B∑
k=1

kαk,t −
−1∑

k=−B
kαk,t ≥ 2(n− x) + nλ.

Combining this inequality with (13) we obtain

2(n− x) + nλ ≤
B∑

k=−B
k2αk,t ≤

n

2
+ nλ2.

These two bounds lead to

x ≥ 3n

4
+
nλ(1− λ)

2
.

Since |λ| < 1/2 we have λ(1− λ) > −3/4, which gives

x =
B∑
k=0

αk,t >
3n

8
.
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Using the same reasoning to the sum
∑0

k=−B αk,t leads to

B∑
k=0

αk,t >
3n

8
and

0∑
k=−B

αk,t >
3n

8
. (14)

Let us now introduce the sequences (Nt)t≥0 and (Φt)t≥0 defined by

Nt =
B∑
k=2

αk,t +
−2∑

k=−B
αk,t and Φt =

B∑
k=2

k2αk,t +
−2∑

k=−B
k2αk,t.

Since αk,t are non negative integers, we have, for every t ≥ 0,

Nt = 0⇐⇒ Φt = 0.

We also introduce the sets H+
t and H−t defined by

H+
t = {i ∈ {1, . . . , n} | C(i)

t − `+ λ ≥ 2},

H−t = {i ∈ {1, . . . , n} | C(i)
t − `+ λ ≤ −2}

and we define Ht = H+
t ∪H

−
t . It is easily checked that

Nt = |Ht| and Φt =
∑
i∈Ht

(
C

(i)
t − `+ λ

)2
.

Since |λ| < 1/2 we have, using (13)

4Nt ≤ Φt ≤
B∑

k=−B
k2αk,t ≤

n

2
+ nλ2 ≤ 3n

4
, (15)

which gives

Nt ≤
3n

16
.

Let I+t and I−t be the sets defined by

I+t = {i ∈ {1, . . . , n} | C(i)
t − `+ λ ≥ 0},

I−t = {i ∈ {1, . . . , n} | C(i)
t − `+ λ ≤ 0}.

Relations (14) can be rewritten as

|I+t | ≥
3n

8
and |I−t | ≥

3n

8
. (16)

Recall that the random variable Xt, which is the pair of agents interacting at time t, is
uniformly distributed, i.e., for every i, j ∈ {1, . . . , n} with i 6= j, we have

P{Xt = (i, j)} =
1

n(n− 1)
.

The main way to decrease Φt is that an agent of H+
t interacts with an agent of I−t or that

an agent of H−t interacts with an agent of I+t , at time t. So, we consider the probability

12



that an agent of H+
t interacts with an agent of I−t or that an agent of H−t interacts with

an agent of I+t , at time t. If E is the set defined by

E = A ∪B ∪ C ∪D,

with A = H+
t × I

−
t , B = I−t ×H

+
t , C = H−t × I

+
t , D = I+t ×H

−
t then it is easy to check

that (A∪D)∩ (B ∪C) = ∅. Moreover we have A∩D = H+
t ×H

−
t and B ∩C = H−t ×H

+
t .

Since the distribution of Xt is uniform, we have P{Xt ∈ A ∪D} = P{Xt ∈ B ∪C} and so

P{Xt ∈ E} = 2P{Xt ∈ A ∪D}
= 2 (P{Xt ∈ A}+P{Xt ∈ D} −P{Xt ∈ A ∩D})

=
2(|H+

t ||I
−
t |+ |I

+
t ||H

−
t | − |H

+
t ||H

−
t |)

n(n− 1)
. (17)

Using (16) and the fact that |H+
t ||H

−
t | ≤

(
|H+

t |+ |H
−
t |
)2
/2 = (Nt)

2/2 and Nt ≤ 3n/16,
we obtain

P{Xt ∈ E} ≥ 2

(
3nNt

8
− N2

t

4

)
1

n(n− 1)

≥ 2Nt

(
3n

8
− 3n

64

)
1

n(n− 1)

=
21Nt

32(n− 1)
. (18)

We consider now the difference Φt −Φt+1 in function of the various interactions occurring
at time t. We introduce the notation

G+
t = I+t \H

+
t = {i ∈ {1, . . . , n} | C(i)

t − `+ λ ∈ {0, 1}},

G−t = I−t \H
−
t = {i ∈ {1, . . . , n} | C(i)

t − `+ λ ∈ {−1, 0}}

and Gt = G+
t ∪G

−
t .

