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Let X be a complex projective manifold of dimension n defined over the reals and let M denote its real locus. We study the vanishing locus Zs d in M of a random real holomorphic section s d of E ⊗ L d , where L → X is an ample line bundle and E → X is a rank r Hermitian bundle. When r ∈ {1, . . . , n -1}, we obtain an asymptotic of order d r-n 2 , as d goes to infinity, for the variance of the linear statistics associated with Zs d , including its volume. Given an open set U ⊂ M , we show that the probability that Zs d does not intersect U is a O of d -n 2 when d goes to infinity. When n 3, we also prove almost sure convergence for the linear statistics associated with a random sequence of sections of increasing degree. Our framework contains the case of random real algebraic submanifolds of RP n obtained as the common zero set of r independent Kostlan-Shub-Smale polynomials.

Introduction

Framework. Let us first describe our framework and state the main results of this article (see Section 2 for more details). Let X be a smooth complex projective manifold of positive complex dimension n. Let L be an ample holomorphic line bundle over X and let E be a rank r holomorphic vector bundle over X , with r ∈ {1, . . . , n}. We assume that X , E and L are endowed with compatible real structures and that the real locus M of X is not empty. Let h E and h L denote Hermitian metrics on E and L respectively that are compatible with the real structures. We assume that h L has positive curvature ω. Then ω is a Kähler form on X and it induces a Riemannian metric g on M .

For any d ∈ N, the Kähler form ω, h E and h L induce a L 2 -inner product on the space RH 0 (X , E ⊗ L d ) of real holomorphic sections of E ⊗ L d → X (see (2.1)). Let d ∈ N and s ∈ RH 0 (X , E ⊗ L d ), we denote by Z s the real zero set s -1 (0) ∩ M of s. For d large enough, for almost every s ∈ RH 0 (X , E ⊗ L d ), Z s is a codimension r smooth submanifold of M and we denote by |dV s | the Riemannian measure on Z s induced by g (see Sect. 

where Vol (M ) is the volume of M for |dV M | and the volumes of spheres are Euclidean volumes. Here and throughout this paper, E[•] denotes the expectation of the random variable between the brackets, and S m stands for the unit Euclidean sphere of dimension m. Let φ ∈ C 0 (M ), we denote by φ ∞ = max x∈M |φ(x)| its norm sup. Besides, we denote by • , • the duality pairing between C 0 (M ), • ∞ and its topological dual. Then, (1.1) can be restated as:

E[ |dV d | , 1 ] = d r 2 Vol (M ) Vol (S n-r ) Vol (S n ) + O d r 2 -1 ,
where 1 ∈ C 0 (M ) stands for the unit constant function on M . The same proof gives similar asymptotics for E[ |dV d | , φ ] for any continuous φ : M → R (see [16, section 5.3]).

Theorem 1.1. Let X be a complex projective manifold of positive dimension n defined over the reals, we assume that its real locus M is non-empty. Let E → X be a rank r ∈ {1, . . . , n} Hermitian vector bundle and let L → X be a positive Hermitian line bundle, both equipped with compatible real structures. For every d ∈ N, let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ). Then the following holds as d → +∞: 

∀φ ∈ C 0 (M ), E[ |dV d | , φ ] = d r 2 M φ |dV M | Vol (S n-r ) Vol (S n ) + φ ∞ O d
d -r 2 E[|dV d |] -----→ d→+∞ Vol (S n-r ) Vol (S n ) |dV M | , (1.3) 
as continuous linear functionals on C 0 (M ), • ∞ .

Statement of the results. The main result of this paper is an asymptotic for the covariances of the linear statistics |dV d | , φ φ ∈ C 0 (M ) . Before we can state our theorem, we need to introduce some additional notations.

As usual, we denote by Var(X) = E (X -E[X]) 2 the variance of the real random (1.4) Definition 1.2. Let φ ∈ C 0 (M ), we denote by ̟ φ its continuity modulus, which is defined by: ̟ φ : (0, +∞) -→ [0, +∞) ε -→ sup |φ(x)φ(y)| (x, y) ∈ M 2 , ρ g (x, y) ε , where ρ g (•, •) stands for the geodesic distance on (M, g).

Since M is compact, ̟ φ is well-defined for every φ ∈ C 0 (M ). Moreover every φ ∈ C 0 (M ) is uniformly continuous and we have:

∀φ ∈ C 0 (M ), ̟ φ (ε) ---→ ε→0 0.
Note that, if φ : M → R is Lipschitz continuous, then ̟ φ (ε) = O(ε) as ε → 0.

Definition 1.3. Let L : V → V ′ be a linear map between two Euclidean spaces, we denote by det ⊥ (L) the Jacobian of L:

det ⊥ (L) = det (LL * ),
where L * : V ′ → V is the adjoint operator of L.

See Section 4.1 for a quick discussion of the properties of this Jacobian. If A is an element of M rn (R), the space of matrices of size r × n with real coefficients, we denote by det ⊥ (A) the Jacobian of the linear map from R n to R r associated with A in the canonical bases of R n and R r . Definition 1.4. For every t > 0, we define (X(t), Y (t)) to be a centered Gaussian vector in M rn (R) × M rn (R) with variance matrix: 

                        1 -te -t 1-e -t 0 • • • • • • 0 e -t 2 -te -t 2 1-e -t 0 • • • • • • 0 0 1 . . . . . . 0 
0 0 • • • • • • 0 1 0 • • • • • • 0 e -t 2 e -t 2 -te -t 2 1-e -t 0 • • • • • • 0 1 -te -t
1-e -t 

• • • • • • 0 e -t 2 0 • • • • • • 0 1                         ⊗ I r ,
where I r is the identity matrix of size r. That is, if we denote by X ij (t) (resp. Y ij (t)) the coefficients of X(t) (resp. Y (t)), the couples (X ij (t), Y ij (t)) with 1 i r and 1 j n are independent from one another and the variance matrix of (X ij (t), Y ij (t)) is:

  1 -te -t 1-e -t e -t 2 1 -t 1-e -t e -t 2 1 -t 1-e -t 1 -te -t
1-e -t   if j = 1, and

1 e -t 2 e -t 2 
1
otherwise.

Notation 1.5. We set α 0 = nr 2(2r + 1)(2n + 1) .

We can now state our main result.

Theorem 1.6. Let X be a complex projective manifold of dimension n 2 defined over the reals, we assume that its real locus M is non-empty. Let E → X be a rank r ∈ {1, . . . , n -1} Hermitian vector bundle and let L → X be a positive Hermitian line bundle, both equipped with compatible real structures. For every d ∈ N, let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ).

• The value of the constant α 0 should not be taken too seriously. This constant appears for technical reasons and it is probably far from optimal.

• If φ 2 is Lipschitz continuous with Lipschitz constant K, then the error term in eq. (1.5) can be replaced by: in the weak sense. A priori, there is no such convergence as continuous bilinear forms on C 0 (M ), • ∞ since the estimate (1.5) involves the continuity modulus of φ 2 .

φ 1 ∞ ( φ 2 ∞ + K) O d r-
• The fact that the constant I n,r is finite is part of the statement and is proved below (Lemma 4.25). This constant is necessarily non-negative. Numerical evidence suggests that it is positive but we do not know how to prove it at this point.

• Thm. 1.6 does not apply in the case of maximal codimension (r = n). This case presents an additional singularity which causes our proof to fail. However, we believe a similar result to be true for r = n, at least in the case of the Kostlan-Shub-Smale polynomials described below (compare [START_REF] Dalmao | Asymptotic variance and CLT for the number of zeros of Kostlan-Shub-Smale random polynomials[END_REF][START_REF] Wschebor | On the Kostlan-Shub-Smale model for random polynomials: variance of the number of roots[END_REF]).

The Kostlan-Shub-Smale polynomials Let us consider the simplest example of our framework. We choose X to be the complex projective space CP n , with the real structure defined by the usual conjugation in C n+1 . Then M is the real projective space RP n . Let L = O(1) be the hyperplane line bundle, equipped with its natural real structure and the metric dual to the standard metric on the tautological line bundle over CP n . Then the curvature form of L is the Fubini-Study form ω F S , normalized so that the induced Riemannian metric is the quotient of the Euclidean metric on the unit sphere of C n+1 . Let E = C r × CP n → CP n be the rank r trivial bundle with the trivial real structure and the trivial metric. In this setting, the global holomorphic sections of L d are the complex homogeneous polynomials of degree d in n+1 variables and those of E ⊗L d are r-tuples of such polynomials, since E is trivial. Finally, the real structures being just the usual conjugations, we have:

RH 0 (X , E ⊗ L d ) = R d hom [X 0 , . . . , X n ] r ,
where R d hom [X 0 , . . . , X n ] is the space of real homogeneous polynomials of degree d in n + 1 variables. The r copies of this space in RH 0 (X , E ⊗ L d ) are pairwise orthogonal for the inner product (2.1). Hence a standard Gaussian in RH 0 (X , E ⊗ L d ) is a r-tuple of independent standard Gaussian in R d hom [X 0 , . . . , X n ] = RH 0 X , L d . It is well-known (cf. [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF] Bogomolny | Quantum chaotic dynamics and random polynomials[END_REF][START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF]) that the monomials are pairwise orthogonal for the L 2inner product (2.1), but not orthonormal. Let α = (α 0 , . . . , α n ) ∈ N n+1 , we denote its length by |α| = α 0 + • • • + α n . We also define X α = X α0 0 • • • X αn n and α! = (α 0 !) • • • (α n !). Finally, if |α| = d, we denote by d α the multinomial coefficient d! α! . Then, an orthonormal basis of R d hom [X 0 , . . . , X n ] for the inner product (2.1) is given by the family:

(d + n)! π n d! d α X α |α|=d .
Thus a standard Gaussian vector in R d hom [X 0 , . . . , X n ] is a random polynomial:

(d + n)! π n d! |α|=d a α d α X α ,
where the coefficients (a α ) |α|=d are independent real standard Gaussian variables. Since we are only concerned with the zero set of this random polynomial, we can drop the factor

(d+n)! π n d! .
Finally, in this setting, |dV d | is the common zero set of r independent random polynomials in R d hom [X 0 , . . . , X n ] of the form:

|α|=d a α d α X α , (1.8) 
with independent coefficients (a α ) |α|=d distributed according to the real standard Gaussian distribution. Such polynomials are known as the Kostlan-Shub-Smale polynomials. They were introduced in [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF][START_REF] Shub | Complexity of Bezout's theorem II: volumes and probabilities[END_REF] and were actively studied since (cf. [START_REF] Azaïs | On the roots of a random system of equations. The theorem of Shub and Smale and some extensions[END_REF][START_REF] Bürgisser | Average Euler characteristic of random real algebraic varieties[END_REF][START_REF] Dalmao | Asymptotic variance and CLT for the number of zeros of Kostlan-Shub-Smale random polynomials[END_REF][START_REF] Podkorytov | The Euler characteristic of a random algebraic hypersurface[END_REF][START_REF] Wschebor | On the Kostlan-Shub-Smale model for random polynomials: variance of the number of roots[END_REF]).

Related works. As we just said, zero sets of systems of independent random polynomials distributed as (1.8) were studied by Kostlan [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] and Shub and Smale [START_REF] Shub | Complexity of Bezout's theorem II: volumes and probabilities[END_REF]. The expected volume of these random algebraic manifolds was computed by Kostlan [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] and their expected Euler characteristic was computed by Podkorytov [START_REF] Podkorytov | The Euler characteristic of a random algebraic hypersurface[END_REF] in codimension 1, and by Bürgisser [START_REF] Bürgisser | Average Euler characteristic of random real algebraic varieties[END_REF] in higher codimension. Both these results were extended to the setting of the present paper in [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF].

In [START_REF] Wschebor | On the Kostlan-Shub-Smale model for random polynomials: variance of the number of roots[END_REF], Wschebor obtained an asymptotic bound, as the dimension n goes to infinity, for the variance of number of real roots of a system of n independent Kostlan-Shub-Smale polynomials. Recently, Dalmao [START_REF] Dalmao | Asymptotic variance and CLT for the number of zeros of Kostlan-Shub-Smale random polynomials[END_REF] computed an asymptotic of order √ d for the variance of the number of real roots of one Kostlan-Shub-Smale polynomial in dimension n = 1. His result is very similar to (1.5), which leads us to think that such a result should hold for r = n. He also proved a central limit theorem for this number of real roots, using Wiener chaos methods.

In [14, thm. 3], Kratz and Leòn considered the level curves of a centered stationary Gaussian field with unit variance on the plane R 2 . More precisely, they considered the length of a level curve intersected with some large square [-T, T ] × [-T, T ]. As T → +∞, they proved asymptotics of order T 2 for both the expectation and the variance of this length. They also proved that it satisfies a central limit theorem as T → +∞. In particular, their result applies to the centered Gaussian field on R 2 with correlation function (x, y) → exp -1 2 xy 2 . This field can be seen as the scaling limit, in the sense of [START_REF]Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions[END_REF], of the centered Gaussian field (s d (x)) x∈M defined by our random sections, when n = 2 and r = 1.

The study of more general random algebraic submanifolds, obtained as the zero sets of random sections, was pioneered by Shiffman and Zelditch [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF][START_REF]Number variance of random zeros on complex manifolds[END_REF][START_REF]Number variance of random zeros on complex manifolds II: smooth statistics[END_REF]. They considered the integration current over the common complex zero set Z d of r independent random sections in H 0 (X , L d ), distributed as standard complex Gaussians. In [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], they computed the asymptotic, as d goes to infinity, of the expectation of the associated smooth statistics when r = 1. They also provided an upper bound for the variance of these quantities and proved the equivalent of Cor. 1.11 in this complex algebraic setting. In [START_REF]Number variance of random zeros on complex manifolds[END_REF], they gave an asymptotic of order d 2r-n-1 2 for the variance of the volume of Z d ∩ U , where U ⊂ X is a domain satisfying some regularity conditions. In [START_REF]Number variance of random zeros on complex manifolds II: smooth statistics[END_REF], they proved a similar asymptotic for the variance of the smooth statistics associated with Z d . When r = 1, they deduced a central limit theorem from these estimates and an asymptotic normality result of Sodin and Tsirelson [START_REF] Sodin | Random complex zereos I: asymptotic normality[END_REF]. Finally, in [28, thm. 1.4], Shiffman, Zelditch and Zrebiec proved that the probability that Z d ∩ U = ∅, where U is any open subset of X , decreases exponentially fast as d goes to infinity.

Coming back to our real algebraic setting, one should be able to deduce from the general result of Nazarov and Sodin [21, thm. 3] that, given an open set U ⊂ M , the probability that Z d ∩ U = ∅ goes to 0 as d goes to infinity. Corollary 1.10 gives an upper bound for the convergence rate. In particular, this bounds the probability for Z d to be empty. In the same spirit, Gayet and Welschinger [START_REF]Expected topology of random real algebraic submanifolds[END_REF] proved the following result. Let Σ be a fixed diffeomorphism type of codimension r submanifold of R n , let x ∈ M and let B d (x) denote the geodesic ball of center x and radius 1 √ d . Then, the probability that Z d ∩ B d (x) contains a submanifold diffeomorphic to Σ is bounded from below. On the other hand, when n = 2 and r = 1, the Harnack-Klein inequality shows that the number of connected components of Z d is bounded by a polynomial in d. In [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF], Gayet and Welschinger proved that the probability for Z d to have the maximal number of connected components decreases exponentially fast with d.

