
HAL Id: hal-01354246
https://hal.science/hal-01354246v3

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dictionary Sharing: An Efficient Cache Compression
Scheme for Compressed Caches

Biswabandan Panda, André Seznec

To cite this version:
Biswabandan Panda, André Seznec. Dictionary Sharing: An Efficient Cache Compression Scheme for
Compressed Caches. MICRO 2016 - 49th Annual IEEE/ACM International Symposium on Microar-
chitecture, IEEE/ACM, Oct 2016, Taipei, Taiwan. �hal-01354246v3�

https://hal.science/hal-01354246v3
https://hal.archives-ouvertes.fr

Dictionary Sharing: An Efficient Cache
Compression Scheme for Compressed Caches

Biswabandan Panda
INRIA

Campus de Beaulieu, Rennes, France
Email: biswabandan.panda@inria.fr

André Seznec
INRIA

Campus de Beaulieu, Rennes, France
Email: andre.seznec@inria.fr

Abstract—The effectiveness of a compressed cache depends
on three features: i) the compression scheme, ii) the compaction
scheme, and iii) the cache layout of the compressed cache. Skewed
compressed cache (SCC) and yet another compressed cache
(YACC) are two recently proposed compressed cache layouts that
feature minimal storage and latency overheads, while achieving
comparable performance over more complex compressed cache
layouts. Both SCC and YACC use compression techniques to
compress individual cache blocks, and then a compaction tech-
nique to compact multiple contiguous compressed blocks into a
single data entry. The primary attribute used by these techniques
for compaction is the compression factor of the cache blocks, and
in this process, they waste cache space.

In this paper, we propose dictionary sharing (DISH), a dictio-
nary based cache compression scheme that reduces this wastage.
DISH compresses a cache block by keeping in mind that the
block is a potential candidate for the compaction process. DISH
encodes a cache block with a dictionary that stores the distinct 4-
byte chunks of a cache block and the dictionary is shared among
multiple neighboring cache blocks. The simple encoding scheme
of DISH also provides a single cycle decompression latency and
it does not change the cache layout of compressed caches.

Compressed cache layouts that use DISH outperforms the
compression schemes, such as BDI and CPACK+Z, in terms of
compression ratio (from 1.7X to 2.3X), system performance (from
7.2% to 14.3%), and energy efficiency (from 6% to 16%).

I. INTRODUCTION

Effective management of last-level-cache (LLC) capacity is
key to system performance. Increase in the cache capacity
improves system performance but at the cost of energy and
power. Compressed caches such as decoupled compressed
cache (DCC) [1], skewed compressed cache (SCC) [2], and yet
another compressed cache (YACC) [3] use compression and
compaction techniques to improve the cache capacity, with
marginal overhead in hardware, energy, and power. When a
cache block is responded from the DRAM, a compression
technique compresses the cache block and then a compaction
technique takes multiple compressed blocks that are com-
pressed independently, and compacts them to fit in a fixed
cache space (a data entry)1. A compressed cache also provides
a cache layout 2 that helps in accessing physical data entries

1A data entry (usually of size 64B) of a cache is the fundamental unit
of the data store that contains cache block(s). In an uncompressed cache, it
stores only one cache block. However, in a compressed cache, a data entry
can contain multiple compressed cache blocks.

2Layout of tag/data store and the mapping of a tag entry with a data entry.

with permissible latencies.
State-of-the-art compressed caches provide physical layouts

that address some of the fundamental issues of compressed
caches, which are: (i) mapping of tag and data entries, (ii)
low tag and meta-data overhead, and (iii) supporting flexible
cache replacement policies. Among the recent works, YACC
is the simplest compressed cache that has addressed the above
issues, and is equally effective as SCC. It simplifies the cache
layout of SCC without sacrificing the benefits of SCC. Also
the cache layout is agnostic to the compression techniques.
Note that we use the term compressed cache for techniques,
such as DCC, SCC, and YACC that provide both compression
and compaction (and not only compression).

Compressed caches, such as SCC and YACC, use the notion
of super-block, which is an aligned and contiguous group of
blocks (compressed and uncompressed), and use a single tag
called super-block tag for all the blocks that are part of the
super-block. For example, a 4-block super-block that contains
4 cache blocks share a single super-block tag. The tag entry
of a super-block, also contains additional information about
the compression factor (CF) of the blocks that are part of the
super-block. With YACC and SCC, for a data entry of 64
bytes, CF of a cache block is: four if it is compressed to 16
or less than 16 bytes (4-compressible), two if it is compressed
to a size between 16 to 32 bytes (2-compressible), and one if
it is incompressible or compressible to more than 32 bytes.
The Problem. As SCC and YACC use CF as the main attribute
for compaction, on a demand miss at the LLC, these techniques
either compress and compact the new cache block with one
of the cache blocks of an incomplete super-block that has the
same CF or it allocates a new 64B data entry (if the block is
not compactable with its neighbors). This potentially leads to
wastage of LLC space. One of the reasons for this wastage
is that compression techniques, when compress cache blocks
are oblivious to the compaction process. There are three major
cases where SCC and YACC waste LLC space. Fig. 1 shows
the three cases in which super-blocks waste one data entry
because of CF based compaction. For the three cases (see
Fig. 1), YACC uses 3, 4, and 3 64B data entries, whereas
the compressed blocks could fit in 2, 3, and 2 data entries,
respectively. For example, in case-1, a 32B compressed cache
block that is allocated in data entry 2 (B2) can be compacted
with B0 and B1 in the 32B that is left in data entry 1,

16B 16B 64B32B 32B 32B

16B 64B48B 32B 32B 64B

B0 B1 B3B2

B0 B1 B2 B3

16B 48B 32B 32B

B0 B1 B2

32B 32B

B3

Case-1

Case-2

Case-3

Data entry 1 Data entry 2 Data entry 3 Data entry 4

Free cache space
that is wasted.

Bk Block Bk, which could
fit in the free space.

Fig. 1: Wastage of cache space (in terms of 64B data
entries) in SCC and YACC layouts because of CF based
compaction. B0 to B3 are the contiguous cache blocks of
a 4-block super-block.

0

10

20

30

40

50

60

m
cf

b
zi

p
2

G
em

sF
D

TD

so
p

le
x

o
m

n
et

p
p

lb
m

le
sl

ie
3

d

xa
la

n
cb

m
k

co
m

m
u

n
it

y

b
fs

ss
sp

m
ilc

p
ag

er
an

k

as
ta

r

n
am

d

sj
en

g

lib
q

u
an

tu
m

b
w

av
es

ca
ct

u
sA

D
M b
c

h
2

6
4

re
f

ap
sp

h
m

m
er

gr
o

m
ac

s

A
ve

ra
ge

A
ve

ra
ge

 w
as

ta
ge

 o
f

LL
C

 s
p

ac
e

 in

te
rm

s
o

f
b

yt
es

 p
er

 s
u

p
er

-b
lo

ck

Fig. 2: Wastage of LLC space.

potentially saving a data entry (in this case data entry 2).
Motivation. Fig. 2 shows the wastage of LLC space in terms
of bytes per super-block with YACC. For a 2MB LLC, across
24 single-threaded CRONO [4] and SPEC CPU 2006 [5]
applications, on average, more than 32B is wasted per super-
block because of the CF based compaction. Applications such
as gromacs contains pointers that results in contiguous cache
blocks of different CFs, whereas GemsFDTD contains mostly
zeros that results in contiguous cache blocks with same CF.
Our goal is to propose a simple yet efficient cache compres-
sion scheme, which can also drive the compaction process
leading to better utilization of data entries. With this goal,
we aim to improve the effectiveness of the state-of-the-art
compressed cache layouts, such as YACC, without changing
its cache layout.
Our approach is to compress a single cache block by keeping
in mind that the corresponding block will be compacted along
with its neighboring blocks. The compaction process compacts
multiple blocks based on their data contents, and not based
on their CFs. In this way, both compression and compaction
go hand in hand in a synergistic manner, and it improves
the effective utilization of data entries. To the best of our
knowledge, this is the first work on cache compression that
compresses cache blocks in a way that helps in improving the
effectiveness of the state-of-the-art compressed cache layouts.
We make the following contributions:

offsetblk-IDIndexSuper-blk TagCS01Super-blk Tag

Address bitsTag Entry for SB with CF=4

Tag Entry for SB with CF=2Tag Entry for SB with CF=1

CS1CS2CS3

CS00Super-blk Tag CS1ID11 ID0CS00Super-blk Tag 0 ID0

06847

X

Fig. 3: Tag entries with different CFs and address splitting
of a 48-bit physical address. ID, CS, and SB stand for blk-
ID, coherence states, and super-block respectively. CFs of
1, 2, and 4 are encoded as 00, 01, and 1X, respectively.

