
HAL Id: hal-01354276
https://hal.science/hal-01354276v1

Preprint submitted on 18 Aug 2016 (v1), last revised 22 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boundary Crossing of Order Statistics Point Processes
Pierre-Olivier Goffard, Claude Lefèvre

To cite this version:
Pierre-Olivier Goffard, Claude Lefèvre. Boundary Crossing of Order Statistics Point Processes. 2016.
�hal-01354276v1�

https://hal.science/hal-01354276v1
https://hal.archives-ouvertes.fr


Boundary Crossing of Order Statistics Point Processes

Pierre-Olivier Goffard, Claude Lefèvre
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Abstract

This paper is concerned with the first crossing of an order statistic point process through general
moving boundaries. Our purpose is to determine exact boundary crossing probabilities in both
one and two boundary cases. Simple recursive methods are obtained that exploit an underlying
algebraic structure of polynomial type. This structure is a direct consequence of the order statistic
property. The proposed approach is easy to implement and efficient. Perspectives in statistics are
also announced.
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1 Introduction

Many problems in stochastic modeling come down to study the crossing time of a certain stochastic
process through a given boundary, lower or upper. Typical fields of application are in risk theory,
epidemic modeling, queueing, reliability and sequential analysis. The present paper is concerned with
the well-known class of point processes with the order statistic property (OSPP: Order Statistic Point
Processes).

Definition 1.1. A point process {N(t), t ≥ 0} with N(0) = 0 is an OSPP if for every n ≥ 1, provided
P (N(t) = n) > 0, then conditioned upon (N(t) = n), the successive jump times (T1, T2, . . . , Tn) are
distributed as the order statistics of n i.i.d. random variables with distribution function Ft(x) supported
on [0, t].

So, for any fixed time t, the only knowledge of the distribution of N(t) and the distribution function
Ft(s), for 0 ≤ s ≤ t, supplies a complete description of the process over [0, t]. Several authors have
characterized the class of OSPP under certain conditions. The reader is referred to Crump [4], Feigin
[5] and Puri [19]. We focus our interest on the first-crossing time of an OSPP through a one-sided
boundary, lower hα(t) or upper hβ(t), and the first-exit time from a two-sided region delimited by two
boundaries hα(t) and hβ(t) that are parallel. The boundaries are allowed to be moving, linearly or
not. They are non-decreasing, which is not restrictive. We write them under the form

hα(t) = h(t)− α,
hβ(t) = h(t) + β, t ≥ 0,

where α and β are two real numbers such that α > 0 and β ≥ 0 and h(t) is a non-decreasing function
with h(0) = 0.

1



In the one boundary case, we will obtain the exact distribution of the first meeting time τα in the
lower boundary hα:

τα = inf{t ≥ 0 : N(t) = hα(t)},

and the first crossing time τβ through the upper boundary hβ:

τβ = inf{t ≥ 0 : N(t) ≥ hβ(t)}.

For a region delimited by two such boundaries, we assume that hα and hβ are parallel (i.e. share the
same function h), and we derive the distribution of the first exit time from the region:

τα,β = min(τα, τβ),

and the first exit time by the lower boundary hα without crossing the upper boundary hβ:

τ∗α,β = inf{t ≥ 0 : N(t) = hα(t) and N(s) < hβ(s) for s < t}.

Crossing problems for Poisson and compound Poisson processes have received a considerable at-
tention, especially for linear boundaries. We mention e.g. Zacks [23], Gallot [6], Picard and Lefèvre
[12], Lehmann [15], Perry et al. [17], Stadje and Zacks [20], Ignatov and Kaishev [9], Lefèvre [10],
Lefèvre and Loisel [11], Lefèvre and Picard [13], Xu [22]. These works were motivated by various
topics including the ruin in insurance, the final size in epidemics, the busy period in queues or the
detection of changes.

To obtain crossing probabilities for these processes, a method frequently used is to work with
Laplace transforms. An alternative approach, proposed intially by Picard and Lefèvre [12], consists
in applying simple recursive relations to calculate the probabilities. This is such a method that we
choose to follow here. The recursions derived for the computations will rely on the existence of an
underlying polynomial structure in the probabilities. The existence of this algebraic structure is a
consequence of the order statistic property.

The formulas have been implemented in Mathematica. The source code is provided online at [7].
The recursive relations contribute to an efficient evaluation in terms of computing time. We invite
the reader to appreciate the impact on the crossing probabilities when tuning the parameters of the
OSPP or changing the shape of the boundary. A Monte Carlo estimator of the crossing probabilities is
defined from our formulas and compared to a classical Monte Carlo estimator. The new Monte Carlo
estimator beats the classical one in terms of variance. This paves the way for potential applications
in a statistical framework.

The paper is organized as follows. Section 2 presents the class of OSPP under consideration and the
families of polynomials used as a key tool in the study. Section 3 deals with the first meeting problem
of an OSPP in a lower boundary. Section 4 examines the first crossing problem of an OSPP through
an upper boundary. Section 5 considers the first exit problem for an OSPP that is trapped inside two
boundaries. Section 6 discusses a Monte Carlo estimator constructed from the results derived before.