Another well-studied model of random submanifolds is that of Riemannian random waves, i.e. zero sets of random eigenfunctions of the Laplacian associated with some eigenvalue λ. In this setting, Rudnick and Wigman [START_REF] Rudnick | On the volume of nodal sets for eigenfunctions of the Laplacian on the torus[END_REF] computed an asymptotic bound, as λ → +∞, for the variance of the volume of a random hypersurface on the flat n-dimensional torus T n . On T 2 , this result was improved by Krishnapur, Kurlberg and Wigman [START_REF] Krishnapur | Nodal length fluctuations for arithmetic random waves[END_REF] who computed the precise asymptotic of the variance of the length of a random curve. In [START_REF] Wigman | Fluctuations of the nodal length of random spherical harmonics[END_REF], Wigman computed the asymptotic variance of the linear statistics associated with a random curve on the Euclidean sphere S 2 . His result holds for a large class of test-function that contains the characteristic functions of open sets satisfying some regularity assumption. In relation with Cor. 1.10, Nazarov and Sodin [START_REF] Nazarov | On the number of nodal domains of random spherical harmonics[END_REF] proved that, on the Euclidean sphere S 2 , the number of connected components of a random curve times 1 λ converges exponentially fast in probability to a deterministic constant as λ → +∞.

About the proof. The idea of the proof is the following. The random section s d defines a centered Gaussian field (s d (x)) x∈X . The correlation kernel of this field equals the Bergman kernel, that is the kernel of the orthogonal projection onto H 0 (X , E ⊗ L d ) for the inner product (2.1) (compare [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF][START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF][START_REF]Number variance of random zeros on complex manifolds[END_REF][START_REF]Number variance of random zeros on complex manifolds II: smooth statistics[END_REF]).

In order to compute the covariance of the smooth statistics |dV s | , φ 1 and |dV s | , φ 2 , we apply a Kac-Rice formula (cf. [START_REF]Level sets and extrema of random processes and fields[END_REF][START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF] Dalmao | Asymptotic variance and CLT for the number of zeros of Kostlan-Shub-Smale random polynomials[END_REF][START_REF] Taylor | Random fields and geometry[END_REF][START_REF] Wigman | Fluctuations of the nodal length of random spherical harmonics[END_REF]). This allows us to write Var(|dV d |) (φ 1 , φ 2 ) as the integral over M × M of some function D d (x, y), defined by (4.9). This density D d (x, y) is the difference of two terms, coming respectively from

E[ |dV d | , φ 1 |dV d | , φ 2 ] and E[ |dV d | , φ 1 ] E[ |dV d | , φ 2 ] .
Since the Bergman kernel decreases exponentially fast outside of the diagonal ∆ in M 2 (see Section 3.4), the values of s d (x) and s d (y) are almost uncorrelated for (x, y) far from ∆. As a consequence, when the distance between x and y is much larger than 1 √ d , the above two terms in the expression of D d (x, y) are equal, up to a small error (see Sect. The difficulty in making this sketch of proof rigorous comes from the combination of two facts. First, we do not know exactly the value of the Bergman kernel (our correlation function) and its derivatives, but only asymptotics. In addition, the conditioning in the Kac-Rice formula is singular along ∆, and so is D d . Because of this, we lose all uniformity in the control of the error terms close to the diagonal. Nonetheless, by careful bookkeeping of the error terms, we can make the above heuristic precise.

Outline of the paper. In Section 2 we describe precisely our framework and the construction of the random measures |dV s d |. We also introduce the Bergman kernel and explain how it is related to our random submanifolds.

In Section 3, we recall various estimates for the Bergman kernel that we use in the proof of our main theorem. These estimates were established by Dai, Liu and Ma [START_REF] Dai | On the asymptotic expansion of the Bergman kernel[END_REF], and Ma and Marinescu [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF][START_REF]Remark on the off-diagonal expansion of the Bergman kernel on compact Kähler manifolds[END_REF][START_REF]Exponential estimate for the asymptotics of Bergman kernels[END_REF] in a complex setting. Our main contribution in this section consists in checking that the preferred trivialization used by Ma and Marinescu to state their neardiagonal estimates is well-behaved with respect to the real structures on X , E and L (see Section 3.1).

Section 4 is concerned with the proof of Thm. 1.6. In Sect. 4.1, we prove a Kac-Rice formula adapted to our problem, using Federer's coarea formula and Kodaira's embedding theorem. In Sect. 4.2 we prove an integral formula for the variance, using the Kac-Rice formula (Thm. 4.4). The core of the proof is contained in Sect. 4.3.

Finally, we prove Corollaries 1.9, 1.10 and 1.11 in Section 5.
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General setting

In this section, we introduce our framework. It is the same as the algebraic setting of [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF], see also [START_REF]Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF][START_REF]Expected topology of random real algebraic submanifolds[END_REF]. Classical references for the material of this section are [12, chap. 0] and [30, chap. 1].

Let X be a smooth complex projective manifold of complex dimension n 2. We assume that X is defined over the reals, that is X is equipped with an anti-holomorphic involution c X . The real locus of (X , c X ) is the set of fixed points of c X . In the sequel, we assume that it is non-empty and we denote it by M . It is a classical fact that M is a smooth closed (i.e. compact without boundary) submanifold of X of real dimension n (see [30, chap. 1]).

Let E → X be a holomorphic vector bundle of rank r ∈ {1, . . . , n -1}. Let c E be a real structure on E, compatible with c X in the sense that the projection π

E : E → X satisfies c X • π E = π E • c E and c E is fiberwise C-anti-linear. Let h E be a real Hermitian metric on E, that is c ⋆ E (h E ) = h E .
Similarly, let L → X be an ample holomorphic line bundle equipped with a compatible real structure c L and a real Hermitian metric h L . Moreover, we assume that the curvature form ω of h L is a Kähler form. Recall that if ζ is any non-vanishing holomorphic section on the open set Ω ⊂ X , then the restriction of ω to Ω is given by:

ω /Ω = 1 2i ∂ ∂ ln (h L (ζ, ζ)) .
This Kähler form is associated with a Hermitian metric g C on X . The real part of g C defines a Riemannian metric g = ω(•, i•) on X , compatible with the complex structure. Note that, since h L is compatible with the real structures on X and L, we have c X is an isometry of (X , g). Then g induces a Riemannian measure on every smooth submanifold of X . In the case of X , this measure is given by the volume form dV X = ω n n! . We denote by |dV M | the Riemannian measure on (M, g).

c ⋆ L (h L ) = h L and c ⋆ X ω = -ω. Then we have c ⋆ X g C = g C , hence c ⋆ X g = g and
Let d ∈ N, then the rank r holomorphic vector bundle E ⊗ L d can be endowed with a real structure c d = c E ⊗ c d L , compatible with c X , and a real Hermitian metric

h d = h E ⊗ h d L . If x ∈ M , then c d induces a C-anti-linear involution of the fiber (E ⊗ L d ) x .
We denote by R(E ⊗ L d ) x the fixed points set of this involution, which is a dimension r real vector space.

Let Γ(E ⊗ L d ) denote the space of smooth sections of E ⊗ L d . We can define a Hermitian inner product on Γ(E ⊗ L d ) by:

∀s 1 , s 2 ∈ Γ(E ⊗ L d ), s 1 , s 2 = X h d (s 1 (x), s 2 (x)) dV X . (2.1)
We say that a section s ∈ Γ(E ⊗ L d ) is real if it is equivariant for the real structures, that is:

c d • s = s • c X . Let RΓ(E ⊗ L d ) denote the real vector space of real smooth sections of E ⊗ L d . The restriction of • , • to RΓ(E ⊗ L d ) is a Euclidean inner product.
Notation 2.1. In this paper, • , • will always denote either the inner product on the concerned Euclidean (or Hermitian) space or the duality pairing between a space and its topological dual. Which one will be clear from the context.

Let H 0 (X , E ⊗ L d ) denote the space of global holomorphic sections of E ⊗ L d . This space has finite complex dimension N d by Hodge's theory (compare [17, thm. 1.4.1]). We denote by RH 0 (X , E ⊗ L d ) the space of global real holomorphic sections of E ⊗ L d :

RH 0 (X , E ⊗ L d ) = s ∈ H 0 (X , E ⊗ L d ) c d • s = s • c X .
(2.

2)

The restriction of the inner product (2.1) to RH 0 (X , E ⊗ L d ) makes it into a Euclidean space of real dimension N d .

Remark 2.2. Note that, even when we consider real sections restricted to M , the inner product is defined by integrating on the whole complex manifold X .

Random submanifolds

This section is concerned with the definition of the random submanifolds we consider and the related random variables. Let d ∈ N and s ∈ RH 0 (X , E ⊗ L d ), we denote the real zero set of s by Z s = s -1 (0) ∩ M . If the restriction of s to M vanishes transversally, then Z s is a smooth submanifold of codimension r of M . In this case, we denote by |dV s | the Riemannian measure on Z s induced by g, seen as a Radon measure on M . Note that this includes the case where Z s is empty.

Recall the following facts, that we already discussed in [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF].

Definition 2.3 (see [START_REF] Nicolaescu | Critical sets of random smooth functions on compact manifolds[END_REF]). We say that RH 0 (X , E ⊗ L d ) is 0-ample if, for any x ∈ M , the evaluation map

ev d x : RH 0 (X , E ⊗ L d ) -→ R E ⊗ L d x s -→ s(x) (2.3)
is surjective.

Lemma 2.4 (see [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF], cor. 3.10). There exists d 1 ∈ N, depending only on X , E and L, such that for all d d 1 , RH 0 (X , E ⊗ L d ) is 0-ample.

Lemma 2.5 (see [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF], section 2.6). If RH 0 (X , E ⊗ L d ) is 0-ample, then for almost every section s ∈ RH 0 (X , E ⊗ L d ) (for the Lebesgue measure), the restriction of s to M vanishes transversally.

From now on, we only consider the case d d 1 , so that |dV s | is a well-defined measure on M for almost every s ∈ RH 0 (X , E ⊗ L d ). Let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ), that is s d is a random vector whose distribution admits the density: 

s → 1 √ 2π N d exp - 1 

The correlation kernel

Let d ∈ N, then (s d (x)) x∈X is a smooth centered Gaussian field on X . As such, it is characterized by its correlation kernel. In this section, we recall that the correlation kernel of s d equals the Bergman kernel of E ⊗ L d . This is now a well-known fact (see [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF]Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF][START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF][START_REF]Number variance of random zeros on complex manifolds II: smooth statistics[END_REF]) and was already used by the author in [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF].

Let us first recall some facts about random vectors (see for example [16, appendix A]). In this paper, we only consider centered random vectors (that is their expectation vanishes), so we give the following definitions in this restricted setting. Let X 1 and X 2 be centered random vectors taking values in Euclidean (or Hermitian) vector spaces V 1 and V 2 respectively, then we define their covariance operator as:

Cov(X 1 , X 2 ) : v -→ E[X 1 v , X 2 ] (2.6) from V 2 to V 1 . For every v ∈ V 2 , we set v * = • , v ∈ V * 2 . Then Cov(X 1 , X 2 ) = E[X 1 ⊗ X * 2 ] is an element of V 1 ⊗ V * 2 .
The variance operator of a centered random vector X ∈ V is defined as Var(X) = Cov(X, X) = E[X ⊗ X * ] ∈ V ⊗ V * . We denote by X ∼ N (Λ) the fact that X is a centered Gaussian vector with variance operator Λ. Finally, we say that X ∈ V is a standard Gaussian vector if X ∼ N (Id), where Id is the identity operator on V . A standard Gaussian vector admits the density (2.4) with respect to the normalized Lebesgue measure on V .

Recall that (E ⊗ L d )⊠ (E ⊗ L d ) * stands for the bundle

P ⋆ 1 E ⊗ L d ⊗ P ⋆ 2 E ⊗ L d * over
X × X , where P 1 (resp. P 2 ) denotes the projection from X × X onto the first (resp. second) factor. The covariance kernel of (s d (x)) x∈X is the section of (E ⊗ L d ) ⊠ (E ⊗ L d ) * defined by:

(x, y) → Cov(s d (x), s d (y)) = E[s d (x) ⊗ s d (y) * ] . (2.7) 
The orthogonal projection from RΓ(E ⊗ L d ) onto RH 0 (X , E ⊗ L d ) admits a Schwartz kernel (see [17, thm. B.2.7]). That is, there exists a unique section

E d of (E ⊗ L d ) ⊠ (E ⊗ L d ) * such that, for any s ∈ RΓ(E ⊗ L d ), the projection of s onto RH 0 (X , E ⊗ L d ) is given by: x -→ y∈X E d (x, y) (s(y)) dV X .
(2.8)

This section is called the Bergman kernel of E ⊗ L d . Note that E d is also the Schwartz kernel of the orthogonal projection from Γ(E ⊗ L d ) onto H 0 (X , E ⊗ L d ), for the Hermitian inner product (2.1).

Proposition 2.6. Let d ∈ N and let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ).

Then, for all x and y ∈ X , we have: Remark 2.9. In a complex setting, E d is also the covariance kernel of the centered Gaussian field associated with a standard complex Gaussian vector in H 0 (X , E ⊗ L d ).

Cov(s d (x), s d (y)) = E[s d (x) ⊗ s d (y) * ] = E d (x, y). ( 2 
The Bergman kernel also describes the distribution of the derivatives of

s d . Let ∇ d denote any connection on E ⊗ L d → X . Then ∇ d induces a connection (∇ d ) * on (E ⊗ L d ) * → X , which is defined for all η ∈ Γ E ⊗ L d * by: ∀s ∈ Γ E ⊗ L d , ∀x ∈ X , d x s , η = ∇ d x s , η(x) + s(x) , (∇ d ) * x η , (2.11) 
where • , • is the duality pairing. Let s ∈ Γ E ⊗ L d , then s ⋄ : x → s(x) * = • , s(x) defines a smooth section of E ⊗ L d * . Note that we use the notation s ⋄ because s * already denotes • , s which is a linear form on Γ E ⊗ L d . We want to understand the relation between

(∇ d ) * x s ⋄ : T x X → E ⊗ L d * x and ∇ d x s * . Recall that ∇ d x s * = • , ∇ d x s
, where the inner product is the one on

E ⊗ L d x ⊗ T * x X induced by h d and g C . That is, ∇ d x s * is the adjoint operator of ∇ d x s : T x X → E ⊗ L d x .
In order to get a nice relation, we have to assume that ∇ d is a metric connection, i.e. that:

∀s, t ∈ Γ E ⊗ L d , ∀x ∈ X , d x s , t = ∇ d x s , t(x) + s(x) , ∇ d x t . (2.12) Lemma 2.10. Let ∇ d be a metric connection on E ⊗ L d , let s ∈ Γ E ⊗ L d and let x ∈ X . Then for all v ∈ T x X , (∇ d ) * x s ⋄ • v = ∇ d x s • v * = v * • ∇ d x s * . (2.13)
Proof. First, for all s, t ∈ Γ E ⊗ L d and all x ∈ X , t(x) , s(x) = t(x) , s(x) * = t(x) , s ⋄ (x) .

(2.14)

Then, by taking the derivative of (2.14), we get that for all s, t ∈ Γ E ⊗ L d , for all x ∈ X and v ∈ T x X :

t(x) , ∇ d x s • v + ∇ d x t • v , s(x) = d x ( t , s ) • v = t(x) , (∇ d ) * x s ⋄ • v + ∇ d x t • v , s ⋄ (x) .
The first equality comes from the fact that ∇ d is metric (see (2.12)) and the second from the definition of the dual connection (2.11).