(i) We propose dictionary sharing (DISH), a compression
scheme that uses two encoding schemes to exploit the data
that is shared across multiple blocks. The schemes help in
compressing cache blocks by keeping cache compaction in
mind (Section III).
(ii) We propose a simple and practical design of the compres-
sion, compaction, and decompression process (Section IV).
(iii) We evaluate DISH with YACC based layout for a wide
variety of workloads. On average (geomean), across 156
workloads, DISH outperforms compression techniques, such
as base-delta-immediate (BDI) [6] and CPACK+Z [7] in terms
of compression ratio (from 1.7X to 2.3X), performance (from
7.2% to 14.3%), and energy efficiency (from 6% to 16%)
(Section V).

II. BACKGROUND

This section provides background on the state-of-the-art
compressed caches and cache compression schemes.
State-of-the-art Compressed Caches. Compressed caches
use a compression technique that compresses cache blocks
and a compaction technique compacts the compressed blocks
into one data entry. The main observation that drives the
compaction process is that adjacent contiguous cache blocks
co-reside at the LLC.
(i) SCC [2] is a compressed cache design that compacts
multiple (in power of two, such as 1, 2, and 4) compressed
blocks and stores them in one data entry. It uses super-block
tags and skewed associative mapping that helps in maintaining
an one-to-one mapping between a tag-entry and a data-entry.
However, it compacts cache blocks based on their CFs.
(ii) YACC [3] simplifies the design aspects of SCC and uses
a cache layout, which is similar to a regular uncompressed
cache. It removes skewing from SCC. However, similar to
SCC, it compacts cache blocks by taking their CFs into
account. Throughout the paper, we consider the cache layout
of YACC as the underlying compressed cache layout. YACC
tracks from one to four cache blocks with the help of a super-
block tag. Fig. 3 shows the splitting of address bits and the
contents of tag entries (in addition to valid and dirty bits) for
various CFs. In Fig. 3, the address bits are split to form a
super-block tag, set index, blk-ID, and byte offset. The blk-ID
helps in finding out one out of the four blocks that are part of
the super-block. Note that, with this mapping, four contiguous
cache blocks share the super-block tag and are mapped to
one cache set. In tag entries, CFs are also encoded. Note that

2

the compaction process of SCC and YACC is unaware of the
underlying compression techniques that compress cache blocks
for it. The compaction process just leverages the CFs of the
blocks. Both SCC and YACC achieve high performance with
limited tag overhead (< 2% of additional storage) and fast
data entry access (no indirection).
Cache Compression Techniques. Although, state-of-the-art
compressed caches are independent of the underlying com-
pression techniques, compressed caches such as SCC and
YACC are evaluated using CPACK+Z [7].
(i) CPACK+Z is a compression technique that detects and
compresses the frequently appearing data words, such as
0X00000000 into few bits. It also extracts other kinds of
data patterns and compresses cache blocks by detecting and
storing the other frequently appearing 4-bytes in a dictionary.
CPACK+Z is a variation of C-PACK with a feature that detects
zero blocks.
(ii) BDI [6] is a recent compression technique that provides
similar compressibility as CPACK+Z with much lower decom-
pression latency. BDI compresses a cache block by exploiting
the data correlation property. It uses one base value for a cache
block, and replaces the other data values of the block in terms
of their respective deltas (differences) from the base value.
BDI tries different granularities of base (2 bytes to 8 bytes)
and deltas (1 byte to 4 bytes). The highlight of BDI is its low
decompression latency of one cycle.

Both CPACK+Z and BDI are proposed for compressing
cache blocks and these techniques are unaware of the com-
paction process that compacts the compressed cache blocks.
For the rest of the paper, we use the layout of YACC [3] as
our baseline compressed cache layout as experimental results
show that with a simple cache layout, YACC exhibits similar
behavior to SCC that uses a more complex layout.

III. DISH:ENCODING SCHEMES

This section provides an overview of DISH and explains
the data encoding schemes.

A. Overview

The main idea that we develop in this paper is to leverage
the fact that independent of the compression factor, a 64B
data entry is allocated in the LLC, which either stores an
uncompressed block or it stores several valid (up to four)
compressed blocks of a 4-block super-block. With DISH, a
data entry that stores four compressed blocks does not put
a restriction that the size of the compressed blocks should
be less than or equal to 16 bytes. DISH treats a 64-byte
cache block as 16 4-byte chunks. Compressibility is the main
reason behind choosing 4-byte chunks instead of 1, 2, or 8.
On average, across 24 applications, we find the compression
ratio of 4-byte chunks the highest.

DISH extracts the distinct 4-byte chunks of a cache block
and uses encoding schemes to compress them. Next, it
compacts multiple compressed blocks into one data entry if
they have same set of distinct 4-byte chunks. In this way,
even if the compressed block size is greater than 16 bytes,

a data entry can hold four of them by storing only one set
of distinct 4-byte chunks (a.k.a. dictionary) that is shared by
all the four compressed blocks. This kind of compaction is
possible because of two dominant inter-block data localities
(data shared across multiple blocks), which are as follows:
Data content locality corresponds to the occurrence of same
or similar data contents across contiguous cache blocks. For
example, initialization of a large array with a constant value
or zero can lead to the presence of same data content across
contiguous cache blocks. We quantify the content locality by
comparing3 the distinct 4-byte chunks of a cache block with
the distinct 4-byte chunks of its three neighboring blocks.
For a 2MB LLC, on average across 24 applications, we find
32% of the LLC blocks have the same set of distinct 4-byte
chunks as their neighbors.
Upper data bits locality corresponds to a scenario, where
the upper data bits4 of a 4-byte chunk are the same across
multiple contiguous cache blocks however the lower bits
differ. For example, pointers that spread over a large memory
region. We perform studies to find out the scope of upper
data bits locality. On average, across 24 applications, we find
that 37% of the LLC blocks have upper data bits locality that
is spread across four blocks. Based on these observations, we
propose two encoding schemes (scheme-I and scheme-II) to
exploit inter-block data content and upper data bits localities.

Note that with DISH, a compressed cache block necessitate
39 bytes of cache space but it is able to compact up to four
compressed blocks in 57 bytes (i.e. less than a 64B data
entry) due to dictionary sharing (see Fig. 4). Section III-B
explains how DISH makes it possible.

B. Scheme-I

To compress a 64B cache block that contains 16 4-byte
chunks, DISH encodes the cache block with a dictionary
of n entries that contains n distinct 4-byte chunks. if the
cache block contains more than n distinct 4-byte chunks,
then DISH treats the block as incompressible. DISH parses
the 4-byte chunks of an uncompressed block from MSB to
LSB and inserts a 4-byte chunk into the dictionary, whenever
it encounters a distinct 4-byte chunk that is not present in
the dictionary. Each entry of the dictionary also contains
a validity bit (V/I) that becomes V when a distinct 4-byte
chunk is allocated into an entry. For each 4-byte chunk of an
uncompressed cache block, DISH uses a fixed-width pointer
that points to one of the n dictionary entries. So, a cache block
is encoded as 16 fixed-width pointers of log2(n) bits along
with its dictionary. For example, if a cache block contains
eight distinct 4-byte chunks then the dictionary contains eight
entries, and DISH encodes the block with a dictionary of eight
entries and 16 3-bit pointers.

3We restrict this comparison to three neighboring blocks of a 4-block super-
block as the maximum CF supported by YACC is 4. Also for comparison,
the ordering of the 4-byte chunks within the cache blocks is irrelevant.

4We sweep through different widths of upper bits and find that 28-bits
provide maximum opportunity for compaction.