2 Framework

We start by presenting the general class of OSPP’s with several standard particular cases and the
different polynomial families that will be used in the analysis.
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2.1 Order statistic point processes

A complete characterization of the OSPP’s was obtained by Puri [19], following on earlier work. His
main result is stated below (see [19, Theorem 5]).

Proposition 2.1. Let {N(t), t ≥ 0} be an OSPP where µ(t) = E[N(t)] is finite for all t.

1. If lim
t→∞

µ(t) = ∞, there exists a Poisson process {P(t), t ≥ 0} with rate 1, an independent non-

negative random variable W , both on the same space probability as is the OSPP, and a time
transformation ν(t) such that

N(t) = P [Wν(t)] , t ≥ 0, a.s. (2.1)

In other words, {N(t), t ≥ 0} is a mixed Poisson process up to a time-scale transformation.

2. If lim
t→∞

µ(t) = γ <∞, there exists a process {DZ(t), t ≥ 0} that counts the deaths during (0, t] in

a process with initially Z individuals and i.i.d. lifetimes of distribution function µ(t)/γ, t ≥ 0,
and an independent non-negative integer-valued random variable Z, both on the same probability
space as is the OSPP, such that

N(t) = DZ(t), t ≥ 0, a.s. (2.2)

The process {DZ(t), t ≥ 0} is named a mixed sample process.

In both cases, the order statistic property holds over (0, t] with

Ft(s) = µ(s)/µ(t), 0 ≤ s ≤ t. (2.3)

Note that E[N(t)] = µ(t) implies that E(Z) = γ in (2.2). As an illustration, a few particular cases
of OSPP of special interest are highlighted.

Special cases.

(i) A Poisson process of parameter λ > 0. N(t) has a Poisson distribution of intensity λt and

Ft(s) = s/t, 0 ≤ s ≤ t.

Formula (2.1) holds with ν(t) = t and W = λ.

(ii) A Pólya-Lundberg process of parameters λ > 0 and b ≥ 0, i.e. a non-homogeneous linear birth
process of rate λn(t) = λ(1 + bn)/(1 + λt). N(t) has a negative binomial distribution:

P [N(t) = n] =

(
n− 1 + 1/b

n

)(
λbt

1 + λbt

)n( 1

1 + λbt

)1/b

, n ≥ 0.

and, here too, Ft(s) = s/t, for 0 ≤ s ≤ t. Formula (2.1) holds with ν(t) = t and W =d Γ(1/b, λb),
where Γ(r,m) denotes the gamma distribution with shape parameter r > 0 and mean parameter
m > 0.
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(iii) A linear birth process with immigration of birth rate b > 0 and immigration rate λ ≥ 0. N(t)
has a negative binomial distribution:

P [N(t) = n] = e−λt
(
λ/b+ n− 1

n

)
(1− e−bt)n, n ≥ 0,

and
Ft(s) = (ebs − 1)/(ebt − 1), 0 ≤ s ≤ t.

Formula (2.1) holds with ν(t) = ebt − 1 and W =d Γ(λ/b, 1).

(iv) A death counting process in a linear death process of rate b > 0 and initial size z ≥ 1. N(t) has
a binomial distribution:

P [N(t) = n] =

(
z

n

)
(1− e−bt)ne−bt(z−n), 0 ≤ n ≤ z,

and
Ft(s) = (1− e−bs)/(1− e−bt), 0 ≤ s ≤ t.

Formula (2.2) holds with µ(t) = z(1− e−bt), hence γ = z, and Z = z almost surely.

2.2 Order statistics and polynomial structures

The first-crossing or exit problem of an OSPP will be formulated in terms of the order statistics
(U1:n, . . . , Un:n) for a sample of n uniform random variables on (0, 1). It is known that the joint
distributions of (U1:n, . . . , Un:n) rely on an underlying polynomial structure (see Lefèvre and Picard
[14] and the references therein). A few key points are recalled below.

2.2.1 One-sided joint distributions

Let U = {ui, i ≥ 1} be a sequence of reals, non-decreasing in our context. To U is attached a (unique)
family of Appell polynomials of degree n in x, {An(x|U), n ≥ 0} defined as follows.

Definition 2.2. Starting with A0(x|U) = 1, the An(x|U)’s satisfy the differential equations

A(1)
n (x|U) = nAn−1(x|U), (2.4)

with the border conditions
An(un|U) = 0, n ≥ 1. (2.5)

So, each An has the integral representation

An(x|U) = n!

∫ x

un

[∫ yn

un−1

dyn−1 . . .

∫ y1

u1

dy1

]
dyn, n ≥ 1. (2.6)

In parallel, to U is attached a (unique) family of Abel-Gontcharov (A-G) polynomials of degree n
in x, {Gn(x|U), n ≥ 0}.
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Definition 2.3. Starting with G0(x|U) = 1, the Gn(x|U)’s satisfy the differential equations

G(1)
n (x|U) = nGn−1(x|EU), (2.7)

where EU is the shifted family {ui+1, i ≥ 1}, and with the border conditions

Gn(u1|U) = 0, n ≥ 1. (2.8)

So, each Gn has the integral representation

Gn(x|U) = n!