Besides ∇ d x t • v , s ⋄ (x) = ∇ d x t • v , s(x)
, hence for all s ∈ Γ E ⊗ L d and all x ∈ X we have:

∀v ∈ T x X , (∇ d ) * x s ⋄ • v = ∇ d x s • v * . Recall that ∇ d x s * is the adjoint of ∇ d x s. Hence for all v ∈ T x X and all ζ ∈ E ⊗ L d x , ζ , ∇ d x s • v = ∇ d x s * ζ , v = v * • ∇ d x s * (ζ),
which proves the second equality in (2.13).

Remark 2.11. Conversely, one can show that a connection satisfying the first equality in eq. ( 2.13) for every s, x and v is metric.

From now on, we assume that ∇ d is metric. Then ∇ d induces a natural connection ∇ d

1 on P ⋆ 1 (E ⊗ L d ) → X × X
whose partial derivatives are: ∇ d with respect to the first variable, and the trivial connection with respect to the second. Similarly,

(∇ d ) * induces a connection ∇ d 2 on P ⋆ 2 (E ⊗ L d ) * and ∇ d 1 ⊗ Id + Id ⊗∇ d 2 is a connection on (E ⊗ L d ) ⊠ (E ⊗ L d ) *
. We denote by ∂ x (resp. ∂ y ) its partial derivative with respect to the first (resp. second) variable. By taking partial derivatives in (2.9), we get the following.

Corollary 2.12. Let d ∈ N, let ∇ d be a metric connection on E ⊗L d and let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ). Then, for all x and y ∈ X , for all (v, w) ∈ T x X × T y X , we have:

Cov ∇ d x s • v, s(y) = E ∇ d x s • v ⊗ s(y) * = ∂ x E d (x, y) • v, (2.15) 
Cov s(x), ∇ d y s • w = E s(x) ⊗ ∇ d y s • w * = ∂ y E d (x, y) • w, (2.16 
)

Cov ∇ d x s • v, ∇ d y s • w = E ∇ d x s • v ⊗ ∇ d y s • w * = ∂ x ∂ y E d (x, y) • (v, w).
(2.17)

Proof. The first equality of each line is simply the definition of the covariance operator. By applying ∂ x to (2.9) we get:

E ∇ d x s ⊗ s(y) * = ∂ x E d (x, y),
which proves (2.15). We can rewrite (2.9) as: ∀x, y ∈ X ,

E d (x, y) = E[s(x) ⊗ s ⋄ (y)]
. By applying ∂ y to this equality, we get:

E s(x) ⊗ ∇ d * y s ⋄ = ∂ y E d (x, y).
Then we apply this operator to w ∈ T y X , and we obtain (2.16) by Lemma 2.10. The proof of (2.17) is similar.

We would like to write that

∂ y E d (x, y) is Cov s(x), ∇ d y s = E s(x) ⊗ ∇ d y s * . Unfortu-
nately, this can not be true since

∂ y E d (x, y) ∈ T * y X ⊗ E ⊗ L d x ⊗ E ⊗ L d * y while E s(x) ⊗ ∇ d y s * ∈ T y X ⊗ E ⊗ L d x ⊗ E ⊗ L d * y . Let ∂ ♯ y E d (x, y) ∈ T y X ⊗ E ⊗ L d x ⊗ E ⊗ L d * y be defined by: ∀w ∈ T y X , ∂ ♯ y E d (x, y) • w * = ∂ y E d (x, y) • w. (2.18) Similarly, let ∂ x ∂ ♯ y E d (x, y) ∈ T * x X ⊗ T y X ⊗ E ⊗ L d x ⊗ E ⊗ L d *
y be defined by:

∀(v, w) ∈ T x X × T y X , ∂ x ∂ ♯ y E d (x, y) • (v, w * ) = ∂ x ∂ y E d (x, y) • (v, w). (2.19)
Then by Lemma 2.10 and Corollary 2.12, we have the following.

Corollary 2.13. Let d ∈ N, let ∇ d be a metric connection on E ⊗L d and let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ). Then, for all x and y ∈ X , we have:

Cov ∇ d x s, s(y) = E ∇ d x s ⊗ s(y) * = ∂ x E d (x, y), (2.20 
)

Cov s(x), ∇ d y s = E s(x) ⊗ ∇ d y s * = ∂ ♯ y E d (x, y), (2.21 
)

Cov ∇ d x s, ∇ d y s = E ∇ d x s ⊗ ∇ d y s * = ∂ x ∂ ♯ y E d (x, y). (2.22)
3 Estimates for the Bergman kernel

The goal of this section is to recall the estimates we need for the Bergman kernel. Most of what follows can be found in [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF], with small additions from [START_REF]Remark on the off-diagonal expansion of the Bergman kernel on compact Kähler manifolds[END_REF] and [START_REF]Exponential estimate for the asymptotics of Bergman kernels[END_REF]. The first to use this kind of estimates in a random geometry context were Shiffman and Zelditch [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF]. They used the estimates from [START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF] for the related Szegö kernel (see also [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF]Number variance of random zeros on complex manifolds[END_REF]). Catlin [START_REF] Catlin | The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables[END_REF] proved similar estimates for the Bergman kernel independently.

In order to state the near-diagonal estimates for the Bergman kernel, we first need to choose preferred charts on X , E and L around any point in M . This is done in Section 3.1. Unlike our main reference [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF], we are only concerned with a neighborhood of the real locus of X , but we need to check that these charts are well-behaved with respect to the real structures. Sections 3.2, 3.3 and 3.4 state respectively near-diagonal, diagonal and far offdiagonal estimates for E d .

Real normal trivialization

In this section, we define preferred local trivializations for E and L around any point in M . We also prove that these trivializations are compatible with the real and metric structures.

Let R > 0 be such that the injectivity radius of X is larger than 2R. Let x 0 ∈ M , then the exponential map exp x0 : T x0 X → X at x 0 is a diffeomorphism from the ball B Tx 0 X (0, 2R) ⊂ T x0 X to the geodesic ball B X (x 0 , 2R) ⊂ X . Note that this diffeomorphism is not biholomorphic in general. Since c X is an isometry (see Sect. 2.1), we have that c

X • exp x0 = exp x0 • d x0 c X . Then exp x0 sends T x0 M = ker (d x0 c X -Id)
to M and agrees on T x0 M with the exponential map at x 0 in (M, g). By restriction, we get a diffeomorphism from B Tx 0 M (0, 2R) ⊂ T x0 M to the geodesic ball B M (x 0 , 2R) ⊂ M . Moreover, on B Tx 0 X (0, 2R) we have:

d x0 c X = (exp x0 ) -1 • c X • exp x0 . (3.1)
We say that exp x0 defines a real normal chart about x 0 .

Since

i • T x0 M = ker (d x0 c X + Id), we have T x0 X = T x0 M ⊕ i • T x0 M . Note that T x0 M and i • T x0 M
are orthogonal for g x0 , since these are distinct eigenspaces of an isometric involution. Moreover, we know from Sect. 2.1 that c ⋆ X g C = g C . This implies that (g C ) x0 takes real values on T x0 M × T x0 M , i.e. the restrictions to T x0 M of (g C ) x0 and g x0 are equal. Thus, (g C ) x0 is the sesquilinear extension of g x0 restricted to T x0 M . Let I be an isometry from T x0 M to R n with its standard Euclidean structure, I extends as a C-linear isometry I

C : T x0 X → C n , such that I C • d x0 c X • I -1 C is the complex conjugation in C n . Thus, exp x0 • I -1 C : B C n (0, 2R) → B X (x 0 , 2R) defines normal coordinates that induce normal coordinates B R n (0, 2R) → B M (x 0 , 2R) and such that I C • (exp x0 ) -1 • c X • exp x0 • I -1
C is the complex conjugation in C n . Such coordinates are called real normal coordinates about x 0 .

We can now trivialize E over B X (x 0 , 2R). Let ∇ E denote the Chern connection of E. We identify the fiber at exp x0 (z) ∈ B X (x 0 , 2R) with E x0 , by parallel transport with respect to ∇ E along the geodesic from x 0 to exp x0 (z), defined by t → exp x0 (tz) from [0, 1] to X (cf. [17, sect. 1.6] and [START_REF]Remark on the off-diagonal expansion of the Bergman kernel on compact Kähler manifolds[END_REF]). This defines a bundle map

ϕ x0 : B Tx 0 X (0, 2R) × E x0 → E /BX (x0,2R) that covers exp x0 . We say that ϕ x0 is the real normal trivialization of E over B X (x 0 , 2R). Since x 0 ∈ M , c E (E x0 ) = E x0 and we denote by c E,x0 the restriction of c E to E x0 . Then (d x0 c X , c E,x0
) is a real structure on B Tx 0 X (0, 2R) × E x0 compatible with the real structure on B Tx 0 X (0, 2R). We want to check that ϕ x0 is well-behaved with respect to the real structures, i.e. that for all z ∈ B Tx 0 X (0, 2R) and

ζ 0 ∈ E x0 , c E (ϕ x0 (z, ζ 0 )) = ϕ x0 d x0 c X • z, c E,x0 (ζ 0 ) . (3.2)
This will be a consequence of Lemma 3.4 below.

Definition 3.2. Let E → X be a holomorphic vector bundle equipped with compatible real structures c E and c X and let ∇ be a connection on E, we say that ∇ is a real connection if for every section s ∈ Γ(E) we have:

∀x ∈ X , ∇ x (c E • s • c X ) = c E • ∇ cX (x) s • d x c X . Remark 3.3. Let x ∈ M , v ∈ T x M and s ∈ RΓ(E). If ∇ is a real connection on E, then ∇ x s • v ∈ RE x . Indeed, ∇ x s • v = ∇ cX (x) s • d x c X • v = c E (∇ x (c E • s • c X ) • v) = c E (∇ x s • v) .
Lemma 3.4. Let E → X be a holomorphic vector bundle equipped with compatible real structures c E and c X and a real Hermitian metric h E . Then, the Chern connection ∇ E of E is real.

Proof. Since c E and c X are involutions and

(d x c X ) -1 = d cX (x) c X , we need to check that ∀s ∈ Γ(E), ∀x ∈ X ∇ E x s = c E • ∇ E cX (x) (c E • s • c X ) • d x c X . (3.3) 
Let ∇ be defined by

∇ x s = c E • ∇ E cX (x) (c E • s • c X ) • d x c X , for all s ∈ Γ(E) and x ∈ X .
Then ∇ is a connection on E and it is enough to check that it is compatible with both the metric and the complex structure. Indeed, in this case ∇ = ∇ E by unicity of the Chern connection, which proves (3.3).

Let us check that ∇ satisfies Leibniz' rule. Let s ∈ Γ(E) and f : X → C. We have:

∇ x (f s) = c E • ∇ E cX (x) (f • c X )(c E • s • c X ) • d x c X = c E • f (x)∇ E cX (x) (c E • s • c X ) + d cX (x) (f • c X ) ⊗ c E (s(x)) • d x c X = f (x) ∇ x s + d x f ⊗ s(x).
Since ∇ E is the Chern connection, its anti-holomorphic part is ∂ E . Then, d x c X and c E being anti-linear (resp. fiberwise), the anti-linear part of

∇ x s equals c E • ∂ E cX (x) (c E • s • c X ) • d x c X .
By computing in a local holomorphic frame, one can check that:

∀s ∈ Γ(E), ∀x ∈ X , c E • ∂ E cX (x) (c E • s • c X ) • d x c X = ∂ E x s.
Thus, ∇ is compatible with the complex structure. Finally, we check the compatibility with the metric structure. Let s, t ∈ Γ(E) and x ∈ X , since h E = c ⋆ E (h E ) we have:

d x (h E (s, t)) = d x h E (c E • s, c E • t) = d cX (x) h E (c E • s • c X , c E • t • c X ) • d x c X = h E ∇ E cX (x) (c E • s • c X ), c E (t(x)) • d x c X +h E c E (s(x)), ∇ E cX (x) (c E • t • c X ) • d x c X = h E c E • ∇ E cX (x) (c E • s • c X ), t(x) • d x c X +h E s(x), c E • ∇ E cX (x) (c E • s • c X ) • d x c X = h E ∇ x s, t(x) + h E s(x), ∇ x t . Let us now prove (3.2). Let z ∈ B Tx 0 X (0, 2R), let ζ 0 ∈ E x0 and let ζ : B X (x 0 , 2R) → E be the section defined by ζ : x → ϕ x0 (exp x0 ) -1 (x), ζ 0 . We denote by γ : [0, 1] → X the geodesic t → exp x0 (tz). We have for all t ∈ [0, 1], ζ(γ(t)) = ϕ x0 (tz, ζ 0 ) and, by the definition of ϕ x0 , we have: ∀t ∈ [0, 1], ∇ E γ(t) ζ • γ ′ (t) = 0. (3.4) Let us denote ζ = c E • ζ • c X and γ = c X • γ. Since ∇ E is real, (3.4) implies that for all t ∈ [0, 1], ∇ E γ(t) ζ • γ ′ (t) = ∇ E cX (γ(t)) ζ • d γ(t) (c X ) • γ ′ (t) = c E • ∇ E γ(t) ζ • γ ′ (t) = 0. (3.5)
Since c X is an isometry, γ is a geodesic. More precisely, γ :

t → exp x0 (td x0 c X • z). Besides, ζ(x 0 ) = c E (ζ(x 0 )) = c E,x0 (ζ 0 ).
Then by (3.5), for all t ∈ [0, 1],

ϕ x0 td x0 c X • z, c E,x0 (ζ 0 ) = ϕ x0 td x0 c X • z, ζ(x 0 ) = ζ(γ(t)).
Finally, we get (3.2) for t = 1:

ϕ x0 d x0 c X • z, c E,x0 (ζ 0 ) = ζ(γ(1)) = c E (ζ(γ(1))) = c E ϕ x0 (z, ζ 0 ) .
Recall that RE is the set of fixed points of c E . Then RE is naturally a rank r real vector bundle over M , as a subbundle of

E /M . Let ζ 0 ∈ RE x0 , and ζ : x → ϕ x0 (exp x0 ) -1 (x), ζ 0 then, for all x ∈ B X (x 0 , 2R), c E • ζ • c X (x) = c E • ϕ x0 (exp x0 ) -1 (c X (x)), ζ 0 = c E • ϕ x0 d x0 c X • (exp x0 ) -1 (x), ζ 0 = ϕ x0 (exp x0 ) -1 (x), c E,x0 (ζ 0 ) = ζ(x).
Hence, ζ is a real local section of E and in particular, ∀x ∈ M , ζ(x) ∈ RE x . This shows that ϕ x0 induces, by restriction, a bundle map 

B Tx 0 M (0, 2R) × RE x0 → RE /BM (x0,2R) that covers the restriction of exp x0 to B Tx 0 M (0, 2R
ζ i : x → ϕ x0 (exp x0 ) -1 (x), ζ 0 i .
Then, for every x ∈ B X (0, 2R), (ζ 1 (x), . . . , ζ r (x)) is an orthonormal basis of E x . Indeed, the sections ζ i are obtained by parallel transport for ∇ E along geodesics starting at x 0 , and ∇ E is compatible with h E . Hence, for all i and j ∈ {1, . . . , r}, for all z ∈ B X (x 0 , 2R),

d dt h E (ζ i (exp x0 (tz)), ζ j (exp x0 (tz))) = h E ∇ E exp x 0 (tz) ζ i • d tz exp x0 •z, ζ j (exp x0 (tz))) + h E ζ i (exp x0 (tz))), ∇ E exp x 0 (tz) ζ j • d tz exp x0 •z = 0. The function x → h E (ζ i (x), ζ j (x)
) is then constant along geodesics starting at x 0 , hence on 

B X (x 0 , 2R). Since (h E (ζ i (x), ζ j (x))) 1 i,j
ζ 0 : x → ϕ ′ x0 (exp x0 ) -1 (x), ζ 0 0 . Then, for any d ∈ N, ϕ x0 and ϕ ′ x0 induce a trivialization ϕ x0 ⊗ (ϕ ′ x0 ) d of E ⊗ L d .
This trivialization is the real normal trivialization of E ⊗ L d over B X (x 0 , 2R), i.e. it is obtained by parallel transport along geodesics starting at x 0 for the Chern connection of E ⊗ L d . Moreover, a local real unitary frame for E ⊗ L d is given by

(ζ 1 ⊗ ζ d 0 , . . . , ζ r ⊗ ζ d 0 ).