3

0x00000111

Dictionary of eight 4-byte Entries 16 3-bit Pointers for 16 4-byte Chunks

0x00000000 0x80000000 0x60000000 0x11111110 0x22100000 0x00000010 0x30000000

0x00000111 0x00000000 0x11111111 0x11111111 0x80000000 0x00000010 0x22100000 0x00000010 0x00000000

0x00000111 000 001 001 010 010 011 000 100 010 101 000 100 110 111 111

0x11111111 0x60000000 0x00000010 0x22100000 0x11111110 0x30000000 0x30000000 0x00000000

4 bytes

0010x11111111

32 bytes + 1 byte (8 V/I bits) 6 bytes

Shared Dictionary of eight 4-byte entries 16 3-bit Pointers for B0

32 bytes 6 bytes

16 3-bit Pointers for B1 16 3-bit Pointers for B2 16 3-bit Pointers for B3

(a) An uncompressed 64-byte cache block from astar.

(b) A 64B data entry consisting of one compressed cache block.

(c) A 64B data entry consisting four compressed cache blocks.

6 bytes 6 bytes 6 bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Val

V V V V V V V V

8 V/I
bits

1byte

Val Val Val

Shared Dictionary of eight 4-byte entries 16 3-bit Pointers for B0

32 bytes 6 bytes

16 3-bit Pointers for B1 16 3-bit Pointers for B2 16 3-bit Pointers for B3

(d) A 64B data entry consisting two compressed cache blocks.

6 bytes 6 bytes 6 bytes

Inv

8 V/I
bits

1byte

Inv Val Val

Val

Fig. 4: Encoding of a cache block using scheme-I that exploits inter-block data content locality.

0x00000111 0x00000011 0x00000004 0x00000013 0x00000009 0x00000000 0x00000001 0x00000000 0x00000003 0x00000011 0x0000000B 0x00000004 0x00000022 0x00000020 0x00000001 0x00000003

4 bytes

0x000000AA

0x0000011

28 bits

0x0000001 0x000000A 0x0000000 0x00000111 00 01 00 00 01 00 00 00 01 00 00 10 10 00 01 0x0000002 11 0x0 0x1 0x3 0x4 0x3 0x9 0x0 0x1 0x1 0xB 0x4 0x2 0x0 0x1 0x3 0xA

Dictionary of four 28-bit Entries 16 2-bit Pointers for 16 4-byte Chunks

14 bytes + 4 V/I bits 4 bytes

16 4-bit Offsets for 16 4-byte Chunks

8 bytes

Shared Dictionary of four 28-bit Entries
16 2-bit
Pointers
for B0

14 bytes 12 bytes

16 2-bit
Pointers
for B2

16 2-bit
Pointers
for B1

16 2-bit
Pointers
for B3

16 4-bit
Offsets
for B0

16 4-bit
Offsets
for B2

16 4-bit
Offsets
for B1

16 4-bit
Offsets
for B3

(a) An uncompressed 64-byte cache block from h264ref.

(b) A 64B data entry consisting of one compressed cache block.

(c) A 64B data entry consisting of four compressed cache blocks.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1500 1 2 3

V V V V

Val Val Val Val

4 V/I
bits

4 bits 12 bytes 12 bytes 12 bytes

Val

Fig. 5: Encoding of a cache block using scheme-II that exploits inter-block upper data bits locality.

Fig. 4 shows a 64B cache block from astar that is
encoded with a dictionary of eight entries (entry-ID 0 to 7) and
compressed using scheme-I. Fig. 4(a) shows an uncompressed
cache block B0 in terms of 16 4-byte chunks (chunk-ID 0 to
15). Fig. 4(b) shows the contents of the eight entry dictionary
and 16 3-bit pointers for each of the 16 4-byte chunks of
an uncompressed block. For example, in Fig. 4(a), the 4-
byte chunk with chunk-ID 7 of the uncompressed block that
contains 0x22100000 is present in the entry-ID 4 of the
dictionary (see Fig. 4(b)). The pointer field of the 4-byte chunk
with chunk-ID 7 is encoded as (100)2, which means that the
data, which is present in the chunk-ID 7 of the uncompressed
block, currently resides at the entry-ID 4 of the dictionary.
In the next paragraph, we explain how this encoding scheme
helps in an efficient compaction process.

As the basic principle of DISH is to pack maximum of
four blocks in one 64B data entry, there are two kinds of data
entries that can stay at the LLC: i) a data entry with CF=1
that contains an uncompressed block and ii) a data entry with
CF=4 that can contain 1 to 4 valid compressed blocks. On
subsequent LLC misses to the neighboring cache blocks B1,
B2, and B3 that share the super-block tag, DISH encodes them
individually, and if the dictionary entries of B1, B2, and B3
are same5 as the dictionary entries of B0 then cache blocks
B0 to B3, share and use only one dictionary (dictionary of
B0), and DISH compacts them within one single data entry of
64B. The data entry contains a dictionary and four (one for
each compressed block) sets of 16 3-bit pointers. DISH uses a

5Same set of distinct eight 4-byte chunks. The ordering of the 4-byte chunks
within the cache blocks is irrelevant.

4

Val/Inv bit for each set of 16 3-bit pointers that says about their
validity. In this way, a single data entry of 64B becomes a 4-
block super-block with CF=4 that consists of four compressed
cache blocks. Fig. 4(c) shows the encoding of a data entry
that holds the data of four cache blocks (B0 to B3). Similarly,
if only two cache blocks share their dictionary entries (say
B2 and B3) then a single data entry would occupy eight 4-
byte dictionary entries and 2 sets of valid 16 3-bit pointers,
resulting in a super-block that contains two valid cache blocks.
Fig. 4(d) illustrates the same. Note that with DISH, a data
entry can compact two non-contiguous blocks that share the
same super-block tag. For example blocks B0 and B3 can be
compacted and allocated in one data entry. Similarly, B0 and
B2, and B1 and B3, can be compacted into one data entry.
Incompressibility: DISH considers a cache block incompress-
ible if it contains more than n (# entries in the dictionary)
distinct 4-byte chunks. For our studies, we consider a dic-
tionary of eight entries. The primary reason for this decision
is that if a data entry contains more than eight (say nine)
distinct 4-byte chunks then the dictionary should contain nine
entries and there should be 16 4-bit pointers (instead of 3-bit
pointers) to point one of the nine dictionary entries. In this
way, if a data entry has to compact four compressed blocks
then it would need 9×4 bytes (for dictionary) + four sets of
16 4-bit pointers (4×16×4-bit) = 36 bytes + 32 bytes = 68
bytes, which is greater than 64 bytes (size of a data entry).
Based on the experimental studies, we find that a dictionary of
eight 4-byte entries outperforms dictionaries of sixteen 2-byte
entries and four 8-byte entries. We find that the potential for
sharing the dictionary decreases with the increase in the width
of the chunk (8-byte chunks). With 2-byte chunks, the scope
for compression decreases.
Incomplete Dictionary. There are cache blocks that contain
only one or two distinct 4-byte chunks. For example, a block
containing 0x00000000 in all of its 4-byte chunks. While
encoding and compressing these kinds of blocks, the dictionary
of the first block B0 would contain fewer than eight entries.
So, if the neighboring blocks contain chunks of data that are
not present in the dictionary of B0 then the remaining entries
of the dictionary of B0 get filled by the distinct 4-byte chunks
of B1, B2, or B3.

C. Scheme-II

Scheme-I can not compress a cache block if it contains more
than eight distinct 4-byte chunks. However, there are cache
blocks that are still compressible even if they contain more
than eight distinct 4-byte chunks. Scheme-II addresses this.
Similar to scheme-I, scheme-II also treats an uncompressed
block as 16 4-byte chunks. As this scheme explores the inter-
block upper data bits locality, it extracts the upper 28 bits
of each 4-byte chunk. Similar to scheme-I, scheme-II uses a
dictionary of n entries that stores n distinct 28-bit chunks. So,
with a dictionary of n entries, if an uncompressed block has
more than n distinct 28-bit chunks then DISH treats the block
as incompressible. For this scheme, DISH uses a dictionary of
four entries. Note that a dictionary of more than four entries

does not provide opportunity to compact four blocks in a
single 64B data entry. Similar to scheme-I, each of the 16 4-
byte chunks uses 2-bit pointers that points to one of the four
dictionary entries (entry-ID 0 to 3). Note that the dictionary
contains 28-bit entries, hence the scheme also has to store the
lower 4-bits of each of the 4-byte chunks as offsets from the
four 28-bit dictionary entries. Fig. 5(a) shows the contents of
an uncompressed cache block B0 from h264ref and Fig.
5(b) shows the encoding scheme used by the scheme-II. For
example, for the 4-byte chunk with chunk-ID 2 that contains
0x00000003 in Fig. 5(a), the corresponding upper 28-bit is
0x0000000, which is stored in the dictionary with entry-ID
0 in Fig. 5(b). Thus, the pointer of chunk-ID 2 contains (00)2
and the offset of chunk-ID 2 contains 0x3 in Fig. 5(b).