∫ x

u1

[∫ y1

u2

dy2 . . .

∫ yn−1

un

dyn

]
dy1, n ≥ 1. (2.9)

The Appell and A-G polynomials are closely related through the identity

Gn(x|u1, . . . , un) = An(x|un, . . . , u1), n ≥ 1. (2.10)

The two familes (i.e. for all n ≥ 0), however, are distinct and enjoy different properties.
From (2.6) and (2.9), it is clear that the polynomials An and Gn can be interpreted in terms of

the joint distribution of the vector (U1:n, . . . , Un:n).

Proposition 2.4. For 0 ≤ u1 ≤ . . . ≤ un ≤ x ≤ 1,

P [U1:n ≥ u1, . . . , Un:n ≥ un and Un:n ≤ x] = An(x|u1, . . . , un), n ≥ 1. (2.11)

For 0 ≤ x ≤ u1 ≤ . . . ≤ un ≤ 1,

P [U1:n ≤ u1, . . . , Un:n ≤ un and U1:n ≥ x] = (−1)nGn(x|u1, . . . , un), n ≥ 1. (2.12)

The representations (2.11) and (2.12) will play a key role for the first-crossing of an OSPP through
an upper and the first meeting of an OSPP and a lower boundary respectively. Numerically, it will be
necessary to evaluate some special values of the polynomials. To this end, it is convenient to use the
following recusive relations.

Proposition 2.5. The Appell polynomials are computed through the expansion

An(x|U) =

n∑
k=0

(
n

k

)
An−k(0|U)xk, n ≥ 1, (2.13)

where the An(0|U)’s are obtained recursively from

An(0|U) = −
n∑
k=1

(
n

k

)
An−k(0|U)ukn, n ≥ 1. (2.14)

The A-G polynomials are computed through the recursion

Gn(x|U) = xn −
n−1∑
k=0

(
n

k

)
un−kk+1Gk(x|U), n ≥ 1. (2.15)
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Formulas (2.13), and (2.14) follow from the Taylor’s expansion of An, using also (2.4), and (2.5).
Formula (2.15) follows from an Abelian expansion of xn based on (2.7), and (2.8). Details are omitted
here. Of course, the computing time increases with the degree of the polynomials.

Note that

An(x|a+ bU) = bnAn ((x− a)/b |U) , n ≥ 1, (2.16)

with the same identity for Gn. A simple special case is when the sequence U is affine.

Proposition 2.6. If U = {ui = a+ b(i− 1), i ≥ 1} for some reals a, b,

An(x|U) = (x− a− b(n− 1))(x− a+ b)n−1, (2.17)

Gn(x|U) = (x− a)(x− a− bn)n−1, n ≥ 1. (2.18)

Formula (2.17) is proven by induction from (2.6). Formula (2.18) is then a consequence of (2.10).
In addition to speeding up the computations, the identities (2.17) and (2.18) will allow us to link our
results to some classical ones in the literature.

2.2.2 Two-sided joint distributions

Let U = {ui, i ≥ 1} and V = {vi, i ≥ 1} be two sequences of non-decreasing reals such that 0 ≤
u1 ≤ . . . ≤ un ≤ 1, 0 ≤ v1 ≤ . . . ≤ vn ≤ 1 and u1 ≤ v1, . . . , un ≤ vn. Consider again the vector
(U1:n, . . . , Un:n). The joint distributions of interest are rectangular probabilities of the form

dn(U, V ) = P [u1 ≤ U1:n ≤ v1, . . . , un ≤ Un:n ≤ vn] (2.19)

= n!

∫ vn

un

[∫ vn−1∧yn

un−1

dyn−1 . . .

∫ v1∧y2

u1

dy1

]
dyn.

A polynomial structure can be exhibited in this case too. The trick consists in varying the sample
size, k say, of uniforms on (0, 1) from 1 to n. Specifically, the following rectangular probabilities are
defined

dk(U, V ) = P [u1 ≤ U1:k ≤ v1, . . . , uk ≤ Uk:k ≤ vk], 1 ≤ k ≤ n. (2.20)

Proposition 2.7. For un ≤ x ≤ 1,

P [u1 ≤ U1:n ≤ v1, . . . , un ≤ Un:n ≤ vn ∧ x] =
n∑
k=0

(
n

k

)
(vk+1 − x)n−k+ (−1)n−kdk. (2.21)

For instance, suppose that un ≤ vn−m for some m ≥ 1. Consider the intervals [vn−i, vn−i+1] for
i = 0, . . . ,m, with vn+1 ≡ 1. For vn−i ≤ x ≤ vn−i+1, (2.21) then reduces to

P [u1 ≤ U1:n ≤ v1, . . . , un ≤ Un:n ≤ vn ∧ x] =
n∑

k=n−i

(
n

k

)
(x− vk+1)

n−kdk,

which is a polynomial in x of degree i. So, for un ≤ x ≤ 1, (2.21) shows that the sought probabilty is
a piecewise polynomial function. It has been named of Sheffer type by Niederhausen [16]. Now, let us
take x = un in (2.21). Evidently, the probability in the l.h.s. becomes 0. This provides us with the
simple formula (2.22) below.
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Proposition 2.8. Let d0(U, V ) = 1. The probabilities dn(U, V ) are computed through the recursion

dn(U, V ) = −
n−1∑
k=0

(
n

k

)
(vk+1 − un)n−k+ (−1)n−kdk(U, V ), n ≥ 1. (2.22)