Near-diagonal estimates

We can now state the near-diagonal estimates of Ma and Marinescu for the Bergman kernel.

In the sequel, we fix some R > 0 such that 2R is smaller than the injectivity radius of X . Let x ∈ M , we have a natural real normal chart

exp x × exp x : B TxX (0, 2R) × B TxX (0, 2R) → B X (x, 2R) × B X (x, 2R).
Moreover, the real normal trivialization of E ⊗ L d over B X (x, 2R) (see Section 3.1) induces a trivialization

B TxX (0, 2R) × B TxX (0, 2R) × End E ⊗ L d x ≃ E ⊗ L d ⊠ E ⊗ L d * /BX (x,2R)×BX (x,2R)
that covers exp x × exp x . This trivialization coincides with the real normal trivialization of

E ⊗ L d ⊠ E ⊗ L d * over B X (x, 2R) × B X (x, 2R).
Recall that dV X denotes the Riemannian measure on X . When we read this measure in the real normal chart exp x , it admits a density κ : B TxX (0, 2R) → R + with respect to the normalized Lebesgue measure of (T x X , g x ). More precisely, we have κ(z) = det(g ij (z)) where (g ij (z)) is the matrix of ((exp x ) ⋆ g) z , read in any real orthonormal basis of (T x X , g x ).

Since we use normal coordinates and X is compact, we have

κ(z) = 1 + O z 2 (3.6)
where • is induced by g x and the estimate O z 2 does not depend on x.

Similarly, on the real locus (M, g), |dV M | admits a density, in the real normal chart exp x , with respect to the normalized Lebesgue measure on (T x M, g x ). This density is:

z -→ det ((exp ⋆ x g) z ) /TxM 1 2 , (3.7) 
from B TxM (0, 2R) to R + . As we already explained in Sect. 3.1, on the real locus, g C is the sesquilinear extension of the restriction of g to T M . Hence, for all z ∈ B TxM (0, 2R) we have:

det ((exp ⋆ x g) z ) /TxM 2 = det ((exp ⋆ x g) z ) , which means that the density of |dV M | in the chart exp x is √ κ : B TxM (0, 2R) → R + .
The following result gives the asymptotic of the Bergman kernel E d (see Sect. Theorem 3.5 (Dai-Liu-Ma). There exists C ′ > 0 such that, for any p ∈ N, there exists C p such that ∀k ∈ {0, . . . , p}, ∀d ∈ N * , ∀z, w ∈ B TxX (0, R),

D k (z,w)   E d (z, w) - d π n exp -d 2 z 2 + w 2 -2 z , w κ(z) κ(w) Id (E⊗L d )x   C p d n+ p 2 -1 1 + √ d( z + w ) 2n+6+p exp -C ′ √ d z -w + O d -∞ ,
where:

• D k (z,w) is the k-th differential at (z, w) for a map T x X × T x X → End E ⊗ L d x ,
• the Hermitian inner product • , • comes from the Hermitian metric (g C ) x ,

• the norm • on T x X is induced by g x (or equivalently • , • ),

• the norm • on (T * x X ) ⊗q ⊗ End E ⊗ L d
x is induced by g x and (h d ) x . Moreover, the constants C p and C ′ do not depend on x. The notation O(d -∞ ) means that, for any l ∈ N, this term is O d -l with a constant that does not depend on x, z, w or d.

Proof. This is a weak version of [17, thm. 4.2.1], with k = 1 and m ′ = 0 in the notations of [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF]. We used the fact that F 0 in [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF] is given by: Remark 3.6. Note that our formula differs from the one in [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF][START_REF]Remark on the off-diagonal expansion of the Bergman kernel on compact Kähler manifolds[END_REF] by a factor π in the exponential. This comes from different normalizations of the Kähler form ω.

F 0 (z, w) = 1 π n exp - 1 2 z 2 + w 2 -2 z , w Id (E⊗L d )x , (compare (4 
We are only interested in the behavior of E d at points of the real locus, hence we restrict our focus to points in M and derivatives in real directions. Similarly, for x, y ∈ M , E d (x, y)

restricts to an element of R E ⊗ L d x ⊗ R E ⊗ L d * y , still denoted by E d (x, y). Note that we can recover the original E d (x, y) : E ⊗ L d y → E ⊗ L d
x from its restriction by C-linear extension.

First, we need to know the behavior of E d and its derivatives up to order 1 in each variable in a neighborhood of the diagonal in M × M . Corollary 3.7. There exist C and C ′ > 0, not depending on x, such that ∀k ∈ {0, 1, 2}, ∀d ∈ N * , ∀z, w ∈ B TxM (0, R),

D k (z,w)   E d (z, w) - d π n exp -d 2 z -w 2 κ(z) κ(w) Id R(E⊗L d )x   Cd n+ k 2 -1 1 + √ d( z + w ) 2n+8 exp -C ′ √ d z -w + O d -∞ ,
where D k is the k-th differential for a map from

T x M × T x M to End R E ⊗ L d
x , the norm on T x M is induced by g x and the norm on

(T * x M ) ⊗q ⊗ End E ⊗ L d x is induced by g x and (h d ) x .
Proof. We apply Theorem. 3.5 for p = k ∈ {0, 1, 2} and set C = max(C 0 , C 1 , C 2 ). Then we restrict everything to the real locus.

Diagonal estimates

In this section, we deduce diagonal estimates for E d and its derivatives from Thm. 3.5. Let x ∈ M , then the usual differential for maps from T x X to (E ⊗ L d ) x defines a local trivial connection ∇ d on (E⊗L d ) /BX (0,2R) , via the real normal trivialization. Since this trivialization is well-behaved with respect to both the metric and the real structure (cf. Sect. 3.1), ∇ d is metric and real. By a partition of unity argument, there exists a real metric connection ∇ d on E ⊗ L d such that ∇ d agrees with ∇ d on B X (0, R). In the remainder of this section, we use this connection ∇ d , and the induced connection on 

(E ⊗ L d ) ⊠ (E ⊗ L d ) * ,
E d (x, x) = d n π n Id R(E⊗L d )x +O d n-1 , (3.8) 
∂ x E d (x, x) = O d n-1 2 , (3.9) 
∂ ♯ y E d (x, x) = O d n-1 2 , (3.10) 
∂ x ∂ ♯ y E d (x, x) = d n+1 π n Id R(E⊗L d )x ⊗ Id T * x M +O(d n ) . (3.11)
Moreover the error terms do not depend on x.

Proof. Let x ∈ M and let us choose an orthonormal basis of T x M . We denote the corresponding coordinates on T x M × T x M by (z 1 , . . . , z n , w 1 , . . . , w n ) and by ∂ zi and ∂ wj the associated partial derivatives. Let us compute the partial derivatives of E d read in the real normal trivialization of E ⊗ L d ⊠ E ⊗ L d * about (x, x). By Cor. 3.7, we only need to compute the partial derivatives at (0, 0) of

ξ d : (z, w) → exp -d 2 z -w 2 κ(z) κ(w) (3.12)
for any d ∈ N. For all i and j ∈ {1, . . . , n} and all (z, w) ∈ B TxM (0, R) we have:

∂ zi ξ d (z, w) = -d(z i -w i ) - 1 2 ∂ zi κ(z) κ(z) exp -d 2 z -w 2 κ(z) κ(w) , (3.13) 
∂ wj ξ d (z, w) = d(z j -w j ) - 1 2 
∂ wj κ(w) κ(w) exp -d 2 z -w 2 κ(z) κ(w) (3.14)
and

∂ zi ∂ wj ξ d (z, w) = exp -d 2 z -w 2 κ(z) κ(w) × dδ ij -d 2 (z i -w i )(z j -w j ) - d(z j -w j ) 2 ∂ zi κ(z) κ(z) + d(z i -w i ) 2 ∂ wj κ(w) κ(w) , (3.15) 
where δ ij equals 1 if i = j and 0 otherwise. Recall that, by (3.6), κ(0) = 1 and the partial derivatives of κ vanish at the origin. Then evaluating the above expressions at (0, 0) gives:

ξ d (0, 0) = 1, ∂ zi ξ d (0, 0) = 0 = ∂ wj ξ d (0, 0) and ∂ zi ∂ wj ξ d (0, 0) = δ ij d.
By Cor. 3.7, we have the following estimates for the partial derivatives of E d read in the real normal trivialization about x: for all i, j ∈ {1, . . . , n},

E d (0, 0) = d n π n Id R(E⊗L d )x +O d n-1 , ∂ wj E d (0, 0) = O d n-1 2 , ∂ zi ∂ wj E d (0, 0) = δ ij d n+1 π n Id R(E⊗L d )x +O(d n ) , ∂ zi E d (0, 0) = O d n-1 2 . (3.16) 
Moreover these estimates are uniform in x ∈ M . Equations (3.8), (3.9), (3.10) and (3.11) are coordinate-free versions of these statements.

Far off-diagonal estimates

Finally, we will use the fact that the Bergman kernel and its derivatives decrease fast enough outside of the diagonal. In this section we recall the far off-diagonal estimates of [19, thm. 5], see also [17, prop. 4.1.5]. Let d ∈ N and let S be a smooth section of R E ⊗ L d ⊠ R E ⊗ L d * . Let x, y ∈ M , we denote by S(x, y) C k the maximum of the norms of S and its derivatives of order at most k at the point (x, y). The derivatives of S are computed with respect to the connection induced by the Chern connection of E ⊗ L d and the Levi-Civita connection on M . The norms of the derivatives are the ones induced by h d and g. Theorem 3.9 (Ma-Marinescu). There exist C ′ > 0 and d 0 ∈ N * such that, for all k ∈ N, there exists

C k > 0 such that ∀d d 0 , ∀x, y ∈ M E d (x, y) C k C k d n+ k 2 exp -C ′ √ d ρ g (x, y) ,
where ρ g (•, •) denotes the geodesic distance in (M, g).

Proof. This is the first part of [19, thm. 5], where we only considered the restriction of E d and its derivatives to M . Note that the Levi-Civita connection on M is the restriction of the Levi-Civita connection on X . Hence the norm • C k , such as we defined it, is smaller than the one used in [START_REF]Exponential estimate for the asymptotics of Bergman kernels[END_REF].

4 Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Recall that X is a compact Kähler manifold of dimension n 2 defined over the reals and that M denotes its real locus, assumed to be non-empty. Let E → X be a rank r ∈ {1, . . . , n -1} real Hermitian vector bundle and L → X be a real Hermitian line bundle whose curvature form is ω, the Kähler form of X . We assume that E and L are endowed with compatible real structures. For all d ∈ N, E d denotes the Bergman kernel of E ⊗ L d . Finally, s d denotes a standard Gaussian vector in RH 0 (X , E ⊗ L d ), whose real zero set is denoted by Z d , and |dV d | is the measure of integration over Z d .

The Kac-Rice formula

The first step in our proof of Thm. 1.6 is to prove a version of the Kac-Rice formula adapted to our problem. This is the goal of this section. First, we recall the Kac-Rice formula we used in [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF] to compute the expectation of Vol (Z d ) (Thm. 4.1). Then we prove a Kac-Rice formula adapted to the computation of the covariance (Thm. 4.4), compare [2, thm. 6.3] and [32, chap. 11.5].

Let L : V → V ′ be a linear map between two Euclidean spaces, recall that we denote by det ⊥ (L) its Jacobian (cf. Def. 1.3). Since LL * is a semi-positive symmetric endomorphism of V ′ , det(LL * ) 0 and det ⊥ (L) is well-defined. The range of L * is ker(L) ⊥ , hence ker(LL * ) = ker(L * ) = L(V ) ⊥ . Thus det ⊥ (L) > 0 if and only if LL * is injective, that is if and only if L is surjective. In fact, if L is surjective, let A be the matrix of the restriction of L to ker(L) ⊥ in any orthonormal basis of ker(L) ⊥ and V ′ , then we have: Then for any Borel measurable function φ : M → R we have:

det ⊥ (L) = det (AA t ) = |det(A)| .
E x∈Z d φ(x) |dV d | = (2π) -r 2 x∈M φ(x) |det ⊥ (ev d x )| E det ⊥ ∇ d x s d s d (x) = 0 |dV M | (4.1)
whenever one of these integrals is well-defined.

The expectation on the right-hand side of (4.1) is to be understood as the conditional expectation of det ⊥ ∇ d

x s d given that s d (x) = 0. This result is a consequence of [16, thm. 5.3]. See also Section 5.3 of [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF], where we applied this result with φ = 1, in order to compute the expected volume of Z d .

Let us denote by

∆ = {(x, y) ∈ M 2 | x = y} the diagonal in M 2 . Let d ∈ N and let (x, y) ∈ M 2 \ ∆ we denote by ev d
x,y the evaluation map:

ev d x,y : RH 0 (X , E ⊗ L d ) -→ R E ⊗ L d x ⊕ R E ⊗ L d y . s -→ (s(x), s(y)) (4.2)
The following proposition is the equivalent of Lemma 2.4 for two points (x, y) / ∈ ∆. One could prove this result using only the estimates of Section 3. We give instead a less technical proof, using the Kodaira embedding theorem. See [17, sect. 5.1] for a discussion of the relations between these approaches. Proposition 4.2. There exists d 2 ∈ N, depending only on X , E and L, such that for every d d 2 and every (x, y) ∈ M 2 \ ∆, the evaluation map ev d x,y is surjective.

Proof. Recall that there exists d 1 ∈ N such that, for all d d 1 , the map ev d x defined by (2.3) is surjective for any x ∈ M (see Lem. 2.4). Then, for all d d 1 and all x ∈ M , the complexified map ev d

x : H 0 (X , E ⊗ L d ) → E ⊗ L d x defined by ev d x (s) = s(x) is also surjective. For any l ∈ N, we denote by Ψ l : X → P H 0 (X , L l ) * the Kodaira map, defined by Ψ l (x) = s ∈ H 0 (X , L l ) s(x) = 0 . By the Kodaira embedding theorem (see [12, chap. 1.4]), there exists l 0 ∈ N such that Ψ l0 is well-defined and is an embedding.