If neighboring blocks B1, B2, and B3, contain the same
four or fewer distinct 28-bit chunks then a single data entry
can hold B0, B1, B2, and B3 by storing only one dictionary of
four entries, four sets of 16 2-bit pointers and four sets of 16
4-bit offsets (refer Fig. 5(c)). Similar to scheme-I, DISH uses a
Val/Inv bit for each set of 16 2-bit pointers and 16 4-bit offsets
that says about their validity. In this way, a single data entry
of size 64 bytes accommodates the data of four cache blocks
through scheme-II. Similar to scheme-I, we perform studies
on various chunk sizes (2 byte to 8-byte), width of the offsets
(2 bits to 16 bits), and the corresponding number of pointers.
On average across 24 applications, we find, less than 31% of
LLC blocks are incompressible with the encoding schemes of
DISH.
Adaptive DISH. DISH proposes scheme-I and scheme-II,
two data encoding schemes for two different kinds of inter-
block data localities. However, there are uncompressed cache
blocks that satisfy the conditions of compressibility of both
scheme-I and scheme-II. For those blocks, we use set-dueling-
monitors (SDMs) [8] to choose between scheme-I and scheme-
II. We dedicate 32 leader cache sets that use scheme-I and
similarly 32 leader cache sets that use scheme-II. In case
of tie, the leader cache sets use their pre-defined schemes,
whereas the rest of the cache sets (follower sets), follow the
winning scheme that is selected by the SDMs. For a multi-
core system with n cores that run n applications, DISH uses
n SDMs, where each SDM uses a 7-bit saturating counter
for the leader sets. The counter gets incremented/decremented
whenever scheme-I/scheme-II is chosen by an application in
its leader sets. For the follower sets, DISH chooses the winning
scheme by monitoring the most significant bit of the counter.

IV. DESIGN AND IMPLEMENTATION

This section explains the compression, compaction and the
decompression process of DISH. DISH takes a 64-byte un-
compressed block6 and concurrently evaluates the conditions
of compressibility of both scheme-I and scheme-II. If a block
is not compressible by any of the two schemes then the
block is allocated in the LLC with CF=1. If one of the

6For our study, we have considered the industry standard of 64B block size.
However, DISH can be applied 128B blocks. For scheme-I, DISH can encode
a 128B block with a dictionary of 8 4-byte chunks and 32 3-bit pointers.

5

Algorithm 1 DISH Compressor based on Scheme-I
1: Input: Blk[16], a 64B block as 16 4-byte chunks.
2: Output: If compressible then a compressed block (CBlk) else
Blk.

3: DReg[8]:8 32-bit registers holding 8 distinct 4-byte

chunks.

4: VReg[8]:Validity-bit/register. Initially set to I.

5: PArray[16]:Array that store pointers for 16 4-byte

chunks.

6: Iflag=FALSE: Incompressible if TRUE.

7: for each i, where i is the chunk-id and 0≤i≤15 do
8: for each j, where j is the register-id and
0≤j≤7 do

9: if (VReg[j]==I) then
10: // A distinct 4-byte chunk is allocated DReg[j]
11: DReg[j]=Blk[i]; PArray[i]=j;

VReg[j]=V;
12: break;
13: if (VReg[j]==V && Blk[i]==DReg[j]) then
14: // A 4-byte chunk that is already present in DReg[j]
15: PArray[i]=j; break;
16: if (j==7 && VReg[j]==V && DReg[j]6=Blk[i])

then
17: // Incompressible block
18: Iflag=TRUE; return Blk;
19: if (Iflag==FALSE) then
20: Allocate CBlk; Copy DReg and PArray into

the CBlk;
21: return CBlk;

32 bits

16:1 MUX

. . .

4-bit
counter

64B Un-compressed Block

I

Incompressible
If TRUE

32-bit comparator32-bit inter-stage buffer32-bit register

. . .

Data line

Control signal

I I I I I I I

NOR gate

111000 001 010 011 100 101 110

NOT gate AND gate

=

=

= = = = = = =

000 to 111 – IDs of eight pipeline stages

Fig. 6: Compressor circuit for scheme-I.

schemes succeeds then the block is compressed using the
corresponding scheme. When both schemes succeed, DISH
uses SDMs to decide which scheme to use. Note that the
process of compression does not affect the response latency
(not in the critical path of the program in execution) of an LLC
as DISH compresses a block after responding to the upper level
L2 cache.

A. Compression

Algorithm 1 illustrates the compression process in terms
of a pseudo-code. Algorithm 1 takes an uncompressed block
and checks for the occurrence of eight or fewer distinct 4-
byte chunks. To store the distinct eight 4-byte chunks, DISH
uses an array of eight 32-bit registers called DReg. DISH
also uses an array called PArray that stores 16 pointers for
16 4-byte chunks. Each register in the DReg has a validity
bit VReg, initially set to invalid (I), becomes valid (V) when
the corresponding register contains a 4-byte chunk. DISH
stops this compressibility test when it does not find any invalid

register to allocate a distinct 4-byte chunk, and allocates an
uncompressed block at the LLC. Note that the 4-byte chunks
are allocated to the 32-bit registers in an incremental fashion
(at any point in time, if VReg[i] is V and VReg[i+1] is I then
it means DReg contains i+1 distinct 4-byte chunks). If a block
becomes compressible then the contents of DReg becomes the
content of the dictionary and the content of the PArray become
the pointers of a compressed block. In the worst case, the
process of evaluating compressibility takes 24 cycles (last 4-
byte chunk take 8 cycles) and in the best case it takes 9 cycles
(if first nine 4-byte chunks are distinct then the block becomes
incompressible). We convert Algorithm 1 into a verilog code
that synthesize an eight-stage pipelined circuit (See Fig. 6).
Due to space constraints, we do not explain the circuit. We
show this circuit to make a case for practical design. Faster
but more complex compression circuit could be implemented
if compression latency becomes an issue.

In terms of functionality, the circuit for scheme-II is similar
to the circuit of scheme-I, with differences such as 4-stage
pipelined circuit (instead of 8), 28-bit registers and buffers
(instead of 32 bits), an additional circuit for extracting upper
28-bit from 4-byte chunks, and additional storage in terms of
an array of offsets that store the offsets for each of the 16
4-byte chunks. Based on the outcome of the scheme-I and
scheme-II, DISH transfers the contents of the registers into
the cache block, along with the array of offsets (for scheme-
II) and array of pointers (for both scheme-I and scheme-II).

B. Compaction

To explain the compaction process in a simple way, we
assume that the blocks B0, B1, B2, and B3 of a 4-block super-
block are responded from the DRAM in that order. We also
assume that B0 is already compressed and encoded in a com-
pressed form through one of the proposed encoding schemes,
and the super-block tag entry of B0 contains 1X (meaning a
super-block with CF=4 that can potentially compact 4 cache
blocks into one data entry. Please refer Fig. 3). With DISH, we
use the don’t care bit (X) provided by YACC layout to identify
the encoding scheme used by DISH (0 for scheme-I and 1 for
scheme-II). When block B1 is responded from the DRAM,
DISH checks whether B1 maps to the same super-block tag
as B0. Note that with YACC, a maximum 4 cache blocks share
a super-block tag. A hit in a super-block tag with the same
index (refer to address bits of Fig. 3), means that there is an
adjacent block B0 that is already present in the cache.

DISH performs the compressibility test on B1 for both the
encoding schemes. At the same time, the dictionary entries of
B0 is compared with the potential dictionary of B1. If B1 is
compressible with the scheme that is used by B0 and with the
same dictionary entries as B0 then B1 is allocated into the
same data entry as B0. The corresponding validity/coherence
bits are updated in the tag and data entries of B0. Note that
the updated data entry of B0 will now contain two sets of
pointers (if encoded using scheme-I or scheme-II) and two
sets of offsets (if encoded using scheme-II). Moreover, if the
dictionary for B0 is incomplete, the dictionary might become

6

0x00000111 0x00000000 0x80000000 0x60000000 0x11111110 0x22100000 0x00000010 0x30000000 0x00000111 000 001 001 010 010 011 000 100 010 101 000 100 110 111 111 0x11111111 001

. . .