Suppose that Xt = (i, j) with i 6= j. We have the two following different cases.

Case 1) If (i, j) ∈
(
H+
t ×G

−
t

)
∪
(
G−t ×H

+
t

)
∪
(
H−t ×G

+
t

)
∪
(
G+
t ×H

−
t

)
, and if we set, to

simplify the writing,

a =
(
C

(i)
t − `+ λ

)
1{i∈Ht} +

(
C

(j)
t − `+ λ

)
1{j∈Ht},

b =
(
C

(i)
t − `+ λ

)
1{i∈Gt} +

(
C

(j)
t − `+ λ

)
1{j∈Gt},

we have

Φt − Φt+1 = a2 −
(
a+ b− 1{a+b odd}

2

)2

1{i∈Ht+1}

−
(
a+ b+ 1{a+b odd}

2

)2

1{j∈Ht+1}, (19)

which gives

Φt − Φt+1 ≥ a2 −
(
a+ b− 1{a+b odd}

2

)2

−
(
a+ b+ 1{a+b odd}

2

)2

.
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Distinguishing successively the cases where a+ b is odd and even, we obtain

Φt − Φt+1 ≥
a2

2
− b

(
a+

b

2

)
−

1{a+b odd}

2
. (20)

We consider the cases b = −1, b = 1 and b = 0 separately.

If b = −1 then we necessarily have (i, j) ∈
(
H+
t ×G

−
t

)
∪
(
G−t ×H

+
t

)
, which means

that a ≥ 2. We thus have −b(a+ b/2) = a− 1/2 ≥ 3/2 and so

Φt − Φt+1 ≥
a2

2
≥ 12a2

25
.

If b = 1 then we necessarily have (i, j) ∈
(
H−t ×G

+
t

)
∪
(
G+
t ×H

−
t

)
, which means

that a ≤ −2. We thus have −b(a+ b/2) = −a− 1/2 ≥ 3/2 and so

Φt − Φt+1 ≥
a2

2
≥ 12a2

25
.

If b = 0 then we distinguish the cases : a is even, |a| = 3 and |a| ≥ 5.

If a is even then, since b = 0, we have, from Relation (20),

Φt − Φt+1 ≥
a2

2
≥ 12a2

25
.

If a = 3 then we have, since b = 0, i /∈ Ht+1 (i ∈ G+
t+1) and j ∈ Ht+1, which

gives using Relation (19)

Φt − Φt+1 = 9−
(

3 + 1

2

)2

= 5 ≥ a2

2
≥ 12a2

25
.

If a = −3 then we have, since b = 0, i ∈ Ht+1 and j /∈ Ht+1 (i ∈ G−t+1), which
gives using Relation (19)

Φt − Φt+1 = 9−
(
−3− 1

2

)2

= 5 ≥ a2

2
≥ 12a2

25
.

If a is odd and |a| ≥ 5 then, since b = 0, we have,

a2 ≥ 5⇐⇒ a2 − 1

2
≥ 12a2

25
,

which gives, from Relation (20),

Φt − Φt+1 ≥
a2 − 1

2
≥ 12a2

25
.

Thus we have shown that if (i, j) ∈
(
H+
t ×G

−
t

)
∪
(
G−t ×H

+
t

)
∪
(
H−t ×G

+
t

)
∪(

G+
t ×H

−
t

)
then

Φt − Φt+1 ≥
12a2

25
.
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Case 2) If (i, j) ∈
(
H+
t ×H

−
t

)
∪
(
H−t ×H

+
t

)
, and if we set, to simplify the writing,

a =
(
C

(i)
t − `+ λ

)
and b =

(
C

(j)
t − `+ λ

)
,

we have

Φt − Φt+1 = a2 + b2 −
(
a+ b− 1{a+b odd}

2

)2

1{i∈Ht+1}

−
(
a+ b+ 1{a+b odd}

2

)2

1{j∈Ht+1}, (21)

which gives

Φt − Φt+1 ≥ a2 + b2 −
(
a+ b− 1{a+b odd}

2

)2

−
(
a+ b+ 1{a+b odd}

2

)2

.