We set d 2 = l 0 + d 1 . Let d d 2 and let (x, y) ∈ M 2 \ ∆. Since Ψ l0 (x) and Ψ l0 (y) are distinct hyperplanes in H 0 (X , L l0 ), there exist σ x and σ y ∈ H 0 (X , L l0 ) such that:

σ x (x) = 0, σ x (y) = 0 and σ y (x) = 0, σ y (y) = 0. Since d -l 0 d 1 , ev d x is onto and there exist σ 1,x , . . . , σ r,x ∈ H 0 (X , E ⊗ L d-l0 ) such that (σ 1,x (x), . . . , σ r,x (x)) is a basis of E ⊗ L d-l0
x . Similarly there exist σ 1,y , . . . , σ r,y such that (σ 1,y (y), . . . , σ r,y (y)) is a basis of E ⊗ L d-l0 y . We define global holomorphic sections of E ⊗ L d by s k,x = σ k,x ⊗ σ x and s k,y = σ k,y ⊗ σ y for all k ∈ {1, . . . , r}. These sections are such that (s k,x (x)) 1 k r is a basis of E ⊗ L d x , (s k,y (y)) 1 k r is a basis of E ⊗ L d y and for all k ∈ {1, . . . , r}, s k,x (y) = 0 = s k,y (x). This proves that the map

ev d x,y : H 0 (X , E ⊗ L d ) -→ E ⊗ L d x ⊕ E ⊗ L d y . s -→ (s(x), s(y))
has rank at least 2r (as a C-linear map). Since ev d x,y is the complexified map of ev d x,y , the latter must have rank at least 2r (as a R-linear map), hence it is onto. > 0, that is if and only if ev d

x,y ev d

x,y * is non-singular. Since the latter is the variance operator of ev d x,y (s d ), where s d ∼ N (Id) in RH 0 (X , E ⊗ L d ), we see that the surjectivity of ev d

x,y is equivalent to the non-degeneracy of the distribution of (s d (x), s d (y)).

We can now deduce a Kac-Rice type formula from Prop. 4.2. For any d ∈ N, we define F d to be the following bundle map over M 2 :

F d : RH 0 (X , E ⊗ L d ) × M 2 -→ R E ⊗ L d × R E ⊗ L d . (s, x, y) -→ (s(x), s(y))
Let ∇ d be any real connection on E ⊗ L d → X (see Def. 3.2). Then by Rem. 3.3, the restriction of

∇ d defines a connection on R(E ⊗ L d ) → M . Let ∇ d F d denote the vertical component of the differential of F d .
Then, for all (s 0 , x, y) ∈ RH 0 (X , E ⊗ L d ) × M 2 , we have:

∇ d (s0,x,y) F d : RH 0 (X , E ⊗ L d ) × T x M × T y M -→ R E ⊗ L d x ⊕ R E ⊗ L d y . (s, v, w) -→ s(x) + ∇ d x s 0 • v, s(y) + ∇ d y s 0 • w
We denote by ∂ d 1 F d the partial derivative of F d with respect to the first variable (meaning s), and by ∂ d 2 F d its partial derivative with respect to the second variable (meaning (x, y)). Then for all (s 0 , x, y) ∈ RH 0 (X , E ⊗ L d ) × M 2 we have:

∂ d 1 F d (s 0 , x, y) = ev d x,y and ∂ d 2 F d (s 0 , x, y) : (v, w) → ∇ d x s 0 • v, ∇ d y s 0 • w . (4.3) 
From now on, we assume that d d 2 , where d 2 is given by Prop. 4.2. We define an incidence manifold Σ d by:

Σ d = (F d ) -1 (0) ∩ RH 0 (X , E ⊗ L d ) × M 2 \ ∆ .
By Prop. 4.2 and eq. 4.3, for all (s, x, y)

∈ RH 0 (X , E ⊗ L d ) × M 2 \ ∆ , ∂ d 1 F d,p (s, x, y) is surjective. Thus, the restriction of F d to RH 0 (X , E ⊗ L d ) × M 2 \ ∆ is a submersion and Σ d is a submanifold of RH 0 (X , E ⊗ L d ) × M 2 of
codimension 2r. Note that we are only concerned with the zero set of F d , hence none of this depends on the choice of ∇ d . We can now state the Kac-Rice formula in this context. Then for any Borel measurable function Φ : Σ d → R we have:

E (x,y)∈(Z d ) 2 \∆ Φ(s d , x, y) |dV d | 2 = 1 (2π) r (x,y)∈M 2 \∆ 1 det ⊥ ev d x,y × E Φ(s d , x, y) det ⊥ ∇ d x s d det ⊥ ∇ d y s d s d (x) = 0 = s d (y) |dV M | 2 (4.4)
whenever one of these integrals is well-defined. Here, |dV M | 2 stands for the product measure

on M 2 induced by |dV M |. Similarly, |dV d | 2 is the product measure on (Z d ) 2 .
The expectation on the right-hand side of (4.4) is to be understood as the conditional expectation of Φ(s d , x, y)

det ⊥ ∇ d x s d det ⊥ ∇ d y s d given that s d (x) = 0 = s d (y).
Proof. The proof of Thm. 4.4 uses the double fibration trick, that is apply Federer's coarea formula twice. See for example [16, App. C] and the reference therein.

The Euclidean inner product on RH 0 (X , E ⊗L d ) defined by eq. ( 2.1) and the Riemannian metric g induce a Riemannian metric on RH 0 (X , E ⊗ L d ) × M 2 , and on Σ d by restriction. Let π 1 : Σ d → RH 0 (X , E ⊗ L d ) and π 2 : Σ d → M 2 \ ∆ denote the projections from Σ d to the first and second factors, respectively. For all s ∈ RH 0 (X , E ⊗ L d ), π -1 1 (s) is isometric to Z s and we identify these spaces. Similarly, for all (x, y) ∈ M 2 \ ∆ we identify π -1 2 (x, y) with the isometric space ker(ev d

x,y ). We denote by ds the Lebesgue measure on RH 0 (X , E ⊗ L d ) or any of its subspaces, normalized so that a unit cube has volume 1. Let Φ : Σ d → R be a Borel measurable function. Then

E (Z d ) 2 \∆ Φ |dV d | 2 = s∈RH 0 (X ,E⊗L d ) (x,y)∈π -1 1 (s) Φ(s, x, y) e -1 2 s 2 (2π) N d 2 |dV d | 2 ds,
where N d is the dimension of RH 0 (X , E ⊗ L d ). Then, by the double fibration trick [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF]Prop. C.3] this quantity equals:

(x,y)∈M 2 \∆ s∈ker(ev d x,y ) Φ(s, x, y) e -1 2 s 2 (2π) N d 2 det ⊥ ∂ d 2 F d (s, x, y) det ⊥ ∂ d 1 F d (s, x, y) ds |dV M | 2 . ( 4.5) 
Then eq. ( 4.3) shows that

∂ d 2 F d,p (s, x, y) = ∇ d x s⊕∇ d y s.
Moreover, by definition of the metrics,

T x M is orthogonal to T y M and R(E ⊗ L d ) x is orthogonal to R(E ⊗ L d ) y . Thus det ⊥ ∂ d 2 F d (s, x, y) = det ∂ d 2 F d (s, x, y) ∂ d 2 F d (s, x, y) * 1 2 = det ∇ d x s 0 0 ∇ d y s (∇ d x s) * 0 0 (∇ d y s) * 1 2 = det ∇ d x s(∇ d x s) * 0 0 ∇ d y s(∇ d y s) * 1 2 = det ⊥ ∇ d x s det ⊥ ∇ d y s .
Besides, eq.( 4.3) also shows that det ⊥ ∂ d 1 F d (s, x, y) = det ⊥ ev d x,y , which does not depend on s, so that (4.5) equals:

(x,y)∈M 2 \∆ 1 det ⊥ ev d x,y s∈ker(ev d x,y ) Φ det ⊥ ∇ d x s det ⊥ ∇ d y s e -1 2 s 2 (2π) N d 2 ds |dV M | 2 .
Finally, by Prop. 4.2, ker(ev d x ) is a subspace of codimension 2r of RH 0 (X , E ⊗L d ). Hence, the inner integral in (4.5) can be expressed as a conditional expectation given that ev d

x,y (s d ) = 0, up to a factor (2π) r . This concludes the proof of Thm. 4.4.

An integral formula for the variance

In this section, we fix some d max(d 0 , d 1 , d 2 ) where d 0 , d 1 and d 2 are defined by Thm. 3.9, Lem. 2.4 and Prop. 4.2 respectively. We denote by ∇ d a real connection on E ⊗ L d . Let φ 1 , φ 2 ∈ C 0 (M ), we want to compute:

Var(|dV d |) (φ 1 , φ 2 ) = Cov( |dV d | , φ 1 , |dV d | , φ 2 ) = E[ |dV d | , φ 1 |dV d | , φ 2 ] -E[ |dV d | , φ 1 ] E[ |dV d | , φ 2 ] . (4.6) 
First, by Thm. 4.1, we have:

E[ |dV d | , φ 1 ] E[ |dV d | , φ 2 ] = 1 (2π) r × M 2 φ 1 (x)φ 2 (y) E det ⊥ ∇ d x s d s d (x) = 0 |det ⊥ (ev d x )| E det ⊥ ∇ d y s d s d (y) = 0 det ⊥ ev d y |dV M | 2 . (4.7)
On the other hand,

E[ |dV d | , φ 1 |dV d | , φ 2 ] = E x∈Z d φ 1 (x) |dV d | y∈Z d φ 2 (y) |dV d | = E (x,y)∈(Z d ) 2 \∆ φ 1 (x)φ 2 (y) |dV d | 2 . Indeed, Z d is almost surely of dimension n -r > 0, so that (Z d ) 2 ∩ ∆ (that is the diagonal in (Z d ) 2 ) has measure 0 for |dV d | 2 .
We compute this integral by Thm. 4.4:

E (x,y)∈(Z d ) 2 \∆ φ 1 (x)φ 2 (y) |dV d | 2 = 1 (2π) r (x,y)∈M 2 \∆ φ 1 (x)φ 2 (y) det ⊥ ev d x,y × E det ⊥ ∇ d x s d det ⊥ ∇ d y s d s d (x) = 0 = s d (y) |dV M | 2 . (4.8)
Let D d be the function defined by: ∀(x, y) ∈ M 2 \ ∆,

D d (x, y) =   E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 det ⊥ ev d x,y - E det ⊥ ∇ d x s d s d (x) = 0 E det ⊥ ∇ d y s d s d (y) = 0 |det ⊥ (ev d x )| det ⊥ ev d y   (4.9)
Since dim M = n > 0, ∆ has measure 0 in M 2 for |dV M | 2 . Thus, by (4.6), (4.7), (4.8) and (4.9), we have: 

Var(|dV d |) (φ 1 , φ 2 ) = 1 (2π) r M 2 φ 1 (x)φ 2 (y)D d (x, y) |dV M | 2 . ( 4 
(y) = 0, resp. of (∇ d x s d , ∇ d y s d ) given that s d (x) = 0 = s d (y)) is independent of the choice of ∇ d . Indeed, if s d (x) = 0 then ∇ d
x s d does not depend on ∇ d , and we conditioned on the vanishing of s d (x) (resp. s d (y), resp. s d (x) and s d (y)). Thus, in the sequel, we can use any real connection we like, even one that depends on (x, y) ∈ M 2 \ ∆.

Asymptotic for the variance

In this section we compute the asymptotic of the integral in eq. (4.10). The main point is to write M 2 as the disjoint union of a neighborhood of ∆, of size about ln d √ d , and its complement. In (4.10), the set of points that are far from the diagonal will contribute a term of smaller order than the neighborhood of ∆. This is a consequence of the fast decrease of the Bergman kernel outside of the diagonal. The values of s d at x and y are not correlated, up to some small error, outside of a neighborhood of ∆.

We still assume that d max(d 0 , d 1 , d 2 ) and we denote by s d a standard Gaussian vector in RH 0 (X , E ⊗ L d ).

Asymptotics for the uncorrelated terms

Let us first compute asymptotics for the terms in the expression of D d (see eq. (4.9)) that only depend on one point, say x ∈ M . For all x ∈ M , ev d

x is linear. Hence

s d (x) = ev d x (s d ) is a centered Gaussian vector in R E ⊗ L d
x with variance operator:

ev d x ev d x * = E s d (x) ⊗ (s d (x)) * = E d (x, x), (4.11) 
where E d is the Bergman kernel of E ⊗ L d and the last equality is given by Prop. 2.6.

Lemma 4.6. For every x ∈ M , we have:

π d nr 2 det ⊥ ev d x = 1 + O d -1 ,
where the error term O d -1 does not depend on x. (4.11). By (3.8), we have:

Proof. Let x ∈ M , then det ⊥ ev d x 2 = det E d (x, x) by
π d nr det ⊥ ev d x 2 = det Id R(E⊗L d ) x +O d -1 = 1 + O d -1 .
The error term in (3.8) is independent of x, therefore the same is true here.

Let ∇ d be a real connection on E ⊗ L d . We assume that ∇ d is a metric connection, so that Lem. 2.10 and Cor. 2.12 are valid in this context. Recall that the Chern connection is an example of real metric connection.

For all x ∈ M , let j d x : s → s(x), ∇ d x s denote the evaluation of the 1-jet at x, from

RH 0 (X , E ⊗ L d ) to R E ⊗ L d x ⊗ (R ⊕ T * x M ). Since j d x is linear, s d (x), ∇ d x s d is a centered
Gaussian vector with variance operator j d x j d

x * . This operator splits according to the direct

sum R E ⊗ L d x ⊕ R E ⊗ L d x ⊗ T * x M : j d x j d x * = E j d x (s d ) ⊗ j d x (s d ) * = E[s d (x) ⊗ s d (x) * ] E s d (x) ⊗ (∇ d x s d ) * E ∇ d x s d ⊗ s d (x) * E ∇ d x s d ⊗ (∇ d x s d ) * = E d (x, x) ∂ ♯ y E d (x, x) ∂ x E d (x, x) ∂ x ∂ ♯ y E d (x, x) , (4.12) 
where the last equality comes from Cor. 

(x) = 0 is a centered Gaussian in R E ⊗ L d x ⊗ T *
x M with variance operator:

∂ x ∂ ♯ y E d (x, x) -∂ x E d (x, x) (E d (x, x)) -1 ∂ ♯ y E d (x, x). (4.13)
Lemma 4.7. For every x ∈ M , we have:

π n d n+1 r 2 E det ⊥ ∇ d x s d s d (x) = 0 = (2π) r 2 Vol (S n-r ) Vol (S n ) 1 + O d -1 ,
where the error term is independent of x.