0x00000111 0x00000000 0x11111111 0x11111111 0x80000000 0x00000010 0x22100000 0x00000010 0x00000000 0x11111111 0x60000000 0x00000010 0x22100000 0x11111110 0x30000000 0x30000000 0x00000000

0x00000110x0000001 0x000000A 0x0000000 0x00000111 00 01 00 00 01 00 00 00 01 00 00 10 10 00 01 0x0000002 11 0x0 0x1 0x3 0x4 0x3 0x9 0x0 0x1 0x1 0xB 0x4 0x2 0x0 0x1 0x3 0xA

0x00000111 0x00000011 0x00000004 0x00000013 0x00000009 0x00000000 0x00000001 0x00000000 0x00000003 0x00000011 0x0000000B 0x00000004 0x00000022 0x00000020 0x00000001 0x00000003

. . .
+

0x000000AA

+. . .

(a) Scheme-I

(b) Scheme-II

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1500 1 2 3

Dictionary of eight 4-byte entries 16 3-bit Pointers

Dictionary of four 28-bit entries 16 2-bit Pointers 16 4-bit Offsets

Fig. 7: Decompression hardware of DISH. (+) is a concatenation operator and not an addition.

complete with additional distinct 4-byte chunks from B1. If B1
fails the compressibility test then DISH allocates a new 64B
data entry with CF=1 for an uncompressed B1. To compare the
dictionaries of blocks B0 and B1, we replicate the compression
hardware and preset the dictionary associated with block B0 in
one of the compressors. In this way, three tests of compression
can be performed in parallel for B1: one for each encoding
scheme that tests the compressibility of B1 and one with preset
B0 dictionary that checks whether the distinct 4-byte chunks
of B1 would result in same dictionary entries as B0.

When B2 is responded from the DRAM the same com-
paction process (as for B1) is used. For B2, in the worst case,
up to four parallel tests of compressions (one with preset B0,
one with preset B1, and two for two encoding schemes with
B2) will be required before compacting it with B1 and B0,
B0 only, or B1 only. Also when B3 comes, DISH repeats the
same process. This process of compaction consumes additional
dynamic energy as DISH has to retrieve the dictionaries of the
neighboring blocks.

Writebacks are also handled accordingly. In case of a write-
back, a data entry that contains four compressed blocks,
may become non-compactable because of a single compressed
block, and when it happens DISH invalidates the correspond-
ing compressed block and re-allocates it with the same com-
pression process. However, if a write-back does not affect the
compressibility, DISH just updates its pointers and the offsets.
Note that there is no additional latency for compaction as
all the comparisons of dictionary entries happen concurrently
along with the compressibility test of a block. Also, for cache
replacement, DISH just follow the underlying YACC layout
and uses meta-data information per super-blocks for LRU and
RRIP [9] based techniques.

With DISH, determining a hit/miss for a given block A3,
requires an access to super-block-tag. Through super-block-
tag, DISH checks the presence/absence of the neighboring
blocks (say A0 to A2) and their nature (compressed or not).

Note that all the neighboring blocks of a super-block are
mapped to one cache set. In case of a miss, and if neighboring
block(s) is present and compressed, the dictionar(ies) is read
from the data array (based on the Blk-IDs) using the exact
same access-slot that would have been used in case of a hit,
and this does not incur any additional accesses on the cache.
Note that Our cache accesses to data and tag array happen
parallely (same to the fast lookup mode of CACTI [10]) and
it happens irrespective of a hit or a miss. Once the dictionaries
are retrieved from the data entry, DISH transfers them to the
compressors (in this case, the three compressors are used).
These compressors then store the dictionary entries of A0 to
A2 in their respective registers. Note that the entire process
happens while the data block A3 is getting retrieved from the
DRAM. So this does not add to access-latency of A3. Also,
during this process, incoming requests that come to the L3
request queue do not wait for additional cycles because of
DISH.

For writebacks, DISH incurs two accesses: (i) retrieving
the dictionaries and (ii) updating them after compression. On
a writeback, DISH first reads the super-block tags. Then in
the case when the block or one of its neighbors is com-
pressed, DISH reads them to allow the combined compres-
sion/compaction. Thus a writeback consumes two access slots
on the data array (instead of one access) and this leads to some
extra contention at the LLC request queue for the incoming
read requests.

C. Decompression

The decompression process happens when a demand request
results in an LLC hit. Based on the splitting of the address bits
and block indexing as mentioned in Section II, DISH indexes
the particular block using the block-ID and decompresses it.
Based on the encoding scheme, DISH finds out the corre-
sponding pointers and offsets of the compressed block. Fig. 7
shows the decompression process for scheme-I and scheme-II.

7

Processor 1/8/16-cores, 3.7 GHz, out of order
L1 D/I, L2 32 KB (4 way), 256KB (8 way)
Shared L3 1/16/32 MB for 1/8/16 cores with 8/16/16 ways,

non-inclusive
MSHRs 16, 16, 16/128/256 MSHRs

at L1, L2, L3 with 1/8/16 cores
Cache line size 64B in L1, L2 and L3
Replacement policy RRIP [9]
L2 prefetchers Stream based [11], 32 streams

with degree = 4 and distance = 32
On-chip interconnect Crossbar, transfer latency - 4 clock cycles, arbitra-

tion latency - 5 clock cycles
DRAM controller 1/2/4 controllers for 1/8/16-cores, Open Row, 64

read/write queues, FR-FCFS, drain-when-full
DRAM bus split-transaction, 800 MHz, BL=8
DRAM DDR3 1600 MHz (11-11-11)

Max bandwidth/channel - 12.8 GB/sec

TABLE I: Parameters of the simulated system.

For scheme-I, DISH uses 16 multiplexers for 16 4-byte chunks,
and fetches 16 4-byte chunks from the dictionary based on
the 16 pointers. The crux of our scheme is its decompression
latency, which is one cycle. So a demand request is serviced
with an additional latency of one cycle when compared with
an uncompressed cache. In case of scheme-II, a compressed
block goes through a set of multiplexers (similar to scheme-
I), and DISH concatenates the offsets of each of the 4-byte
chunks with the output of their respective multiplexers.

D. Overhead Analysis

This section provides the area, latency, and energy over-
heads that comes with DISH. DISH does not incur any
additional storage for storing the meta-data. However, in terms
of additional circuits, DISH uses seven 32-bit buffers, eight
32-bit registers, eight 32 bit comparators, 16 MUXs of size
8:1 (for scheme-I), and 16 MUXs of size 4:1 (for scheme-
II). It also uses a circuit to extract the offsets. We estimate
the area, latency, and energy overheads by using CACTI 6.5
[10] and Synopsys Design Compiler. For a 32-nm technology,
and for a 2MB cache that occupies 22mm2 (tag array + data
array), the area occupied by the compressor and de-compressor
is less than 0.3mm2. For multi-core systems with 16MB
(54mm2) and 32MB (93mm2) LLCs, the compressor and
the de-compressor circuit is replicated for each cache bank,
resulting in an area overhead of 2.4mm2. As mentioned earlier,
in the worst case, DISH takes 24 cycles and 1 cycle for com-
pression and decompression, respectively. In terms of dynamic
energy per access, the compressor and the de-compressor of
DISH consume 0.09nJ and 0.02nJ, respectively, whereas an
uncompressed 2MB cache consumes 0.51nJ. In terms of static
power per cache bank, DISH dissipates 0.061mW, which is
negligible compared to the static power consumed (18.4mW)
by a 2MB LLC.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of DISH and
compare it with BDI and CPACK+Z that use YACC based lay-
out and CF based compaction. We compare these techniques
in terms of compression ratio, performance improvement, and
improvement in energy consumption. Note that CPACK+Z and

Benchmarks and their Types
LLC-capacity-
sensitive-pos

SP: xalancbmk, bzip2, hmmer, GemsFDTD, soplex, mcf,
omnetpp, h264ref, cactusADM, sssp, apsp, astar

LLC-capacity-
sensitive-neg

SN: libquantum, lbm, milc, bfs, bwaves, betweenness
centrality (bc)

LLC-capacity-
insensitive

IN: pagerank, namd, gromacs, leslie3d, sjeng, community
detection (community)

TABLE II: Classification of applications.