3 First-meeting with a lower boundary

Let {N(t), t ≥ 0} be an OSPP that jumps at times Tn, n ≥ 1 (see Definition 1.1). We recall that given
(N(t) = n), the vector (T1, . . . , Tn) is distributed as the order statistics of n i.i.d. random variables
with distribution function Ft(s), for 0 ≤ s ≤ t. Consider for this process a lower boundary of the form
hα(t) = h(t)−α, where α is a non-negative real and h is a non-decreasing function with h(0) = 0. We
want to determine the distribution of the first-meeting time τα of the OSPP and this boundary. Let
h−1α (x) = inf{t ≥ 0 : hα(t) ≥ x} denote the generalized inverse of hα. As the jumps of the process are
of unitary height, the possible meeting levels are the naturals 0, 1, 2, . . .. The corresponding meeting
times are the instants αn = h−1α (n), n ≥ 0, for which the boundary is integer-valued. This is illustrated
in Figure 1 where the meeting happens at τα = α5.

Figure 1: (blue, dashed) trajectory of the OSPP {N(t) ; t ≥ 0}; (black, plain) lower boundary.

Proposition 3.1.

P (τα = αn) = (−1)n P [N(αn) = n] Gn [0|{Fαn(α0), . . . , Fαn(αn−1)}] , n ≥ 0, (3.1)

where Gn [0|{. . .}] is an A-G polynomial such as defined in Subsection 2.2.1.

Proof. Obviously, P (τα = α0) = P [N(τα) = 0]. For n ≥ 1, the event {τα = αn} can be expressed

{τα = αn} = {T1 ≤ α0} ∩ {T2 ≤ α1} ∩ . . . ∩ {Tn ≤ αn−1} ∩ {Tn ≥ αn}

=
n⋂
i=1

{Ti ≤ αi−1} ∩ {N(αn) = n}.
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Conditioning on {N(αn) = n}, we then have

P (τα = αn) = P [N(αn) = n]P

[
n⋂
i=1

{Ti ≤ αi−1}|N(αn) = n

]
. (3.2)

By the order statistic property, we know that

P

[
n⋂
i=1

{Ti ≤ αi−1}|N(αn) = n

]
= P

[
n⋂
i=1

{Vi:n(αn) ≤ αi−1}

]
, (3.3)

where (V1:n(αn), . . . , Vn:n(αn)) are the order statistics for n i.i.d. random variables of distribution
function Fαn defined on (0, αn). Note that

Fαn(Vi:n(αn)) =d Ui:n, 1 ≤ i ≤ n,

where (U1:n, . . . , Un:n) are the order statistics for n independent uniforms on (0, 1). Thus, (3.3) may
be rewritten as

P

[
n⋂
i=1

{Ti ≤ αi−1}|N(αn) = n

]
= P

[
n⋂
i=1

{Fαn(Vi:n(αn)) ≤ Fαn(αi−1)}

]

= P

[
n⋂
i=1

{Ui:n ≤ Fαn(αi−1)}

]
= (−1)nGn [0|{Fαn(α0), . . . , Fαn(αn−1)}] . (3.4)

The last equality follows from formula (2.12) for the A-G polynomials. Combining (3.2), (3.3), (3.4)
yields the announced result (3.1).

Formula (3.1) has been implemented via Mathematica. The code is available online at [7]. The
values of Gn [0|{. . .}] are computed using the recursion (2.15). The characterization of an OSPP (see
Proposition 2.1) enables us to provide a more explicit version of (3.1).

Proposition 3.2. 1. If lim
t→∞

µ(t) =∞,

P (τα = αn) =
(−1)n

n!
Gn [0|{ν(α0), . . . , ν(αn−1)}] E[Wne−Wν(αn)], n ≥ 0. (3.5)

2. If lim
t→∞

µ(t) = γ <∞,

P (τα = αn) =
(−1)n

γn
Gn [0|µ(α0), . . . , µ(αn−1)] E

{(
Z

n

)[
1− µ(αn)

γ

]Z−n}
, n ≥ 0. (3.6)

To obtain (3.5) and (3.6), it suffices to use in (3.1) the identity (2.16) for the A-G polynomials. For
illustration, let us examine the special cases (i)-(iv) presented in section 2.1. Then, (3.1) and (2.16)
give the following distributions for τα.
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Corollary 3.3. (i) For a Poisson process,

P (τα = αn) =
(−λ)n

n!
e−λαnGn(0|α0, . . . , αn−1), n ≥ 0,

(ii) a Pólya-Lundberg process,

P (τα = αn) = (−λb)n
(
n− 1 + 1/b

n

)(
1

1 + λbαn

)n+1/b

Gn(0|α0, . . . , αn−1), n ≥ 0,

(iii) a linear birth process with immigration,

P (τα = αn) = (−1)n e−(λ+bn)αn
(
λ/b+ n− 1

n

)
Gn[1|{ebα0 , . . . , ebαn−1}], n ≥ 0,

(iv) a linear death counting process,

P (τα = αn) = e−(z−n)bαn
(
z

n

)
Gn[1|{e−bα0 , . . . , e−bαn−1})], 0 ≤ n ≤ z.