Proof. Let x ∈ M , and let L d (x) be a centered Gaussian vector in R E ⊗ L d x ⊗ T * x M with variance operator:

Λ d (x) = π n d n+1 ∂ x ∂ ♯ y E d (x, x) -∂ x E d (x, x) (E d (x, x)) -1 ∂ ♯ y E d (x, x) . (4.14) 
By (4.13) and the above discussion, the distribution of

∇ d x s d given that s d (x) = 0 equals that of d n+1 π n 1 2 L d (x). Then, E det ⊥ ∇ d x s d s d (x) = 0 = E det ⊥ d n+1 π n 1 2 L d (x) = d n+1 π n r 2 E det ⊥ (L d (x)) .
(4.15) Recall that the distribution of ∇ d

x s d given that s d (x) = 0 does not depend on the choice of ∇ d (Rem. 4.5). Hence Λ d (x) does not depend on the choice of ∇ d . For the following computation, we choose ∇ d to be trivial over B TxM (0, R) in the real normal trivialization about x. Then we can use the diagonal estimates of Cor. 3.8 for the Bergman kernel and its derivatives. We have:

Λ d (x) = Id R(E⊗L d )x ⊗ Id T * x M +O d -1
, where the error does not depend on x. Hence,

det (Λ d (x)) = 1 + O d -1 . (4.16)
Besides, there exists some K > 0 such that Λ d (x) -1 -Id Kd -1 for all d large enough. Then, by the mean value inequality, for all

L ∈ R(E ⊗ L d ) x ⊗ T * x M exp - 1 2 Λ d (x) -1 -Id L , L -1 K 2d L 2 exp K 2d L 2 . Let L 0 d (x) ∼ N (Id) in R(E ⊗ L d ) x ⊗ T *
x M and let dL denote the normalized Lebesgue measure on R(E ⊗ L d ) x ⊗ T *

x M . Then we have:

(2π) nr 2 det (Λ d (x)) 1 2 E det ⊥ (L d (x)) -E det ⊥ L 0 d (x) det ⊥ (L) e -1 2 L 2 exp - 1 2 Λ d (x) -1 -Id L , L -1 dL K 2d det ⊥ (L) exp - 1 2 1 - K d L 2 dL.
The integral on the last line converges to some finite limit as d → +∞. Thus, by (4. [START_REF] Letendre | Expected volume and Euler characteristic of random submanifolds[END_REF]),

E det ⊥ (L d (x)) = det (Λ d (x)) -1 2 E det ⊥ L 0 d (x) + O d -1 = E det ⊥ L 0 d (x) + O d -1 , (4.17) 
uniformly in x ∈ M . Lemma 4.7 follows from (4.15), (4.17) and the following equality, that was proved in [16, lem. A.14]:

E det ⊥ L 0 d (x) = (2π) r 2 
Vol (S n-r ) Vol (S n ) . (4.18)

Far off-diagonal asymptotics for the correlated terms

We can now focus on computing terms in the expression of D d that depend on both x and y. For all (x, y)

∈ M 2 \ ∆, ev d x,y (s d ) = (s d (x), s d (y)
) is a centered Gaussian vector with variance operator: We denote by j d x,y : s → s(x), s(y), ∇ d x s, ∇ d y s the evaluation of the 1-jet at (x, y). Then j d

ev d x,y (ev d x,y ) * = E ev d x,y (s d ) ⊗ ev d x,y (s d ) * = E[s d (x) ⊗ s d (x) * ] E[s d (x) ⊗ s d (y) * ] E[s d (y) ⊗ s d (x) * ] E[s d (y) ⊗ s d (y) * ] = E d (x, x) E d (x,
x,y is a linear map from RH 0 (X , E ⊗ L d ) to

R E ⊗ L d x ⊕ R E ⊗ L d y ⊕ R E ⊗ L d x ⊗ T * x M ⊕ R E ⊗ L d y ⊗ T * y M , (4.20) 
and j d x,y (s d ) is a centered Gaussian vector, with variance operator j d x,y j d

x,y * . We can split this variance operator according to the direct sum (4.20). Then by Cor. 2.13, we have:

j d x,y j d x,y * = E j d x,y (s d ) ⊗ j d x,y (s d ) * =     E[s d (x) ⊗ s d (x) * ] E[s d (x) ⊗ s d (y) * ] E s d (x) ⊗ (∇ d x s d ) * E s d (x) ⊗ (∇ d y s d ) * E[s d (y) ⊗ s d (x) * ] E[s d (y) ⊗ s d (y) * ] E s d (y) ⊗ (∇ d x s d ) * E s d (y) ⊗ (∇ d y s d ) * E ∇ d x s d ⊗ s d (x) * E ∇ d x s d ⊗ s d (y) * E ∇ d x s d ⊗ (∇ d x s d ) * E ∇ d x s d ⊗ (∇ d y s d ) * E ∇ d y s d ⊗ s d (x) * E ∇ d y s d ⊗ s d (y) * E ∇ d y s d ⊗ (∇ d x s d ) * E ∇ d y s d ⊗ (∇ d y s d ) *     =     E d (x, x) E d (x, y) ∂ ♯ y E d (x, x) ∂ ♯ y E d (x, y) E d (y, x) E d (y, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) ∂ x E d (x, x) ∂ x E d (x, y) ∂ x ∂ ♯ y E d (x, x) ∂ x ∂ ♯ y E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) ∂ x ∂ ♯ y E d (y, x) ∂ x ∂ ♯ y E d (y, y)     . (4.21)
Since the distribution of (s d (x), s d (y)) is non-degenerate, the distribution of ∇ d x s, ∇ d y s given that ev x,y (s d ) = 0 is a centered Gaussian with variance operator: 

∂ x ∂ ♯ y E d (x, x) ∂ x ∂ ♯ y E d (x, y) ∂ x ∂ ♯ y E d (y, x) ∂ x ∂ ♯ y E d (y, y) - ∂ x E d (x, x) ∂ x E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) E d (x, x) E d (x, y) E d (y, x) E d (y, y) -1 ∂ ♯ y E d (x, x) ∂ ♯ y E d (x, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) . ( 4 

∇ d

x s, ∇ d y s given that ev x,y (s d ) = 0.

Let C ′ > 0 be the constant appearing in the exponential in Thm. 3.9. We denote

b n = 1 C ′ n 2 + 1 (4.23)
and

∆ d = (x, y) ∈ M 2 ρ g (x, y) < b n ln d √ d , (4.24) 
where, as before, ρ g is the geodesic distance in (M, g).

Lemma 4.9. For every (x, y) ∈ M 2 \ ∆ d , we have:

det ⊥ ev d x,y = det ⊥ ev d x det ⊥ ev d y 1 + O d -n 2 -1 ,
where the error term is uniform in (x, y) ∈ M 2 \ ∆ d

Proof. For all (x, y) ∈ M 2 \ ∆ d , we have ρ g (x, y) b n ln d √ d . Then, by Thm. 3.9,

E d (x, y) C 0 d n exp (-C ′ b n ln d) C 0 d n 2 -1 .
Then, by (4.19) we have:

ev d x,y ev d x,y * = E d (x, x) E d (x, y) E d (y, x) E d (y, y) = E d (x, x) 0 0 E d (y, y) + O d n 2 -1 .
Besides, by (3.8),

E d (x, x) 0 0 E d (y, y) -1 = π d n Id +O d -1 = O d -n , (4.25) so that E d (x, x) E d (x, y) E d (y, x) E d (y, y) = E d (x, x) 0 0 E d (y, y) Id +O d -n 2 -1 . (4.26)
We conclude the proof by taking the square root of the determinant of this last equality (recall (4.11)).

Lemma 4.10. For every (x, y) ∈ M 2 \ ∆ d , we have:

E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ ∇ d x s d s d (x) = 0 E det ⊥ ∇ d y s d s d (y) = 0 1 + O d -n 2 -1 ,
where the error term is uniform in

(x, y) ∈ M 2 \ ∆ d
This lemma is a consequence of the following technical result.

Lemma 4.11. For every (x, y) ∈ M 2 \ ∆ d , we have:

Λ d (x, y) = Λ d (x) 0 0 Λ d (y) Id +O d -n 2 -1 , uniformly in (x, y) ∈ M 2 \ ∆ d .
Proof of Lemma 4.10. (y) . From the definitions of Λ d (x), Λ d (y) and Λ d (x, y), we have:

Let (L d (x), L d (y)) and (L ′ d (x), L ′ d (y)) be centered Gaussian vectors in R E ⊗ L d x ⊗ T * x M ⊕ R E ⊗ L d y ⊗ T * y M such that: the variance of (L ′ d (x), L ′ d (y)) is Λ d (x,
Λ d (x) 0 0 Λ d
E det ⊥ ∇ d x s d s d (x) = 0 = d n+1 π n r 2 E det ⊥ (L d (x)) , E det ⊥ ∇ d y s d s d (y) = 0 = d n+1 π n r 2 E det ⊥ (L d (y)) , E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = d n+1 π n r E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) .
Since L d (x) and L d (y) are independent, we only need to prove that:

E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) = E det ⊥ (L d (x)) det ⊥ (L d (y)) 1 + O d -n 2 -1 . (4.27) By Lemma 4.11, det (Λ d (x, y)) = det Λ d (x) 0 0 Λ d (y) Id +O d -n 2 -1 = det (Λ d (x)) det (Λ d (x)) 1 + O d -n 2 -1 . (4.28)
Besides Lem. 4.11 shows that:

Λ d (x, y) -1 = Λ d (x) 0 0 Λ d (y) -1 Id +O d -n 2 -1
.

By Cor. 3.8 and eq. (4.14), we have:

Λ d (x) 0 0 Λ d (y) = Id +O d -1 . Hence, Λ d (x) 0 0 Λ d (y) -1 = Id +O d -1 (4.29)
uniformly in (x, y), and

Λ d (x, y) -1 - Λ d (x) 0 0 Λ d (y) -1 = O d -n 2 -1 .
Thus there exists K > 0 such that, for all d large enough,

Λ d (x, y) -1 - Λ d (x) 0 0 Λ d (y) -1 K d n 2 +1 .
Then, for every

L = (L 1 , L 2 ) ∈ R E ⊗ L d x ⊗ T * x M ⊕ R E ⊗ L d y ⊗ T * y M , we have: exp - 1 2 Λ d (x, y) -1 - Λ d (x) 0 0 Λ d (y) -1 L , L -1 K L 2 2d n 2 +1 exp K L 2 2d n 2 +1
.

Let dL denote the normalized Lebesgue measure on this vector space. We have:

(2π) nr det (Λ d (x, y)) 1 2 E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) -det (Λ d (x)) 1 2 det (Λ d (y)) 1 2 E det ⊥ (L d (x)) det ⊥ (L d (y)) det ⊥ (L 1 ) det ⊥ (L 2 ) exp - 1 2 Λ d (x) 0 0 Λ d (y) -1 L , L × exp - 1 2 Λ d (x, y) -1 -Λ d (x) 0 0 Λ d (y) -1 L , L -1 dL K 2d n 2 +1 det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 × exp - 1 2 Λ d (x) 0 0 Λ d (y) -1 - K 2d n 2 +1 Id L , L dL = O d -n 2 -1 .
Let us prove the last equality. By eq. (4.29), for every d large enough (uniform in (x, y)),

Λ d (x) 0 0 Λ d (y) -1 -1 + K 2d n 2 +1 Id 1 2 ,
so that:

det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 exp - 1 2 Λ d (x) 0 0 Λ d (y) -1 - K 2d n 2 +1 Id L , L dL det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 exp - 1 4 L 2 dL.
And the last integral is finite since det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 is the norm of a polynomial in L.

Eq. (4.16) and (4.28) show that det(Λ d (x, y)) = 1 + O d -1 . Then, by the previous computations and eq. (4.28), we have:

E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) = det (Λ d (x)) det (Λ d (y)) det (Λ d (x, y)) 1 2 E det ⊥ (L d (x)) det ⊥ (L d (y)) + O d -n 2 -1 = E det ⊥ (L d (x)) det ⊥ (L d (y)) 1 + O d -n 2 -1 + O d -n 2 -1 .
Equations (4.17) and (4.18) prove that

E det ⊥ (L d (x)) det ⊥ (L d (y)) = E det ⊥ (L d (x)) E det ⊥ (L d (y))
converges to some positive constant. This proves (4.27) and establishes Lemma 4.10.

Proof of Lemma 4.11. First, recall that Λ d (x, y), Λ d (x) and Λ d (y) do not depend on the choice of ∇ d (see Rem. 4.5). In this proof, we use the Chern connection which is both real and metric. Let (x, y) ∈ M 2 \ ∆ d , then ρ g (x, y) b n ln d √ d . By Thm. 3.9, we have:

∂ x E d (x, y) C 1 d n+ 1 2 exp (-C ′ b n ln d) C 1 d n 2 -1 2 .
Similarly,

∂ x E d (y, x) , ∂ ♯ y E d (x, y) and ∂ ♯ y E d (y, x) are smaller than C 1 d n-1 2 . Then ∂ x E d (x, x) ∂ x E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) = ∂ x E d (x, x) 0 0 ∂ x E d (y, y) + O d n-1 2 
(4.30)

∂ ♯ y E d (x, x) ∂ ♯ y E d (x, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) = ∂ ♯ y E d (x, x) 0 0 ∂ ♯ y E d (y, y) + O d n-1 2 (4.31)
and, by eq. ( 4.26),

E d (x, x) E d (x, y) E d (y, x) E d (y, y) -1 = E d (x, x) 0 0 E d (y, y) -1 Id +O d -n 2 -1 . (4.32) 
Using eq. (3.9), (3.10) and (4.25), we get:

∂ x E d (x, x) ∂ x E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) E d (x, x) E d (x, y) E d (y, x) E d (y, y) -1 ∂ ♯ y E d (x, x) ∂ ♯ y E d (x, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) = ∂ x E d (x, x) 0 0 ∂ x E d (y, y) E d (x, x) 0 0 E d (y, y) -1 ∂ ♯ y E d (x, x) 0 0 ∂ ♯ y E d (y, y) + O d n 2 -1 (4.33)
Using Thm. 3.9 once more, we know that

∂ x ∂ ♯ y E d (x, y) and ∂ x ∂ ♯ y E d (y, x) are smaller than C 2 d n 2
. Then we have: 

∂ x ∂ ♯ y E d (x, x) ∂ x ∂ ♯ y E d (x, y) ∂ x ∂ ♯ y E d (y, x) ∂ x ∂ ♯ y E d (y, y) = ∂ x ∂ ♯ y E d (x, x) 0 0 ∂ x ∂ ♯ y E d (y, y) + O d n 2 . ( 4 
Λ d (x, y) = Λ d (x) 0 0 Λ d (y) + O d -n 2 -1 = Λ d (x) 0 0 Λ d (y) Id +O d -n 2 -1
, where we used the fact that Λ d (x) = Id +O d -1 = Λ d (y) to obtain the last equality.

Proposition 4.12. Let φ 1 , φ 2 ∈ C 0 (M ), then we have the following as d → +∞:

M 2 \∆ d φ 1 (x)φ 2 (y)D d (x, y) |dV M | 2 = φ 1 ∞ φ 2 ∞ O d r-n 2 -1 ,
where the error term is independent of (φ 1 , φ 2 ).

Proof. We combine Lemmas 4.9 and 4.10, which gives:

E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 det ⊥ ev d x,y = E det ⊥ ∇ d x s d s d (x) = 0 E det ⊥ ∇ d y s d s d (y) = 0 |det ⊥ (ev d x )| det ⊥ ev d y 1 + O d -n 2 -1
for all (x, y) ∈ M 2 \ ∆ d . Besides, by Lemmas 4.6 and 4.7,

E det ⊥ ∇ d x s d s d (x) = 0 |det ⊥ (ev d x )| = O d r 2 = E det ⊥ ∇ d y s d s d (y) = 0 det ⊥ ev d y .
Recalling the definition of D d (eq. (4.9)), we obtain that:

∀(x, y) ∈ M 2 \ ∆ d , D d (x, y) = O d r-n 2 -1 ,
uniformly in (x, y) / ∈ ∆ d . Then, for any continuous φ 1 and φ 2 ∈ C 0 (M ), we have:

M 2 \∆ d φ 1 (x)φ 2 (y)D d (x, y) |dV M | 2 φ 1 ∞ φ 2 ∞ Vol M 2 sup M 2 \∆ d |D d | = φ 1 ∞ φ 2 ∞ O d r-n 2 -1 ,
and the error term does not depend on (φ 1 , φ 2 ).