C1, C2, C3, All-SP, All-SN, All-IN,
C4, C5, C6,
C7, C8, C9,

0.75SP-0.25SN, 0.75SP-0.25IN,
0.75SN-0.25IN, 0.75IN-0.25SN,
0.75IN-0.25SP, 0.75SN-0.25SP,

C10, C11,
C12,

0.5SP-0.5SN, 0.5SP-0.5IN, 0.5SN-0.5IN,

C13 Random

TABLE III: 13 categories of multi-programmed workload
mixes. xSP-ySN corresponds to a mix that contains x frac-
tion of SP benchmarks and y fraction of SN benchmarks.

BDI takes 16/9 and 2/1 cycles for compression/decompression,
respectively. We do not show the results for SCC based
cache layout as the effectiveness (in terms of performance
and compression ratio) of SCC is almost the same as YACC.
However, YACC is simpler and practical to implement.
Evaluation Methodology. We use the gem5 [12] simulator
to evaluate the effectiveness of DISH at the LLC. Table I
shows the baseline configuration of our simulated system.
We simulate both single-core and multi-core (8- and 16-core)
systems, and we estimate the cache latencies by using CACTI
6.5 [10]. We collect the statistics for workloads by running
each benchmark in a workload for 500M instructions after
a fast-forward of 20B instructions and warm-up of 500M
instructions, which is similar to the methodology used in
[13], [14], and [15]. A workload terminates when the slowest
benchmark completes 500M instructions.
Metrics of Interest. We use the following metrics to evaluate
the effectiveness of DISH: compression ratio, misses per kilo
instruction (MPKI), bus accesses per kilo instruction (BPKI)
[11], and speedup. We calculate the compression ratio at
the set level granularity and take the average across all the
cache sets. Misses per kilo instruction and bus accesses per
kilo instruction provide effect of cache capacity on the LLC
misses and off-chip DRAM traffic, respectively. For single-
core simulations, we use speedup as Execution−timebaseline

Execution−timetechnique
,

whereas for multi-core systems, we use weighted speedup

[16], which is
N−1∑
i=0

IPCtogether
i

IPCalone
i

, where IPCtogether
i is the IPC

of core i when it runs along with other N -1 applications and
IPCalone

i is the IPC of core i when it runs alone on a multi-
core system of N cores.
Workload selection. Table II classifies 24 benchmarks (from
SPEC CPU 2006 and CRONO benchmark suites) into 3
classes (SP, SN, and IN), based on their sensitiveness to
the cache capacity. A benchmark is sensitive-positive (SP) if
there is an improvement in performance with the increase in
the LLC size, sensitive-negative (SN) if there is performance
degradation with the increase in the LLC size (applications for
which LLC misses do not drop but access latency increases

8

1

1.5

2

2.5

3

3.5

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

G
em

sF
D

TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
et

p
p

sj
en

g

so
p

le
x

xa
la

n
cb

m
k

ap
sp b

c

b
fs

co
m

m
u

n
it

y

p
ag

er
an

k

ss
sp

G
m

ea
n

A
m

ea
n

C
o

m
p

re
ss

io
n

 R
at

io
 (

X
)

CPACK+Z BDI DISH Higher the better

Fig. 8: Compression ratios for YACC.

0
5

10
15
20
25
30
35
40
45
50
55
60

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

G
em

sF
D

TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
et

p
p

sj
en

g

so
p

le
x

xa
la

n
cb

m
k

ap
sp b

c

b
fs

co
m

m
u

n
it

y

p
ag

er
an

k

ss
sp

A
ve

ra
ge

A
ve

ra
ge

 w
as

ta
ge

 o
f

LL
C

 s
p

ac
e

in
 t

er
m

s
o

f
b

yt
es

 p
er

 s
u

p
er

-b
lo

ck

CPACK+Z BDI DISH
Lower the better

Fig. 9: Reduction in the LLC wastage.

with the increase in the LLC size), and insensitive (IN) if
the increase in the cache size does not affect performance
or affect it negligibly. Table III shows the 13 categories of
multi-programmed workload mixes that we create from the
24 benchmarks. Note that, while creating multi-programmed
workload mixes, we use single-threaded CRONO benchmarks.
We create 104 8-core and 52 16-core workload mixes that are
distributed equally across 13 categories.

A. Single-core Results

Compression ratio. Fig. 8 shows the compression ratios
achieved by CPACK+Z, BDI, and DISH with a YACC based
compressed cache layout. On average (geomean), DISH pro-
vides a compression ratio of 2.34X, whereas CPACK+Z and
BDI provide compression ratios of just above 1.6X. With
CPACK+Z and BDI, none of applications provide compression
ratios that are higher than 3X. However, DISH provides
compression ratios of up to 3.3X. For applications such as
gromacs, hmmer, h264ref, and apsp, scheme-II of DISH
plays an important role in improving the compressibility.
These applications, mostly contain pointers and offsets that
spread across multiple cache blocks, and as Fig. 2 shows, these
applications also have more wastage of LLC space. For other
applications, adaptive DISH helps as both the schemes play an
important role. Our simple compression scheme achieves more
than 85% accuracy on average, when compared to an ideal
DISH (a trace based compression scheme that always chooses
the correct encoding scheme). However, there are applications
such as soplex and bfs where SDMs are accurate for
just over 70% of the time. Fig. 9 shows the reduction in
the wastage of LLC space. Compared to CPACK+Z and
BDI, DISH reduces the LLC wastage by 3.2X and 2.3X,
respectively. Applications such as sssp shows the highest
reduction of 6.2X over CPACK+Z. Reduction in the wastage
of LLC space allows more data to be packed in data entries,

0

5

10

15

20

25

30

M
P

K
I a

t
th

e
LL

C

Baseline CPACK+Z

BDI DISH

2X Baseline 4X Baseline

32

Lower the better

Fig. 10: LLC misses in terms of MPKI.

0.9

1

1.1

1.2

1.3

1.4

1.5

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

G
em

sF
D

TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
et

p
p

sj
en

g

so
p

le
x

xa
la

n
cb

m
k

ap
sp b

c

b
fs

co
m

m
u

n
it

y

p
ag

er
an

k

ss
sp

G
m

ea
n

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

CPACK+Z BDI DISH 2X Baseline 4X Baseline
1.7

Higher the better

Fig. 11: Speedup over a 2MB LLC.

which improves the compression ratio.
Observations. We find three kinds of super-blocks at the LLC:
i) both CPACK+Z and BDI with CF based compaction, and
DISH provide the same compression ratio. This happens when
all the blocks of a super-block have the same or similar data
content, which leads to same CF. So, compared to CF based
compaction, DISH provides no improvement in compression
ratio. ii) CPACK+Z or BDI with CF based compaction com-
pact more blocks than DISH. This is a rare case (on average,
across all the applications, only 16% of the LLC blocks fall
into this case). This happens when cache blocks fail to share
the dictionary, which provides no opportunity for compaction
whereas CPACK+Z and BDI are able to compress the blocks
and CF based compaction compacts more blocks than DISH.
Applications such as, lbm and mcf contain this kind of super-
blocks. iii) DISH performs better than BDI and CPACK+Z
because of the reasons mentioned in the Fig. 1.
LLC Misses. The higher compression ratio of DISH helps
in reducing the LLC misses. DISH reduces LLC misses of
all the cache sensitive applications. Moreover, for most of the
applications, LLC misses of a 2MB DISH is lower than a 4MB
uncompressed baseline cache. At the same time, it does not
affect the cache in-sensitive applications, and the LLC misses
of those applications remain the same with DISH. On average,
compared to a baseline cache, CPACK+Z, BDI, DISH, and 2X
baseline cache, provide 23%, 29%, 50%, and 39.2% reductions
in the LLC misses, respectively. Fig. 10 shows the LLC
misses (in terms of MPKI) for all the 24 applications. Note
that improvement in compression ratio does not guarantee
reduction in LLC misses as some of the applications do not
benefit from the increased cache space. For example, LLC
misses of libquantum does not change till an LLC of size

9

1

1.5

2

2.5

3

3.5

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Gmean

C
o

m
p

re
ss

io
n

 R
at

io
 (

X
)

CPACK+Z BDI DISH Higher the better

Fig. 12: Per category compression ratios.