A simple situation is when {N(t), t ≥ 0} is a Poisson, or mixed Poisson, process and the lower
boundary is linear.

Corollary 3.4. For a (mixed) Poisson process, if hα = ct− α with c > 0,

P (τα = αn) =
α0

αn
P [N(αn) = n], n ≥ 0. (3.7)

Proof. If the OSPP is a mixed Poisson process, then Ft(s) = s/t, 0 ≤ s ≤ t, so that (3.1) becomes

P (τα = αn) = (−1)n P [N(αn) = n] (1/αn)nGn [0|{α0, . . . , αn−1}] , n ≥ 0. (3.8)

Now, the function hα being linear, its inverse is h−1α (x) = (α + x)/c. Thus, in (3.8), αn = (α + n)/c,
n ≥ 0, i.e. αn is an affine function of n. In such a case, Gn is given by formula (2.18), which yields

Gn [0|{α0, . . . , αn−1}] = Gn [0|{(α+ i)/c, 0 ≤ i ≤ n− 1}]
= (−1)n(α/c)[(α+ n)/c]n−1 = (−1)nα0α

n−1
n . (3.9)

Inserting (3.9) in (3.8) then gives (3.7). �

Formula (3.7) corresponds to a Kendall type identity (see e.g. Borovkov and Burq [3]). In fact,
our main formula (3.1) can be viewed as a generalization of this identity to the first meeting problem
of an OSPP through a moving lower boundary.

4 First-crossing through an upper boundary

Consider now the case of an upper boundary of the form hβ(t) = h(t)+β, where β is a positive real and
h is a non-decreasing function with h(0) = 0. We denote by βn = h−1β (n), n ≥ 0, the instant at which

the upper barrier reaches the (integer-valued) level n, where h−1β is the generalized inverse of hβ. We
want to determine the distribution of the first-crossing time τβ of the OSPP through this boundary.
Note that such a crossing will not occur through a meeting but by a jump over the boundary. This is
illustrated in Figure 2 where the crossing occurs at τβ = T5.
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Figure 2: (blue, dashed) trajectory of the OSPP {N(t) ; t ≥ 0}; (black, plain) upper boundary.

As the crossing is not a meeting, it is not convenient to work directly with the density function of τβ.
We will derive a formula for the survival function instead. Denote by 1A the indicator of an event A
and by bxc the integer part of a real x.

Proposition 4.1.

P (τβ > t) = E
{
AN(t)

[
1
∣∣{Ft(β1), . . . , Ft(βN(t))}

]
1{N(t)≤bhβ(t)c}

}
, t ≥ 0, (4.1)

where An(1|{. . .}) is an Appell polynomial such as defined in Subsection 2.2.1.

Proof. On the set {τβ > t}, the number of jumps of the process up to time t cannot exceed the level
bhβ(t)c. Thus, we have

{τβ > t} =

bhβ(t)c⋃
n=0

{N(t) = n} ∩ {τβ > t}

=

bhβ(t)c⋃
n=0

{N(t) = n} ∩ {∩ni=1{Ti > βk}} .

Conditionning on {N(t) = n}, we then get

P (τβ > t) =

bhβ(t)c∑
n=0

P

[
n⋂
i=1

{Ti > βi}|N(t) = n

]
P [N(t) = n], (4.2)

and by the order statistic property,

P

[
n⋂
i=1

{Ti > βi}|N(t) = n

]
= P

[
n⋂
i=1

{Vi:n(t) > ti}

]
, (4.3)
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where (V1:n(t), . . . , Vn:n(t)) are the order statistics for n i.i.d. random variables of distribution function
Ft. Since

Ft[Vi:n(t)] =d Ui:n, 1 ≤ i ≤ n,

where (U1:n, . . . , Un:n) are the order statistics for n independent uniforms on (0, 1), formula (4.3) may
be rewritten as

P

[
n⋂
i=1

{Ti > βi}|N(t) = n

]
= P

[
n⋂
i=1

{Ft[Vi:n(t)] > Ft(βi)}

]

= P

[
n⋂
i=1

{Ui:n > Ft(βi)}

]
= An

[
1
∣∣{Ft(β1), . . . , Ft(βn)}

]
. (4.4)

Reinjecting (4.4) into (4.2) yields

P (τβ > t) =

bhβ(t)c∑
n=0

An[1
∣∣{Ft(β1), . . . , Ft(βn)}]P [N(t) = n],

which leads to the result (4.1).

Here too, formula (4.1) has been implemented via Mathematica. The code is available online at
[7]. Moreover, it is important to underline that the closed-form expression of (4.1) is quite suitable
for an estimation by Monte Carlo simulation. In Section 6 we will show numerically that the Monte
Carlo simulation of (4.1) leads to a less volatile estimator than the classical Monte Carlo estimator.