Distinguishing successively the cases where a+ b is odd and even, we obtain

Φt − Φt+1 ≥
a2

2
+
b2

2
− ab−

1{a+b odd}

2
. (22)

By definition of H+
t and H−t we have −ab ≥ 4, so we obtain

Φt − Φt+1 ≥
a2

2
+
b2

2
≥ 12a2

25
+

12b2

25
.

Putting together the cases 1) and 2), we get

E =
(
H+
t ×G

−
t

)
∪
(
G−t ×H

+
t

)
∪
(
H−t ×G

+
t

)
∪
(
G+
t ×H

−
t

)
∪
(
H+
t ×H

−
t

)
∪
(
H−t ×H

+
t

)
.

All these six sets are disjoints so we have, using the results obtained in cases 1) and 2) and

defining βt,i =
(
C

(i)
t − `+ λ

)2
,

∑
(i,j)∈E

E(Φt − Φt+1 | Xt = (i, j))

≥ 12

25

∑
i∈H+

t

∑
j∈G−

t

E(βt,i) +
12

25

∑
i∈G−

t

∑
j∈H+

t

E(βt,j)

+
12

25

∑
i∈H−

t

∑
j∈G+

t

E(βt,i) +
12

25

∑
i∈G+

t

∑
j∈H−

t

E(βt,j)

+
12

25

∑
i∈H+

t

∑
j∈H−

t

[E(βt,i) +E(βt,j)] +
12

25

∑
i∈H−

t

∑
j∈H+

t

[E(βt,i) +E(βt,j)]

=
12

25

2|G−t |
∑
i∈H+

t

E(βt,i) + 2|G+
t |
∑
i∈H−

t

E(βt,i)

+ 2|H+
t |
∑
i∈H−

t

E(βt,i) + 2|H−t |
∑
i∈H+

t

E(βt,i)

 .
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Observing that |G−t |+ |H
−
t | = |I

−
t |, |G

+
t |+ |H

+
t | = |I

+
t | and that |I−t | ≥ 3n/8 and |I+t | ≥

3n/8, we obtain

∑
(i,j)∈E

E(Φt − Φt+1 | Xt = (i, j)) ≥ 12

25

2|I−t |
∑
i∈H+

t

E(βt,i) + 2|I+t |
∑
i∈H−

t

E(βt,i)


≥ 9n

25
E(Φt). (23)

Note that we have used the fact that, for every i = 1, . . . , n, βt,i and Xt are independent.

Indeed, for every t, C
(i)
t is entirely determined by the values of X0, . . . , Xt−1 and (Xs)s≥0

is a sequence of independent random variables.
This leads to

E(Φt − Φt+1 | Xt ∈ E) =

∑
(i,j)∈E

E(Φt − Φt+1 | Xt = (i, j))P{Xt = (i, j)}

P{Xt ∈ E}
.

Since P{Xt = (i, j)} = 1/(n(n− 1)) and using (17), we get

E(Φt − Φt+1 | Xt ∈ E) =

∑
(i,j)∈E

E(Φt − Φt+1 | Xt = (i, j)}

2(|H+
t ||I

−
t |+ |I

+
t ||H

−
t | − |H

+
t ||H

−
t |)

.

Since |I−t | ≤ n and |I+t | ≤ n, we have

|H+
t ||I

−
t |+ |I

+
t ||H

−
t | − |H

+
t ||H

−
t | ≤ n(H+

t |+ |H
−
t |) = n|Ht| = nNt.

Using this inequality together with (23), we obtain

E(Φt − Φt+1 | Xt ∈ E) ≥ 9E(Φt)

50Nt
.

Now, we have, using (18)

E(Φt+1) = E(Φt)−E(Φt − Φt+1)

≤ E(Φt)−E((Φt − Φt+1) | Xt ∈ E)P{Xt ∈ E}

≤ E(Φt)−
(

9E(Φt)

50Nt

)(
21Nt

32(n− 1)

)
=

(
1− 189

1600(n− 1)

)
E(Φt).