Higher the better

0.9

1

1.1

1.2

1.3

1.4

1.5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Gmean

N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p CPACK+Z BDI DISH 2X Baseline Higher the better

Fig. 13: Per category weighted-speedups.

32MB, and beyond 32MB, it drops to zero as its working set
fits in. We observe a similar trend in bc and community.
Speedup. Fig. 11 shows the speedup that is achieved by
DISH normalized to an uncompressed baseline cache. We
also show the performance that can be achieved by doubling
(2X) and quadrupling (4X) the LLC capacity. Note that our
experiments assume an increase in the cache access latency
by 7 and 14 cycles for 2X and 4X baseline caches (based
on CACTI 6.5), respectively. DISH outperforms CPACK+Z
and BDI for all the cache sensitive applications. For cache
insensitive applications, DISH provides marginal improvement
over CPACK+Z and BDI. On average, DISH provides 9.8% of
speedup whereas a 2X baseline cache provides a speedup of
8.1%. BDI and CPACK+Z provide improvements of 6.2% and
5.2%, respectively. DISH provides better speedup compared
to CPACK+Z and BDI as the reduction the LLC wastage
helps the cache-sensitive applications significantly. Also, as
the decompression latency of DISH is only one cycle, it has no
effect on the performance of the cache insensitive applications.

B. Results for Multi-core Systems

For multi-core systems, we use 2MB/core and use 16MB
and 32MB LLCs for 8-core, and 16-core simulated systems,
respectively. The access latencies are also updated based on
CACTI 6.5 [10]. We also scale all other shared resources as
mentioned in Table I.
Compression ratio. Fig. 12 shows the average of compression
ratios for 156 (104 8-core and 52 16-core) multi-programmed
workload mixes based on the 13 categories as mentioned in
Table III. Note that we simulate an equal number of workloads
from each category. On average, DISH provides a compression
ratio of 2.32X, with a maximum compression ratio of 3.9X
for a workload that belongs to C10 category. Out of 156
workloads, only 51 workloads show a compression ratio of less
than 2X, which makes a very strong case for DISH. On the
other hand, CPACK+Z and BDI provide compression ratios

Higher the better

0.9

1

1.1

1.2

1.3

1.4

1.5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Gmean

N
o

rm
al

iz
ed

 R
ed

u
ct

io
n

 in
 B

P
K

I

CPACK+Z BDI DISH 2X Baseline

Fig. 14: Reduction in off-chip traffic.

0

10

20

30

40

50

60

as
ta

r

b
w

av
es

b
zi

p
2

ca
ct

u
sA

D
M

G
em

sF
D

TD

gr
o

m
ac

s

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

lib
q

u
an

tu
m

m
cf

m
ilc

n
am

d

o
m

n
et

p
p

sj
en

g

so
p

le
x

xa
la

n
cb

m
k

ap
sp b

c

b
fs

co
m

m
u

n
it

y

p
ag

er
an

k

ss
sp

G
m

ea
n

M
P

K
I a

t
th

e
L2

Baseline BDI DISH Lower the better

Fig. 15: L2 cache misses in terms of MPKI.

of 1.72X and 1.74X respectively. For workload categories,
such as C1, C5, C10, and C11, where at-least 50% of the
applications are cache-sensitive-positive, and there is under-
utilization of data entries (LLC wastage of more than 32B per
super-block), DISH provides compression ratios of more than
3X.
Weighted Speedup. Fig. 13 shows the performance im-
provement in terms of weighted speedup for each of 13
categories. On average (geomean) across 156 workloads,
DISH provides 14.3% improvement whereas BDI, CPACK+Z,
and 2X baseline cache provide improvements of 7.7%,
7.2%, and 9%, respectively. DISH outperforms CPACK+Z
and BDI for all the categories. For categories that contain
only cache-insensitive applications, DISH marginally performs
better CPACK+Z. One of the reasons for this trend is,
the decompression latency of DISH is eight cycles lower
compared to CPACK+Z. DISH provides a maximum im-
provement of 51.2% for an 8-core workload that contains
gromacs-mcf-h264ref-namd-leslie3d-hmmer
-astar-sjeng, in which the data entries that are wasted by
cache-insensitive applications are utilized by cache-sensitive
applications. This results in significant performance improve-
ments for applications such as astar, sjeng, hmmer, and
h264ref. If a multi-programmed workload mix contains at-
least 25% cache sensitive applications, and its super-blocks
contain more than 40 bytes of average wastage then DISH
provides significant performance improvement (at-least 15%
improvement over the baseline).
Off-chip traffic. In multi-core systems, off-chip bandwidth
consumption is also an essential component, and improve-
ment in the compression ratio at the LLC helps in reducing
the off-chip bandwidth consumption as the number of data
transfers between the LLC and the DRAM get reduced. Fig.
14 shows the reduction in the traffic. On average, compared
to the baseline, DISH provides 22.5% reduction in the traffic
whereas CPACK+Z, BDI, and 2X baseline provide reductions

10

of 13.6%, 15.3%, and 17.3%, respectively. DISH provides
better reductions for workloads that contain applications that
are cache sensitive with higher LLC MPKIs.
Energy consumption. As performance is not the only metric
that is important for the modern systems, we quantify the
energy consumption of the memory subsystem (LLC+DRAM),
ignoring the energy benefit that comes because of reduction in
the execution time. We quantify the static and dynamic energy
consumed by LLC, DRAM, compressors/decompressors of
DISH, and memory transfers. On average across 156 work-
loads, compared to a baseline LLC, DISH is 22% more energy
efficient, and compared to CPACK+Z and BDI, DISH is 16%
more energy efficient. Note that the energy overheads of DISH
is marginal compared to the energy gain.

C. Further Evaluations

Effect of additional access: To quantify the effect of addi-
tional access due to writeback, we simulate an ideal but unre-
alistic DISH that does not incur additional accesses because of
writebacks, and compare the performance with the proposed
DISH. For single core systems, on average, the unrealistic
DISH would provide an additional improvement of 1.8% when
compared to the proposed DISH. For multi-core systems,
in terms of weighted speedup, compared to the proposed
DISH, the unrealistic DISH provides additional improvement
of 2.2%. Applications such as lbm, libquantum, and mcf
that have high LLC WPKCs (writebacks per kilo cycles) of
18, 12, and 9.6 are affected the most because of the additional
access. Overall, the contention at the LLC request queue has
marginal effect on the system performance.
DISH at the L2. As the decompression latency of DISH is just
one cycle, there is an opportunity to extend DISH at the L2.
Among CPACK+Z and BDI, BDI is the compression technique
with permissible decompression latency. We simulate BDI and
DISH at the L2 with a YACC based layout. On a demand
miss at the L2, we send a compacted 64B data entry (that
contains the data of multiple cache blocks) to the L2 cache
controller. Fig. 15 shows the reduction in the L2 MPKI,
with this enhancement. Also, DISH at the L2 along with
DISH at the LLC provides an off-chip traffic reduction of
3.8X. For multi-core systems, this optimization improves the
combined cache capacity (per core L2s + LLC) by 2.78X,
which results in 19.2% improvement in weighted speedup.
Note that our baseline cache hierarchy is non-inclusive. For
inclusive/exclusive cache hierarchies, additional care need to
be taken to maintain inclusiveness/exclusiveness.
Effect of LLC size. We simulate 8-core systems with
8/16/32/64MB LLC and we find, none of the compression
schemes are effective for a 64MB LLC as the working sets of
most of the applications fit in the LLC. When we migrate
from 16MB to 32MB, there is slight degradation in the
performance improvement (from 14.3% to 11.1%), whereas
when we migrate to 8MB, there is further increase in the
performance improvement (from 14.3% to 19.6%).
DRAM bandwidth. We study the sensitivity of DRAM
bandwidth by changing the bandwidth per DRAM controller

from 12.8GB/sec to 6.4GB/sec and 25.6GB/sec. The com-
pression process takes 24 cycles. So if DRAM bandwidth
is significantly high then the compression process can be
a bottleneck. We find for some 16-core workloads, DRAM
bandwidth of more than 32 GB/sec creates a bottleneck. For
those workloads we can use multiple DISH compressors.
Overall, the effectiveness of DISH changes marginally with
the change in the available off-chip bandwidth.
Prefetching. To understand the sensitiveness of hardware
prefetchers, we simulate DISH with no prefetchers. The effec-
tiveness of DISH remains the same with no hardware prefetch-
ers, with performance improvement of 10.8% for single-
core workloads. In case of multi-programmed workloads, the
average improvement over the baseline is 12.1%.