From Proposition 2.1 and using the identity (2.16), we can then deduce a more explicit version of
formula (4.1).

Corollary 4.2. 1. If lim
t→∞

µ(t) =∞,

P (τβ > t) =

bhβ(t)c∑
n=0

An[ν(t)|{ν(β1), . . . , ν(βn)}]E

[
Wne−Wν(t)

n!

]
, t ≥ 0. (4.5)

2. If lim
t→∞

µ(t) = γ <∞,

P (τβ > t) =

bhβ(t)c∑
n=0

1

γn
An[µ(t)|{µ(β1), . . . , µ(βn)}]E

{(
Z

n

)[
1− µ(t)

γ

]Z−n}
, t ≥ 0. (4.6)

Let us examine the special cases (i)-(iv) presented in Section 2.1.

Corollary 4.3. (i) For a Poisson process,

P (τβ > t) =

bhβ(t)c∑
n=0

λne−λt

n!
An[t

∣∣{β1, . . . , βn}], t ≥ 0,
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(ii) a Pólya-Lundberg process,

P (τβ > t) =

bhβ(t)c∑
n=0

(
1/b+ n− 1

n

)(
λb

1 + λbt

)n( 1

1 + λbt

)1/b

An[t
∣∣{β1, . . . , βn}], t ≥ 0,

(iii) a linear birth process with immigration,

P (τβ > t) =

bhβ(t)c∑
n=0

(−1)n
(
λ/b+ n− 1

n

)
e−t(λ+bn)An[ebt − 2

∣∣{ebβ1 , . . . , ebβn}], t ≥ 0,

(iv) a linear death counting process,

P (τβ > t) =

bhβ(t)c∑
n=0

(−1)ne−(z−n)bt
(
z

n

)
An[e−bt − 2

∣∣{e−bβ1 , . . . , e−bβn}], t ≥ 0.

Formula (4.1) becomes extremely simple in the particular case where {N(t) ; t ≥ 0} is a Poisson,
or mixed Poisson, process and the upper boundary is a diagonal line. Let x+ denote the positive part
of a real x.

Corollary 4.4. For a (mixed) Poisson process, if hβ(t) ≡ h0(t) = ct with c > 0,

P (τβ > t) = E
{

[1−N(t)/ct]+
}
, t ≥ 0., (4.7)

Proof. The OSPP being a mixed Poisson process, we have Ft(s) = s/t, 0 ≤ s ≤ t, and since hβ(t) ≡
h0(t) = ct, then βn ≡ 0n = n/c, n ≥ 0. Thus, in (4.1),

AN(t)

[
1
∣∣{Ft(β1), . . . , Ft(βN(t))}

]
= AN(t) [1| {i/ct, i ≥ 1}]
= 1−N(t)/ct, (4.8)

by virtue of formula (2.17). Inserting (4.8) in (4.1) then yields formula (4.7).

A result of this form has a long history and different proofs are available. In particular, it has has
been derived in the framework of ballot type theorems (e.g. Takács [21]). In risk theory, it corresponds
to the finite time non-ruin probability in the compound Poisson risk model with no initial reserves
and claim sizes equal to 1 (e.g. Asmussen and Albrecher [1, Theorem 2.1]).

5 First-exit with two parallel boundaries

Finally, we suppose that the OSPP is trapped into a region bounded from below by a lower boundary
hα(t) = h(t) − α and from above by an upper boundary hβ(t) = h(t) + β, where α > 0, β ≥ 0 and
the function h is non-decreasing with h(0) = 0. Observe that hα and hβ are built with the same
function h, i.e. the two boundaries are parallel. As before, we use the notation αn = h−1α (n), n ≥ 0,
and βn = h−1β (n), n ≥ 1. Our aim is to derive the distribution of the first exit-time from this region,
τα,β say, and of the first-exit time through the lower boundary, τ∗α,β say. This is illustrated in Figure
3 where τα,β = τ∗α,β = α5.
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Figure 3: (blue, dashed) trajectory of the OSPP {N(t) ; t ≥ 0}; (black, plain) upper boundary; (red,
plain) lower boundary.

The assumption of parallel boundaries will allow us to deal with the class of OSPP processes. Let
us mention that Xu [22] has examined the first-exit problem of a compound Poisson process with
parallel linear boundaries. Applications of stopping times with parallel boundaries are also provided
in that paper.

Proposition 5.1. For n ≥ 1,

P
(
τ∗α,β = αn

)
= dn [{Fαn(β1), . . . , Fαn(βn)}, {Fαn(α0), . . . , Fαn(αn−1)}] P [N(αn) = n], (5.1)

and for t ≥ 0,

P (τα,β > t) = E
{
dN(t)

[
{Ft(β1), . . . , Ft(βN(t))}, {Ft(α0), . . . , Ft(αN(t)−1)}

]
1{bhα(t)c≤N(t)≤bhβ(t)c}

}
,

(5.2)
where dn[{. . .}, {. . .}] is a rectangular probability such as defined in Subsection 2.2.2.