Properties of the limit distribution

Before we tackle the computation of the dominant term in (4.10), that is the integral over ∆ d , we introduce the random variables that will turn out to be the scaling limits of ∇ d x s d , ∇ d y s d given that ev d

x,y (s d ) = 0. We also establish some of their properties. 

. If z = z i ∂ ∂xi then z * ⊗z = z i z j dx i ⊗ ∂ ∂xj , i.e. the matrix of z * ⊗z in (dx 1 , . . . , dx n ) is (z i z j ) 1 i,j n .
Definition 4.14. For all x ∈ M and z ∈ T x M \ {0}, we define

Λ x (z) ∈ End R E ⊗ L d x ⊗ T * x M ⊗ R 2 by: Λ x (z) =   Id T * x M -e -z 2 1-e -z 2 z * ⊗ z e -1 2 z 2 Id T * x M -z * ⊗z 1-e -z 2 e -1 2 z 2 Id T * x M -z * ⊗z 1-e -z 2 Id T * x M -e -z 2 1-e -z 2 z * ⊗ z   ⊗ Id R(E⊗L d ) x .
We need information about Λ x (z), especially concerning the vanishing of its eigenvalues. This will be useful in the estimates involving Λ x (z) below. Lemma 4.15. For all x ∈ M and z ∈ T x M \ {0}, the eigenvalues of Λ x (z) are:

• 1e -1 2 z 2 and 1 + e -1 2 z 2 , each with multiplicity (n -1)r,

• 1 -e -z 2 + z 2 e -1 2 z 2 1 + e -1 2 z 2 and 1 -e -z 2 -z 2 e -1 2 z 2 1 -e -1 2 z 2
, each with multiplicity r.

Proof. Let x ∈ M and z ∈ B TxM (0, b n ln d) \ {0}. By definition of Λ x (z), its eigenvalues are the same as that of 

  Id T * x M -e -z 2 1-e -z 2 z * ⊗ z e -1 2 z 2 Id T * x M -z * ⊗z 1-e -z 2 e -1 2 z 2 Id T * x M -z * ⊗z 1-e -z 2 Id T * x M -e -z 2 1-e -z 2 z * ⊗ z   , ( 4 
       1 -z 2 e -z 2 1-e -z 2 e -1 2 z 2 1 - z 2 1-e -z 2 0 e -1 2 z 2 1 - z 2 1-e -z 2 1 -z 2 e -z 2 1-e -z 2 0 0 0 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ I n-1        , ( 4 
.36) where I n-1 stands for the identity matrix of size n -1.

The bottom-right block has eigenvalues 1-e -1 2 z 2 and 1+e -1 2 z 2 , each with multiplicity n -1. To conclude the proof of Lemma 4.15, we only need to observe that, for all t > 0, the eigenvalues of

  1 -te -t 1-e -t e -1 2 t 1 -t 1-e -t e -1 2 t 1 -t 1-e -t 1 -te -t
1-e -t   are:

1 - te -t 1 -e -t + e -1 2 t 1 - t 1 -e -t = 1 -e -t -te -1 2 t 1 -e -1 2 t and 1 - te -t 1 -e -t -e -1 2 t 1 - t 1 -e -t = 1 -e -t + te -1 2 t 1 + e -1 2 t
.

Note that the latter one is the largest.

Definition 4.16. We define the function f : (0, +∞) → R by:

∀t > 0, f (t) = 1 -e -1 2 t
1e -tte -1 2 t .

Corollary 4.17. Let x ∈ M and z ∈ T x M \ {0}, then we have:

det (Λ x (z)) = 1 -e -z 2 r(n-2) 1 -e -z 2 + z 2 e -1 2 z 2 r 1 -e -z 2 -z 2 e -1 2 z 2 r > 0. (4.37) Moreover, Λ x (z) < 2 and Λ x (z) -1 = f z 2 , (4.38)
where

• denote the operator norm on End R 2 ⊗ R E ⊗ L d x ⊗ T * x M . Proof.
First, the formula for det (Λ x (z)) is a direct consequence of Lem. 4.15, and we only need to check that the eigenvalues of Λ x (z) are positive. Clearly, 1 ± e -1 2 t > 0 when t > 0. Then, for all positive t, we have:

1 -e -t -te -1 2 t 1 -e -1 2 t = e -1 2 t 1 -e -1 2 t e 1 2 t -e -1 2 t -t = e -1 2 t 1 -e -1 2 t 2 sinh t 2 -t ,
and 2 sinh t 2 > t. Besides,

1 -e -t + te -1 2 t 1 + e -1 2 t = e -1 2 t 1 + e -1 2 t 2 sinh t 2 + t > 0.
Recall that Λ x (z) is the larger eigenvalue of Λ x (z), and Λ x (z) -1 is the inverse of the smallest eigenvalue of Λ x (z). For all t > 0 we have

0 < 1 -e -t 2 < 1 + e -t 2 < 2.
Besides,

1 -e -t -te -1 2 t 1 -e -1 2 t + 1 -e -t + te -1 2 t 1 + e -1 2 t
= 2 1 -te -t 1e -t < 2, and we just proved that both these terms are positive. Hence, each of them is smaller than 2. Thus, all the eigenvalues of Λ x (z) are smaller than 2 and Λ x (z) < 2.

For all t > 0,

1 -e -t -te -1 2 t 1 -e -1 2 t < 1 -e -t 2 ⇐⇒ 1 -e -t -te -1 2 t < 1 -2e -t 2 + e -t ⇐⇒ 1 - t 2 < e -t 2 ,
and this is always true by convexity of the exponential. Thus, the smallest eigenvalue of

Λ x (z) is 1 -e -z 2 -z 2 e -1 2 z 2 1 -e -1 2 z 2 = 1 f ( z 2 )
, which proves our last claim.

Remark 4.18. To better understand the estimate (4.38), note that f is a decreasing function on (0, +∞). Moreover,

f (t) ----→ t→+∞ 1, and 
f (t) ∼ 12 t 2
when t goes to 0.

Definition 4.19. For every x ∈ M , and

z ∈ T x M \ {0}, let (L x (0), L x (z)) be a centered Gaussian vector in R 2 ⊗ R E ⊗ L d x ⊗ T * x M with variance operator Λ x (z).
Recall that we defined the random vector (X(t), Y (t)) for all t > 0 in the introduction (see Def. 1.4). Then (X(t), Y (t)) and (L x (0), L x (z)) are related as follows.

Lemma 4.20. Let x ∈ M and z ∈ T x M \ {0}, then there exists an orthonormal basis of T x M such that, for every orthonormal basis of R E ⊗ L d

x , the couple of r × n matrices associated with (L x (0), L x (z)) in these bases is distributed as (X( z 2 ), Y ( z 2 )).

Proof. As in the proof of Lem. 4.15, let us choose an orthonormal basis

∂ ∂x1 , . . . , ∂ ∂xn of T x M such that z = z ∂ ∂x1 . Let (dx 1 , . . . , dx n ) denote its dual basis. Let (ζ 1 , . . . , ζ r ) be any orthonormal basis of R E ⊗ L d
x , and let (e 1 , e 2 ) denote the canonical basis of R 2 . Then z * ⊗ z = z 2 dx 1 ⊗ ∂ ∂x1 and the matrix of the operator (4.35) in the orthonormal basis (e 1 ⊗ dx 1 , . . . , e 1 ⊗ dx n , e 2 ⊗ dx 1 , . . . , e 2 ⊗ dx n ) is:

       1 -z 2 e -z 2 1-e -z 2 0 e -1 2 z 2 1 - z 2 1-e -z 2 0 0 I n-1 0 e -1 2 z 2 I n-1 e -1 2 z 2 1 - z 2 1-e -z 2 0 1 -z 2 e -z 2 1-e -z 2 0 0 e -1 2 z 2 I n-1 0 I n-1        , (4.39 
) where I n-1 stands for the identity matrix of size n -1. Since Λ x (z) equals this operator tensored by Id R(E⊗L d ) x , the matrix of Λ x (z) in the orthonormal basis:

(e 1 ⊗ dx 1 ⊗ ζ 1 , . . . , e 1 ⊗ dx n ⊗ ζ 1 , e 2 ⊗ dx 1 ⊗ ζ 1 , . . . , e 2 ⊗ dx n ⊗ ζ 1 , e 1 ⊗ dx 1 ⊗ ζ 2 , . . . , e 2 ⊗ dx n ⊗ ζ 2 , . . . e 1 ⊗ dx 1 ⊗ ζ r , . . . , e 2 ⊗ dx n ⊗ ζ r )
is exactly the variance matrix of (X( z 2 ), Y ( z 2 )) (cf. Def. 1.4). Let us denote by M x (0) and M x (z) the matrices of L x (0) and L x (d) in the bases ∂ ∂x1 , . . . , ∂ ∂xn and (ζ 1 , . . . , ζ r ). Then (M x (0), M x (z)) is a centered Gaussian vector in M rn (R) 2 . Moreover, we have just seen that the variance matrix of this random vector is the same as that of (X( z 2 ), Y ( z 2 )). This concludes the proof.

Corollary 4.21. Let x ∈ M and z ∈ T x M \ {0}, then we have:

E det ⊥ (L x (0)) det ⊥ (L x (z)) = E det ⊥ X( z 2 ) det ⊥ Y ( z 2 ) .
Proof. With the same notations as in the proof of Lemma 4.20 above, we have:

E det ⊥ (M x (0)) det ⊥ (M x (z)) = E det ⊥ X( z 2 ) det ⊥ Y ( z 2 ) , since (M x (0), M x (z)) and (X( z 2 ), Y ( z 2 )) have the same distribution. Besides, det ⊥ (L x (0)) = det ⊥ (M x (0)) and det ⊥ (L x (z)) = det ⊥ (M x (0)) .
Let us now establish some facts about the distribution of (X(t), Y (t)) for t > 0.

Lemma 4.22. For all t > 0, we have:

E det ⊥ (X(t)) det ⊥ (Y (t)) n r .
Proof. First, by the Cauchy-Schwarz inequality, we have:

E det ⊥ (X(t)) det ⊥ (Y (t)) E det ⊥ (X(t)) 2 1 2 E det ⊥ (Y (t)) 2 1 2 .
Then, the definition of (X(t), Y (t)) (Def. 1.4) shows that both X(t) and Y (t) are centered Gaussian vectors in M rn (R) with variance matrix:

1 -te -t 1-e -t 0 0 I n-1 ⊗ I r . (4.40)
in the canonical bases of R n and R r . Here I r and I n-1 stand for the identity matrices of size r and n -1 respectively. Hence,

E det ⊥ (X(t)) det ⊥ (Y (t)) E det ⊥ (X(t)) 2 = E det X(t)X(t) t .
We denote by X 1 (t), . . . , X r (t) the rows of X(t). Then

X(t)X(t) t = ( X i (t) , X j (t) ) 1 i,j r ,
where we see X i (t) as an element of R n and • , • is the usual inner product on R n . Hence, det (X(t)X(t) t ) is the Gram determinant of the family (X 1 (t), . . . , X r (t)), which is known to be the square of the r-dimensional volume of the parallelepiped spanned by these vectors.

In particular, det

X(t)X(t) t X 1 (t) 2 • • • X r (t) 2 .
By (4.40), the X i (t) are independent identically distributed centered Gaussian vectors with variance matrix:

1 -te -t 1-e -t 0 0 I n-1 , so that: det X(t)X(t) t E X 1 (t) 2 • • • X r (t) 2 E X 1 (t) 2 r = n - te -t 1 -e -t r n r .
Lemma 4.23. We have the following estimate as t → +∞:

E det ⊥ (X (t)) det ⊥ (Y (t)) = (2π) r Vol (S n-r ) Vol (S n ) 2 + O te -t 2 . Proof. Let (X(∞), Y (∞)) be a standard Gaussian vector in M rn (R) 2 ≃ R 2nr , i.e. X(∞)
and Y (∞) are independent standard Gaussian vectors in M rn (R). Then,

E det ⊥ (X(∞)) det ⊥ (Y (∞)) = E det ⊥ (X(∞)) E det ⊥ (Y (∞)) = E det ⊥ (X(∞)) 2 = (2π) r Vol (S n-r ) Vol (S n ) 2 ,
where we used (4.18) to get the last equality. Then the proof is basically the same as that of Lemma 4.7. From Definition 1.4, we see that the variance operator Λ(t) of (X(t), Y (t)) equals Id +O te -t 2 as t → +∞. Hence:

det (Λ(t)) = 1 + O te -t 2 and Λ(t) -1 = Id +O te -t 2 .
Let C > 0 be such that Λ(t) -1 -Id Cte -t 2 . We denote by L = (L 1 , L 2 ) a generic element of M rn (R) 2 and by dL the normalized Lebesgue measure on this space. Then, (2π) rn det (Λ(t))

1 2 E det ⊥ (X(t)) det ⊥ (Y (t)) -E det ⊥ (X(∞)) det ⊥ (Y (∞)) det ⊥ (L 1 ) det ⊥ (L 2 ) exp - 1 2 Λ(t) -1 -Id L , L -1 e -1 2 L 2 dL C 2 te -t 2 det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 exp - 1 2 1 - C 2 te -t 2 L 2 dL = O te -t 2 . Thus E det ⊥ (X(t)) det ⊥ (Y (t)) = det (Λ(t)) -1 2 E det ⊥ (X(∞)) det ⊥ (Y (∞)) + O te -t 2 = (2π) r Vol (S n-r ) Vol (S n ) 2 + O te -t 2 .
Definition 4.24. Let D n,r : (0, +∞) → R be the function defined by:

∀t ∈ (0, +∞), D n,r (t) = E det ⊥ (X(t)) det ⊥ (Y (t)) (1 -e -t ) r 2 -(2π) r Vol (S n-r ) Vol (S n ) 2 .
Lemma 4.25. We have:

+∞ 0 |D n,r (t)| t n-2 2 dt < +∞.
Proof. We first check the integrability of |D n,r (t)| t n-2 2 at t = 0. By Lemma 4.22, about t = 0 we have:

|D n,r (t)| t n-2 2 t n-2 2 E det ⊥ (X(t)) det ⊥ (Y (t)) (1 -e -t ) r 2 + t n-2 2 (2π) r Vol (S n-r ) Vol (S n ) 2 t n-2 2 n r (1 -e -t ) r 2 + O(t n-2 2 ) = O t n-2-r 2 .
And this is integrable at t = 0 since nr 1.

Then, by Lemma 4.23, we have:

|D n,r (t)| t n-2 2 = O t n 2 e -t 2
when t goes to infinity. This proves the integrability at infinity.

Near-diagonal asymptotics for the correlated terms

The next step of the proof is to compute the contribution of the integral (4.10) on ∆ d . Let R > 0 be such that 2R is smaller than the injectivity radius of X , as in Section 3. Let

d 3 ∈ N be such that ∀d d 3 , b n ln d √ d R.
In the sequel we consider d max(d 0 , d 1 , d 2 , d 3 ).