VI. RELATED WORK

To the best of our knowledge, this is the first work on cache
compression that helps in cache compaction by exploiting the
feature of compressed cache layouts, such as SCC and YACC.
Several cache compression techniques have been proposed that
exploit the inter-block data localities to compress a cache
block. ZCA [17], and a technique proposed by Ekman and
Stenstrom [18] compress the zero blocks, whereas Alameldeen
and Wood compress cache blocks that have narrow values
(a small value stored in large size data type, for example a
value of 1 that needs only one bit is stored with a long int
data type) [19]. Arelakis and Stenstrom propose a statistical
compression technique called SC2 [20] that uses Huffman
encoding. Although SC2 provides better compression ratio
than all other techniques, it needs software support for sam-
pling of data to generate the Huffman encoding and in this
process it demands storage of 18KB. Also, its decompression
latency can go up to 14 cycles, which is high compared to
1 cycle decompression latency of BDI and DISH. Recently,
a technique called Hycomp [21] is proposed that switches
between different compression techniques, such as BDI, SC2,
and ZCA as none of the compression schemes works well
across all applications.

Apart from the above mentioned techniques, there are
techniques such as frequent value compression (FVC) [22] that
encodes the frequently occurring values. It also needs profiling
to identify the frequent values. On the other hand, Alameldeen
and Wood identify seven frequently occurring compressible
data patterns in frequent pattern compression (FPC) [23]. Tian
et al. [24] improve the cache capacity by detecting duplicate
blocks and replacing it with only one copy of the data. Baek
et al. [25] propose size aware cache replacement policies that
takes the compressed size of the cache blocks into account
for replacing cache blocks. Pekhimenko et al. propose CAMP
[26] that outperforms size aware cache replacement policies.
DISH is orthogonal to these replacement schemes.

VII. CONCLUSION

This paper proposed DISH, a simple, yet efficient cache
compression technique that exploits the layout of the state-of-
the-art compressed caches. In contrast to the prior cache com-

11

pression schemes, such as CPACK+Z and BDI that compress
a cache block independently, DISH compresses a cache block,
anticipating that the block might be compacted with other
neighboring blocks. In this way, more blocks get compacted
in one data entry, which helps in reducing the wastage of LLC
space, and improving the effective utilization of data entries.

DISH exploits two kinds of data patterns that are shared
across multiple blocks and provides a simple and practical
design with a decompression latency of only one cycle. This
makes DISH easily employable in modern systems. Based on
our experiments with YACC, DISH outperforms the state-of-
the-art compression schemes in terms of compression ratio
(2.3X from 1.7X) and performance improvement (14.3% from
7.2%). We conclude that DISH is a low-latency compres-
sion technique that is suitable for state-of-the-art compressed
caches, such as SCC and YACC.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the members of the ALF team for their suggestions. The
authors also thank Somayeh Sardashti and David Wood for
their help. This work is partially supported by ERC Advanced
Grant DAL No. 267175. This work is also partially supported
by an Intel research gift.

REFERENCES

[1] S. Sardashti and D. A. Wood, “Decoupled compressed cache: Ex-
ploiting spatial locality for energy-optimized compressed caching,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-46, (New York, NY, USA), pp. 62–73,
ACM, 2013.

[2] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed compressed caches,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-47, (Washington, DC, USA), pp. 331–
342, IEEE Computer Society, 2014.

[3] S. Sardashti, A. Seznec, and D. A. Wood, “Yet Another Compressed
Cache: a Low Cost Yet Effective Compressed Cache,” in ACM Trans-
actions on Architecture and Code Optimization, 2016.

[4] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: a benchmark suite
for multithreaded graph algorithms executing on futuristic multicores,”
in Workload Characterization (IISWC), 2015 IEEE International Sym-
posium on, pp. 44–55, Oct 2015.

[5] C. D. Spradling, “SPEC CPU2006 Benchmark Tools,” SIGARCH Com-
puter Architecture News, vol. 35, March 2007.

[6] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proceedings of the 21st Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT ’12, (New York, NY, USA), pp. 377–388, ACM, 2012.

[7] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas, “C-
PACK: a high-performance microprocessor cache compression algo-
rithm,” vol. 18, (Piscataway, NJ, USA), pp. 1196–1208, IEEE Educa-
tional Activities Department, Aug. 2010.

[8] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and
J. Emer, “Adaptive insertion policies for managing shared caches,” in
Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’08, (New York, NY, USA),
pp. 208–219, ACM, 2008.

[9] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” in Proceedings of the 37th Annual International Symposium
on Computer Architecture, ISCA ’10, (New York, NY, USA), pp. 60–
71, ACM, 2010.

[10] N. Muralimanohar and R. Balasubramonian, “CACTI 6.0: A tool to
understand large caches.”

[11] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture, HPCA
’07, (Washington, DC, USA), pp. 63–74, IEEE Computer Society, 2007.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[13] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain
cache partitioning,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture, ISCA ’11, (New York, NY, USA),
pp. 57–68, ACM, 2011.

[14] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared
cache management (PriSM),” in Proceedings of the 39th Annual Inter-
national Symposium on Computer Architecture, ISCA ’12, (Washington,
DC, USA), pp. 428–439, IEEE Computer Society, 2012.

[15] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez, “B-
Fetch: branch prediction directed prefetching for chip-multiprocessors,”
in Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-47, (Washington, DC, USA), pp. 623–
634, IEEE Computer Society, 2014.

[16] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a
simultaneous multithreaded processor,” in Proceedings of the Ninth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS IX, (New York, NY, USA),
pp. 234–244, ACM, 2000.

[17] J. Dusser, T. Piquet, and A. Seznec, “Zero-content augmented caches,”
in Proceedings of the 23rd International Conference on Supercomputing,
ICS ’09, (New York, NY, USA), pp. 46–55, ACM, 2009.

[18] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in Proceedings of the 32Nd Annual International Symposium
on Computer Architecture, ISCA ’05, (Washington, DC, USA), pp. 74–
85, IEEE Computer Society, 2005.

[19] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” in Proceedings of the 31st Annual Inter-
national Symposium on Computer Architecture, ISCA ’04, (Washington,
DC, USA), pp. 212–, IEEE Computer Society, 2004.

[20] A. Arelakis and P. Stenstrom, “Sc2: A statistical compression cache
scheme,” in Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA ’14, (Piscataway, NJ, USA), pp. 145–
156, IEEE Press, 2014.

[21] A. Arelakis, F. Dahlgren, and P. Stenstrom, “Hycomp: A hybrid cache
compression method for selection of data-type-specific compression
methods,” in Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, (New York, NY, USA), pp. 38–49, ACM,
2015.

[22] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in Proceedings of the 33rd Annual ACM/IEEE International
Symposium on Microarchitecture, MICRO 33, (New York, NY, USA),
pp. 258–265, ACM, 2000.

[23] A. R. Alameldeen and D. A. Wood, “Frequent pattern compression:
A significance-based compression scheme for l2 caches.,” in Technical
Report 1500, Computer Sciences Department, University of Wisconsin-
Madison, 2004.

[24] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level
cache deduplication,” in Proceedings of the 28th ACM International
Conference on Supercomputing, ICS ’14, (New York, NY, USA), pp. 53–
62, ACM, 2014.

[25] S. Baek, H. G. Lee, C. Nicopoulos, J. Lee, and J. Kim, “Ecm: Effective
capacity maximizer for high-performance compressed caching,” in High
Performance Computer Architecture (HPCA), 2013 IEEE 19th Interna-
tional Symposium on, pp. 131–142, Feb 2013.

[26] G. Pekhimenko, T. Huberty, R. Cai, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Exploiting compressed block size as an
indicator of future reuse,” in High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pp. 51–63, Feb
2015.

12

	INTRODUCTION
	Background
	DISH:Encoding Schemes
	Overview
	Scheme-I
	Scheme-II

	DESIGN AND IMPLEMENTATION
	Compression
	Compaction
	Decompression
	Overhead Analysis

	Experimental Evaluation
	Single-core Results
	Results for Multi-core Systems
	Further Evaluations

	Related Work
	Conclusion
	References