Proof. We proceed as for Propositions 3.1 and 4.1. First, consider the event {τ∗α,β = αn}. For n = 0,
it means {N(α0) = 0}. For n ≥ 1, it is equivalent to

{τα = αn} ∩ {τβ > αn} = {β1 ≤ T1 ≤ α0} ∩ . . . ∩ {βn ≤ Tn ≤ αn−1} ∩ {Tn ≥ αn}

=

n⋂
i=1

{βi ≤ Ti ≤ αi−1} ∩ {N(αn) = n}.

By conditioning on {N(αn) = n} and using the order statistic property, we then have

P
(
τ∗α,β = αn

)
= P [N(αn) = n]P

[
n⋂
i=1

{βi ≤ Ti ≤ αi−1}|N(αn) = n

]

= P [N(αn) = n]P

[
n⋂
i=1

{βi ≤ Vi:n(αn) ≤ αi−1}

]
, (5.3)
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where (V1:n(αn), . . . , Vn:n(αn)) are the order statistics for n i.i.d. random variables of distribution func-
tion Fαn . Let us apply the transform Fαn to get the order statistics (U1:n, . . . , Un:n) for n independent
uniforms on (0, 1). Thus, we can write

P

[
n⋂
i=1

{βi ≤ Vi:n(αn) ≤ αi−1}

]
= P

[
n⋂
i=1

{Fαn(βi) ≤ Ui:n ≤ Fαn(αi−1)}

]
= dn [{Fαn(β1), . . . , Fαn(βn)}, {Fαn(α0), . . . , Fαn(αn−1)}] ,(5.4)

by virtue of definition (2.20). Combining (5.3) and (5.4) gives the result (5.1).
Now, consider the event {τα,β > t} = {τα > t} ∩ {τβ > t}. We see that it can be expressed as

{τα,β > t} =

bhβ(t)c⋃
n=bhα(t)c

{N(t) = n} ∩ {τα > t} ∩ {τβ > t}

=

bhβ(t)c⋃
n=bhα(t)c

{N(t) = n} ∩

{
n⋂
i=1

{βi ≤ Ti ≤ αi−1}

}
.

Arguing as above, we then obtain

P (τα,β > t) =

bhβ(t)c∑
n=bhα(t)c

P

[
n⋂
i=1

{βi ≤ Ti ≤ αi−1}|N(t) = n

]
P [N(t) = n]

=

bhβ(t)c∑
n=bhα(t)c

dN(t)

[
{Ft(β1), . . . , Ft(βN(t))}, {Ft(α0), . . . , Ft(αN(t)−1)}

]
P [N(t) = n],

which is formula (5.2).

First-exit problems with two boundaries have been less studied in the literature. In the case of the
(compound) Poisson process, some interesting papers are e.g. Xu [22] cited before, Perry et al. [18] (in
which the upper boundary is random) and Lehmann [15] (in which the boundaries are not parallel).
The approach in these works is different from that followed here and relies on the specific structure of
the Poisson process. For the general class of OSPP, the question of two arbitrary boundaries requires
further investigation.

6 An induced simulation study

Our aim in this Section is to discuss an evaluation by simulation of the survival function of τβ, the
first-crossing time through an upper boundary. We recall that by Proposition 4.1,

P (τβ > t) = E
{
AN(t)

[
1
∣∣{Ft(β1), . . . , Ft(βN(t))}

]
1{N(t)≤bhβ(t)c}

}
≡ E

[
pN(t)

]
say, t ≥ 0. (6.1)

The survival function being expressed as an expectation, a Monte Carlo simulation is suitable for its
estimation. We name it an Appell Polynomial Monte Carlo (APMC) procedure. We will show below
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the superiority of an APMC simulation over a Crude Monte Carlo (CMC) procedure. Note that a
priori, an approximation by simulation could be viewed of limited relevance as formula (6.1) can be
evaluated by recursion. Nevertheless, we will point out that our study paves the way for potential
statistical applications.

For our problem, the CMC technique consists in writing the survival function of τβ as

P (τβ > t) = E
(
1τβ>t

)
, t ≥ 0. (6.2)

The expectation in (6.2) is then approximated by the common Monte Carlo estimator based on tra-
jectories drawn for the OSPP up to time t. For that, replications of N(t) are simulated and the jump
times are then given by the order statistics of a sample of size N(t) random variables with distribution
function Ft. The CMC evaluation of (6.2) falls in the rare event simulation framework where the
quantity of interest is of the same magnitude as the variance of the CMC estimator, which makes it
inefficient from a point of view of the committed relative error. For a detailed account on the CMC
procedure and rare event simulations, see e.g. the book of Asmussen and Glynn [2].

Denote pt = P (τβ > t). The variance of the CMC estimator is given by

σ2CMC = pt(1− pt). (6.3)

By comparison, the variance of the APMC estimator is

σ2APMC = V ar
{
AN(t)

[
1
∣∣{Ft(β1), . . . , Ft(βN(t))}

]
1{N(t)≤bhβ(t)c}

}
=

bh(t)+βc∑
n=0

An[1
∣∣{Ft(β1), . . . , Ft(βn)}]2P [N(t) = n]− p2t

≤ pt(1− pt) = σ2CMC .