We easily get

E(Φt) ≤
(

1− 189

1600(n− 1)

)t
E(Φ0)

Let τ be defined by

τ =
1600(n− 1)

189
(lnn− ln δ − 4 ln 2 + ln 3) .

We then have(
1− 189

1600(n− 1)

)t
≤ e−189t/(1600(n−1)) ≤ e−189τ/(1600(n−1)) =

16δ

3n
.
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Using the Markov inequality and Relation (15), which gives E(Φ0) ≤ 3n/4, we obtain

P{Φt ≥ 4} ≤ E(Φt)

4
≤
(

16δ

3n

)(
3n

16

)
= δ.

By definition of Φt, we have Φt 6= 0 ⇐⇒ Φt ≥ 4. Using moreover the fact that |λ| < 1/2,
we have

Φt = 0 =⇒ αt,k = 0, for every k ∈ Ht

=⇒ −1 ≤ C(i)
t − `+ λ ≤ 1, for every i = 1, . . . , n

=⇒ −1− λ ≤ C(i)
t − ` ≤ 1− λ, for every i = 1, . . . , n

=⇒ −3/2 < C
(i)
t − ` < 3/2, for every i = 1, . . . , n

=⇒ ‖C(i)
t − `‖∞ < 3/2.

This leads to
‖C(i)

t − L‖∞ ≥ 3/2 =⇒ Φt 6= 0⇐⇒ Φt ≥ 4,

that is
P{‖C(i)

t − `‖∞ ≥ 3/2} ≤ P{Φt 6= 0} = P{Φt ≥ 4} ≤ δ,

which completes the proof.

Theorem 7 For all δ ∈ (0, 1), if there exists a constant K such that ‖C0 − L‖ ≤ K then,
for every t ≥ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88), we have

P{‖Ct − L‖∞ ≥ 3/2} ≤ δ.

Proof. We consider first the case where `−b`c = 1/2. Since ‖C0−L‖∞ ≤ ‖C0−L‖ ≤ K
and since

(n− 1)(2 lnK + lnn− ln δ) ≤ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88) ,

Theorem 4 gives
P{‖Ct − L‖∞ 6= 1/2} ≤ δ,

for t ≥ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88).

Now since the C
(i)
t are integers and since `− b`c = 1/2, we have

P{‖Ct − L‖∞ ≥ 3/2} = P{‖Ct − L‖∞ 6= 1/2} ≤ δ.

Consider now the case where `−b`c 6= 1/2. We apply successively Theorem 5 and Theorem
6 replacing δ by δ/2. We introduce the notation

θ1 = 2 lnK − lnn+ 3 ln 2− 2 ln 2

2 ln 2− ln 3
ln (δ/2).

If ‖C0−L‖ <
√
n/2 then we have ‖C0−L‖2 < n/2 and since ‖Ct−L‖2 is decreasing (see

Lemma 3), we get, for all t ≥ 0,

P{‖Ct − L‖2 < n/2} ≥ P{‖C0 − L‖2 < n/2} = 1 ≥ 1− δ/2.

If ‖C0 − L‖ ≥
√
n/2 then from Theorem 5 we get, for all t ≥ nθ1, P{‖Ct − L‖2 ≥ n/2} ≤

δ/2, or equivalently
P{‖Ct − L‖2 < n/2} ≥ 1− δ/2.
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Let us introduce the instant τ defined by

τ = nθ1 +
1600(n− 1)

189
(lnn− ln(δ/2)− 4 ln 2 + ln 3) .

We have, for all t ≥ τ ,

P{‖Ct − L‖∞ < 3/2} ≥ P{‖Ct − L‖∞ < 3/2, ‖Cnθ1 − L‖2 < n/2}
= P{‖Ct − L‖∞ < 3/2 | ‖Cnθ1 − L‖2 < n/2}P{‖Cnθ1 − L‖2 < n/2}.

We have seen that P{‖Cnθ1 −L‖2 < n/2} ≥ 1− δ/2. Using the fact that the Markov chain
{Ct} is homogeneous and applying Theorem 6, we obtain

P{‖Ct − L‖∞ < 3/2 | ‖Cnθ1 − L‖2 < n/2} = P{‖Ct−nθ1 − L‖∞ < 3/2 | ‖C0 − L‖2 < n/2}

= P{‖Ct−nθ1 − L‖∞ < 3/2 | ‖C0 − L‖ <
√
n/2}

≥ 1− δ/2.

Putting together these two results gives, for all t ≥ τ ,

P{‖Ct − L‖∞ < 3/2} ≥ (1− δ/2)2 ≥ 1− δ

or equivalently
P{‖Ct − L‖∞ ≥ 3/2} ≤ δ.

The rest of the proof consists in simplifying the expression of τ . We have

θ1 = 2 lnK − lnn+ 3 ln 2− 2 ln 2

2 ln 2− ln 3
ln (δ/2)

= 2 lnK − lnn+

(
4 +

ln 3

2 ln 2− ln 3

)
ln 2− 2 ln 2

2 ln 2− ln 3
ln δ

and

τ = nθ1 +
1600(n− 1)

189
(lnn− ln(δ/2)− 4 ln 2 + ln 3)

= nθ1 +
1600(n− 1)

189
(lnn− ln δ − 3 ln 2 + ln 3)

≤ n
[
2 lnK +

1411

189
lnn−

(
1789

189
+

ln 3

2 ln 2− ln 3

)
ln δ

−
(

1348

63
− ln 3

2 ln 2− ln 3

)
ln 2 +

1600

189
ln 3

]
≤ n (2 lnK + 7.47 lnn− 13.29 ln δ − 2.88) ,

which completes the proof.

We now apply these results to compute the proportion γA of agents whose initial input
was A, with γA = nA/(nA + nB) = nA/n. Recall that the output function ωA is given, for
all x ∈ Q, by

ωA(x) = (m+ x)/(2m).

Theorem 8 For all δ ∈ (0, 1) and for all ε ∈ (0, 1), by setting m = d3/(4ε)e, we have, for
all t ≥ n (8.47 lnn− 2 ln ε− 13.29 ln δ − 2.88),

P{|ωA(C
(i)
t )− γA| < ε for all i = 1, . . . , n} ≥ 1− δ.
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Proof. We have ‖C0−L‖ ≤ m
√
n. Applying Theorem 7, with K =

√
n/ε ≥ d3/(4ε)e

√
n =

m
√
n, we obtain for all δ ∈ (0, 1) and t ≥ n (8.47 lnn− 2 ln ε− 13.29 ln δ − 2.88),

P{‖Ct − L‖∞ ≥ 3/2} ≤ δ

or equivalently

P{|C(i)
t − (γA − γB)m| < 3/2, for all i = 1, . . . , n} ≥ 1− δ.

Since γA + γB = 1 we have

|C(i)
t − (γA − γB)m| = |C(i)

t − (2γA − 1)m| = |m+ C
(i)
t − 2mγA| = 2m|ωA(C

(i)
t )− γA|.

Then
P{|ωA(C

(i)
t )− γA| < 3/(4m), for all i = 1, . . . , n} ≥ 1− δ.

So
P{|ωA(C

(i)
t )− γA| < ε, for all i = 1, . . . , n} ≥ 1− δ,

which completes the proof.

From Theorem 8, the convergence time to get the proportion γA of agents that were
in the initial state A, with any precision ε given in advance and with any high probability
1 − δ is O (n(log n− log ε− log δ)) and thus the corresponding parallel convergence time
is O (log n− log ε− log δ). Still from Theorem 8, the size of the set of states to compute
γA is equal to 2d3/(4ε)e + 1. It is important to note that the number of states does not
depend, even logarithmically, in n.

7 Lower Bounds

The second contribution of our paper is the derivation of lower bounds on a more general
problem, namely the counting problem, introduced in [16]. This problem aims, for each
agent, at computing the exact number of agents that started in the initial state A. Using
the interaction rules given in Relation (1) and the output function

ω′A(x) = bn(m+ x)/(2m) + 1/2c,

we can exploit the results derived in the present paper to show that the counting problem
can be solved with O(n) states, improving upon [16] in which the number of states is in
O(n3/2). We show that O(n) states and O(log n) parallel time are lower bounds to solve
the counting problem.