Thus, the APMC procedure enables us to reduce the variance of the estimator. The magnitude of the
variance reduction is not easy to capture and depends on the situation.

For illustration, consider a Pólya-Lundberg process where W =d Γ(2, 1) (see (ii) in Subsection 2.1)
and a polynomial upper boundary given by

hβ(t) = h(t) + β = t2 + 3/2, t ≥ 0,

The probability of interest is p2 = P (τβ > 2) = 0.568265. The variance of the APMC estimator
is 0.184338 while the variance of the CMC estimator is 0.24534. So, the variance reduction when
choosing the APMC procedure is arround 25%.

To explain a variance reduction, let us suppose that 5 trajectories are drawn for the process; they
are displayed in Figure 4 (with the upper boundary). In general, the trajectories fall in three possible
categories:

1. those ending below β for which both pN(t) = 1τβ>t = 1 since there is no crossing,

2. those ending above h(t) + β for which both pN(t) = 1τβ>t = 0 since crossing is a.s.,

3. those ending between β and h(t) + β for which pN(t) ≤ 1 and 1τβ>t = 0 or 1.
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Figure 4: (blue, dashed) trajectories of the OSPP {N(t) ; t ≥ 0}; (red, plain) upper boundary.

Trajectory 1 2 3 4 5

pN(t) 0.875 0 1 0 0.0821616

1τβ>t 0 0 1 0 0

Table 1: Values of 1τβ>t and pN(t) for the 5 trajectories.

For the 5 trajectories in Figure 4, the values of 1τβ>t and pN(t) are given in Table 1. Intuitively, if
many trajectories finish their run either below β or above h(t) + β, then pN(t) = 1τβ>t very often
and the variance reduction is not significant. On the contrary, when N(t) is between β and h(t) + β,
then the time at which the jumps occur plays an important role and the APMC simulation decreases
the variance significantly. In practice, if N(t) ∈ (β, h(t) + β), getting an approximation of pN (t) will
imply repeated simulations of the jump times. This requires nested simulations that are known to be
intense from a computational viewpoint. The variance reduction is expected to be larger when the
likelihood for N(t) of being between β and h(t) + β is high. For the present example, the probability
P [N(t) ∈ (β, h(t) + β)] is increasing in t, as shown in Figure 5.

Moreover, in Figure 6, the variance of the CMC and APMC estimators is represented as function
of t, as well as the relative difference, expressed as a percentage,

∆σ2 =
σ2APMC − σ2CMC

σ2CMC

.
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Figure 5: The probability P [N(t) ∈ (β, h(t) + β)] as a function of t.

We observe that for t < 1, the variances are of similar size because the two estimators are rather close.
For t > 1, the decay of the variance of the APMC estimator becomes clear. So, a variance reduction
of more than 30% is reached when t = 4. Table 2 gives some numerical values for pt, σ

2
APMC , σ2CMC ,

and ∆σ2 at different time horizons.

t pt σ2APMC σ2CMC ∆σ2

1. 0.62963 0.196159 0.233196 -15.8824
2. 0.568265 0.184338 0.24534 -24.8643
3. 0.562963 0.167682 0.246036 -31.8464
4. 0.562619 0.158262 0.246079 -35.6867

Table 2: Values of pt, σ
2
APMC , σ2CMC , and ∆σ2 at different time horizons.

However, a direct link between the probability P [N(t) ∈ (β, h(t) + β)] and the variance reduction
is not established so far. Changing the parameter values, the type of OSPP and the boundary shape
allows us to appreciate the advantage of the APMC simulation. Further experiences can be conducted
through the online accompaniment [7].

Let us add a remark on the use of formula (6.1) itself. This requires to determine the values
of the Appell polynomials up to the degree bh(t) + βc, which is done by applying formula (2.13)
with the recursion (2.14). These computations will be time consuming when bh(t) + βc is large.
However, if it is unlikely that the OSPP reaches the bh(t) + βc, the APMC estimator provides a
way to reduce the computational effort as the Appell polynomials will be computed up to the degree
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Figure 6: In funcrion of t, on the left side the variances σ2CMC (dashed) and σ2APMC (plain), on the
right side the relative difference of variance ∆σ2.

given by min {bh(t) + βc, N∗(t)}, where N∗(t) is the maximum of the OSPP at time t over all the
replications.

Statistical perspectives. To close, it is worth to emphasize potential applications in statistics.
Suppose that a sample of trajectories up to a given time horizon is available. Each trajectory can be
summarized by the jump times and the number of jumps. As the APMC estimator is less volatile
than the CMC estimator, it leads to a more reliable estimation. What makes the APMC estimator
even more appealing is that we do not need to keep track of the jump times to evaluate it, only the
number of jumps is necessary. This is quite convenient because it is not always possible in practice
to spot and report exactly when does an event occurs. In such a situation of incomplete information
upon the observed trajectories, we can still propose an estimation of the probability under study. The
cost is, of course, the assumption that the observed phenomenon is governed by an OSPP for which
we have to identify the type and the parameters. One could argue that the mixed Poisson process
emcompasses a broad class of stochastic processes and is well suited in many modelling problems (see
the monograph by Grandell [8]).
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