Finally, we prove that any algorithm solving the proportion problem with a precision
ε ∈ (0, 1), requires Ω(1/ε) states. This demonstrates that our proportion protocol is
optimal in the number of states.

Theorem 9 For all δ ∈ (0, 1) and for all t ≥ n (10.47 lnn− 13.29 ln δ − 1.49), we have,
by setting m = d3n/2e,

P{ω′A(C
(i)
t ) = nA, for all i = 1, . . . , n} ≥ 1− δ.

Proof. Observe that we have

ω′A(x) = bnωA(x) + 1/2c.
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Applying Theorem 8 with ε = 1/(2n) and for t ≥ n (10.47 lnn− 13.29 ln δ − 1.49), we
obtain

P{|nωA(C
(i)
t )− nγA| < 1/2 for all i = 1, . . . , n} ≥ 1− δ.

Since nγA = nA is an integer, we get

P{ω′A(C
(i)
t ) = nA, for all i = 1, . . . , n} ≥ 1− δ,

which completes the proof.

Thus each agent can solve the counting problem in O(log n) parallel time and with
O(n) states.

Theorem 10 Any algorithm solving the counting problem takes an expected Ω(log n) par-
allel time to convergence.

Proof. Solving the counting problem bounds to solving the exact majority problem. By
applying Theorem C.1 of [2], this algorithm takes an expected Ω(log n) parallel time to
convergence under a worst-case input.

Theorem 11 Any algorithm solving the counting problem requires Ω(n) states.

Proof. To solve the counting problem, the size of the output set Y must be n + 1. So,
the number of states (i.e. |Q|) is at least n+ 1. The lower bound of the number of states
is thus Ω(n).

Theorem 12 Any algorithm solving the proportion problem with a precision ε ∈ (0, 1),
requires Ω(1/ε) states.

Proof. The value of γA could be any rational value between 0 and 1, the difference between
two output values cannot exceed 2ε, thus the lower bound for the size of the output Y is
d1/(2ε)e+1. Hence, the number of states (i.e., |Q|) is at least d1/(2ε)e+1. Thus the lower
bound of the number of states is Ω(1/ε).

8 Simulation results
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(a) γ = 0 (i.e γA = γB=1/2)
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(b) γ = 1/2 (i.e γA = 3/4 and γB = 1/4)

Figure 1: Number of interactions per agent as a function of the size of the system.
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We have conducted simulations to illustrate our theoretical analysis. Figure 1 provides
a summary of these simulations. In this figure, each point of the curves represents the
mean of 100 simulations (with the maximum and the minimum of the 100 simulations), a
simulation consisting in computing the total number of interactions, divided by n, needed
for all the agents to converge to γA with precision ε. The number n of agents varies from
25 to 222, and the precision ε of the result is set to 10−1, 10−3, and 10−5. Note that as
shown theoretically, Figure 1(a) and Figure 1(b) illustrate the fact that the number of
interactions per agent to converge is independent of the value of γ, that is independent
from the difference between both proportions. From the generated data, for instance when
δ = 1/2, one can deduce for each curve an empirical approximation of the convergence
parallel time given by −2 ln ε+ 0.62 lnn− 0.6.

9 Conclusion

This paper has shown that in a large-scale system, any agent can compute quickly and
with a high precision specified in advance the proportion of agents that initially started
in some given input state. This problem is a generalization of the majority problem.
Specifically, our protocol guarantees that by using 2d3/(4ε)e + 1 states, any agent is ca-
pable of computing the population proportion with precision ε ∈ (0, 1), in no more than
(−2 ln ε+ 8.47 lnn− 13.29 ln δ − 2.88) interactions with probability at least 1− δ, for any
δ ∈ (0, 1). We have also shown that our solution is optimal both in time and space. As
future work, we aim at using the same detailed analysis to obtain new results for the
majority problem.
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