Since we chose d large enough that b n

ln d √ d
R we can compute everything in the expo-nential chart about x. Let φ 1 , φ 2 ∈ C 0 (M ), we have:

∆ d φ 1 (x)φ 2 (y)D d (x, y) |dV M | 2 = x∈M y∈BM x,bn ln d √ d φ 1 (x)φ 2 (y)D d (x, y) |dV M | |dV M | = x∈M z∈BT x M 0,bn ln d √ d φ 1 (x)φ 2 (exp x (z))D d (x, exp x (z)) κ(z) dz |dV M | , (4.41) 
where √ κ is the density of (exp x ) ⋆ |dV M | with respect to the normalized Lebesgue measure on T x M (see Sect. 3.2). Let x ∈ M , for all z ∈ B TxM (0, b n ln d) we define

D d (x, z) = D d x, exp x z √ d , (4.42) 
where D d is defined by (4.9). Then, by a change of variable in (4.41),

∆ d φ 1 (x)φ 2 (y)D d (x, y) |dV M | 2 = d -n 2 x∈M z∈BT x M (0,bn ln d) φ 1 (x)φ 2 exp x z √ d D d (x, z) κ z √ d 1 2 dz |dV M | , (4.43) 
and we need to compute the asymptotic of D d (x, z) as d goes to infinity. We start by computing det ⊥ ev d 

π d 2nr det ev d x,y ev d x,y * = 1 -e -z 2 r 1 + O d -α , (4.44) 
where the error term does not depend on (x, z).

We will deduce Proposition 4.26 from the following two lemmas. Lemma 4.28. There exists C > 0 such that, for all β ∈ [0, 1), there exists

d β ∈ N such that: ∀d d β , ∀x ∈ M , ∀z ∈ B TxM 0, d β-1 \ {0}, π d 2nr det ev d x,y ev d x,y * 1 -e -z 2 -r -1 Cd β-1 ,
where y stands for exp x z √ d .

Let us assume Lemmas 4.27 and 4.28 for now, and prove Prop. 4.26.

Proof of Proposition 4.26. First, note that if (4.44) holds for z ∈ B TxM (0, b n ln d) \ {0}, then the same estimate holds for z ∈ B TxM (0, b n ln d) since both sides of the equality vanish when z = 0. In the sequel we assume that z = 0. Let α ∈ 0, 1 2r+1 , let d d 3 and let x ∈ M . Then for any z ∈ T x M such that z d -α , we have:

1 -e -z 2 -r 1 -exp -d -2α -r . (4.45) Since 1 -e -t = t 1 -t 2 + O(t 2
) as t → 0, there exists C 0 such that for all t ∈ (0, 1),

1 -e -t -r -t -r C 0 t 1-r . (4.46) 
Hence, by (4.45), for any d d 3 , for any x ∈ M and any z ∈ T x M such that z d -α , we have:

1 -e -z 2 -r d 2rα + C 0 d (2r-2)α d 2rα 1 + C 0 . (4.47) 
Let β = 1 -(2r + 1)α and β ′ = 1α, then β and β ′ ∈ (0, 1). By Lemma 4.27, there exists

K β > 0 such that: for all d d 3 , ∀x ∈ M , ∀z ∈ B TxM (0, b n ln d), π d 2nr det ev d x,y ev d x,y -1 -e -z 2 r K β d β-1 = K β d -(2r+1)α ,
where y = exp x z √ d . Then, by (4.47), we have: 

∀d d 3 , ∀x ∈ M , ∀z ∈ B TxM (0, b n ln d) such that z d -α = d β ′ -1 , π d 2nr det ev d x,y ev d x,y 1 -e -z 2 -r -1 K β d -α 1 + C 0 , Besides 
π d n ev d x,y ev d x,y * = π d n   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   .
Then, by the near-diagonal estimates of Cor. 3.7, we have:

π d n   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   =    Id (E⊗L d )x e -1 2 z 2 κ z √ d -1 2 Id (E⊗L d )x e -1 2 z 2 κ z √ d -1 2 Id (E⊗L d )x κ z √ d -1 Id (E⊗L d )x    + O (ln d) 2n+8 d ,
where the error term does not depend on (x, z). Recall that κ satisfies (3.6). Hence for all z ∈ B(0, b n ln d),

κ z √ d = 1 + O (ln d) 2 d ,
uniformly in x and z. Let β ∈ (0, 1), then we have: A + B √ d for all x ∈ M and all z ∈ B TxX (0, R). Hence, there exists K 1 > 0 independent of x such that, for any smooth section S of R E ⊗ L d ⊠ R E ⊗ L d * over B TxM (0, R) × B TxM (0, R), we have:

π d n ev d x,y ev d x,y * = 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id (E⊗L d )x +O d β-1 , ( 4 
D (z,w) S z √ d , w √ d K 1 S exp x z √ d , exp x w √ d C 1
, where • C 1 was defined in Section 3.4. Since we use the exponential chart, we can argue similarly for the Levi-Civita connection. This gives a similar result for the higher derivatives of S. For all k ∈ N, there exists K k > 0 independent of x such that, for any smooth section

S of R E ⊗ L d ⊠ R E ⊗ L d * over B TxM (0, R) × B TxM (0, R), we have: D k (z,w) S z √ d , w √ d K k S exp x z √ d , exp x w √ d C k . (4.49)
Since d d 0 , by eq. ( 4.49) and Thm. 3.9 we have: ∀z, w ∈ B TxM (0, R), We have:

D 2 (z,w) E d z √ d , w √ d K 2 E d exp x z √ d , exp x w √ d C 2 C 2 K 2 d n+1 .
ev d x,y ev d x,y * =   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   .
Then, by elementary operations on rows and columns, 

1 z 2r det ev d x,y ev d x,y * = 1 z 2r det   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   = det        E d (0, 0) 1 z E d 0, z √ d -E d (0, 0) 1 z E d z √ d , 0 -E d (0, 0) 1 z 2     E d z √ d , z √ d -E d z √ d , 0 -E d 0, z √ d + E d (0, 0)            . ( 4 
E d 0, z √ d -E d (0, 0) -D (0,0) E d • 0, z √ d z 2 2d sup w∈[0,z] D 2 (0,w) E d exp x • √ d , exp x • √ d . (4.52)
Then, by (4.50), we have:

π d n 1 z E d 0, z √ d -E d (0, 0) -D (0,0) E d • 0, z √ d z C 2 K 2 π n . (4.53) 
Similarly, for all z ∈ B TxM (0, b n ln d) \ {0} we have:

π d n 1 z E d z √ d , 0 -E d (0, 0) -D (0,0) E d • z √ d , 0 z C 2 K 2 π n . (4.54) 
A second order Taylor's formula gives:

E d ( z √ d , z √ d ) -E d ( z √ d , 0) -E d (0, z √ d ) + E d (0, 0) -D 2 (0,0) E d (0, z √ d ), ( z √ d , 0) z √ d 3 sup w∈[0,z] D 3 (0,w) E d exp x • √ d , exp x • √ d ,
and since d d 0 , by Thm. 3.9 and eq. ( 4.49) we have:

π d n 1 z 2 E d z √ d , z √ d -E d z √ d , 0 -E d 0, z √ d + E d (0, 0) - D 2 (0,0) E d 0, z √ d z √ d , 0 z C 3 K 3 π n . (4.55)
Finally, by Equations (4.53), (4.54) and (4.55),

π d n        E d (0, 0) 1 z E d 0, z √ d -E d (0, 0) 1 z E d z √ d , 0 -E d (0, 0) 1 z 2     E d z √ d , z √ d -E d z √ d , 0 -E d 0, z √ d + E d (0, 0)            = π d n   E d (0, 0) 1 z D (0,0) E d • 0, z √ d 1 z D (0,0) E d • z √ d , 0 1 z 2 D 2 (0,0) E d 0, z √ d z √ d , 0   + O( z ) , (4.56) 
where the error term is uniform in x and d.

On the other hand, for every x ∈ M and every z ∈ T x M \ {0}, the diagonal estimates of Sect. 3.3 give (see (3.16)):

π d n 1 z 2 D 2 (0,0) E d 0, z √ d z √ d , 0 = π n d n+1 D 2 (0,0) E d 0, z z z z , 0 = Id R(E⊗L d )x +O(d -1 ),
where the error term is independent of x and z. Similarly,

π d n 1 z D (0,0) E d • 0, z √ d = π d n 1 √ d D (0,0) E d • 0, z z = O(d -1 ), π d n 1 z D (0,0) E d • z √ d , 0 = π d n 1 √ d D (0,0) E d • z z , 0 = O(d -1 ), and 
π d n E d (0, 0) = Id R(E⊗L d )x +O(d -1 ). Thus π d n   E d (0, 0) 1 z D (0,0) E d • 0, z √ d 1 z D (0,0) E d • z √ d , 0 1 z 2 D 2 (0,0) E d 0, z √ d z √ d , 0   = Id +O(d -1 ), (4.57) 
where the error term is uniform in (x, z). By (4.56) and (4.57), there exist C 1 and C 2 > 0 such that we have: ∀d max(d 0 , d 3 ), ∀x ∈ M , ∀z ∈ B TxM (0, b n ln d) \ {0},

π d n        E d (0, 0) 1 z E d 0, z √ d -E d (0, 0) 1 z E d z √ d , 0 -E d (0, 0) 1 z 2     E d z √ d , z √ d -E d z √ d , 0 -E d 0, z √ d + E d (0, 0)            -Id C 1 z + C 2 1 d . (4.58) 
Let β ∈ [0, 1), then for all d max(d 0 , d 3 ), for all x ∈ M and all z ∈ B TxM 0, d β-1 , we have:

C 1 z + C 2 d -1 d β-1 C 1 + C 2 . Let d β ∈ N be such that (d β ) β-1 C 1 + C 2 1 2
. Since the determinant is a smooth function, there exists C 3 > 0 such that, for every operator Λ, if Λ Recall that C 0 was defined in the proof of Prop. 4.26 (see eq. (4.46)) and that, for all x ∈ M , for all z ∈ B TxM (0, 1) \ {0}, we have:

z 2r 1 -e -z 2 r -1 C 0 z 2 .
Then we have: 1e -z 2 r -1

∀d d β , ∀x ∈ M , ∀z ∈ B TxM 0, d β-1 \ {0},
1 + C 0 d 2β-2 C 1 + C 2 C 3 d β-1 + C 0 d 2β-2 d β-1 C 1 + C 2 C 3 1 + C 0 + C 0 = d β-1 C,
where we define C > 0 by the equality on the last line.

We now want to compute the limit of the conditional distribution of 

π n d n+1   ∂ x ∂ ♯ y E d (0, 0) ∂ x ∂ ♯ y E d 0, z √ d ∂ x ∂ ♯ y E d z √ d , 0 ∂ x ∂ ♯ y E d z √ d , z √ d   = Id T * x M e -1 2 z 2 Id T * x M -z * ⊗ z e -1 2 z 2 Id T * x M -z * ⊗ z Id T * x M ⊗ Id R(E⊗L d ) x +O d β-1 ,
where the error term does not depend on (x, z).

Proof 

∂ zi ∂ wj E d (z, w) 1 i,j n .
Note that this is a matrix with values in End R E ⊗ L d x . Recall that we defined the function ξ d by (3.12). Then, by Cor. 3.7, for all z, w ∈ B TxM (0, b n ln d), we have:

∂ zi ∂ wj E d z √ d , w √ d = d π n ∂ zi ∂ wj ξ d z √ d , w √ d Id R(E⊗L d ) x +O (ln d) 2n+8 .
Then, eq. (3.15) shows that:

∂ zi ∂ wj ξ d z √ d , w √ d = exp - 1 2 z -w 2 κ z √ d -1 2 κ w √ d -1 2 ×   dδ ij -d(z i -w i )(z j -w j ) - √ d(z j -w j )∂ zi κ z √ d 2κ z √ d + √ d(z i -w i )∂ wj κ w √ d 2κ w √ d   = d exp - 1 2 z -w 2 (δ ij -(z i -w i )(z j -w j )) + O (ln d) 4 ,
where we used the fact that, uniformly in z ∈ B TxM (0, b n ln d), we have:

κ z √ d = 1 + O (ln d) 2 d and ∀i ∈ {1, . . . , n}, ∂ zi κ z √ d = O ln d √ d .
Hence, for all z, w ∈ B TxM (0, b n ln d), we have:

π n d n+1 ∂ zi ∂ wj E d z √ d , w √ d = exp - 1 2 z -w 2 (δ ij -(z i -w i )(z j -w j )) Id R(E⊗L d ) x +O (ln d) 2n+8 d ,
where the error term is independent of x, z and w. Furthermore, for any β ∈ (0, 1), the term

O (ln d) 2n+8
d can be replaced by O d β-1 . Finally, for all z, w ∈ B TxM (0, b n ln d), we have:

π n d n+1 ∂ x ∂ ♯ y E d (z, w) = exp - 1 2 z -w 2 Id T * x M -(z -w) * ⊗ (z -w) ⊗ Id R(E⊗L d ) x +O d β-1 ,
which yields the result.

A similar proof, using Cor. 3.7 and the expressions (3.13) and (3.14) for the partial derivatives of ξ d yields the following. Lemma 4.30. Let x ∈ M and let ∇ d be a real metric connection which is trivial over B TxM (0, R) in the real normal trivialization about x. Let β ∈ (0, 1), then, in the real normal trivialization about x, we have:

∀z ∈ B TxM (0, b n ln d), π n d n+ 1 2   ∂ x E d (0, 0) ∂ x E d 0, z √ d ∂ x E d z √ d , 0 ∂ x E d z √ d , z √ d   = e -1 2 z 2 0 z * -z * 0 ⊗ Id R(E⊗L d ) x +O d β-1 π n d n+ 1 2   ∂ ♯ y E d (0, 0) ∂ ♯ y E d 0, z √ d ∂ ♯ y E d z √ d , 0 ∂ ♯ y E d z √ d , z √ d   = e -1 2 z 2 0 -z z 0 ⊗ Id R(E⊗L d ) x +O d β-1 ,
where z * ∈ T * x M is to be understood as the constant map t → z * from R to T * x M and z ∈ T x M is to be understood as the evaluation on z from T *

x M to R. Moreover, the error terms do not depend on (x, z).

We would like to get a similar asymptotic for the last term in the conditional variance operator (4.22), namely:

  E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   -1 .
Unfortunately, this term is singular on ∆, and this kills all hope to get a uniform estimate on B TxM (0, b n ln d)\{0}. Instead, we obtain a uniform estimate on B TxM (0, b n ln d)\B TxM (0, ρ) for some ρ > 0. We need to carefully check how this estimate depends on ρ.

Lemma 4.31. Let β ∈ (0, 1) and ρ ∈ (0, 1). Let x ∈ M and z ∈ B TxM (0, b n ln d) such that z ρ. Then, in the real normal trivialization about x, we have:

d π n   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   -1 = 1 1 -e -z 2 1 -e -1 2 z 2 -e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x Id +O d β-1 1 -e -1 2 ρ 2 .
Here, the notation O

d β-1 1-e -1 2 ρ 2
means a quantity such that there exists C > 0 and ε > 0, independent of x, z, d and ρ, such that whenever

d β-1 1-e -1 2 ρ 2
ε, the norm of this quantity is smaller than

C d β-1 1-e -1 2 ρ 2 .
Proof. By eq. (4.19) and (4.48), we have:

π d n   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   = 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x +O d β-1 ,
where the error term is independent of (x, z). Besides,

1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x -1 = 1 1 -e -z 2 1 -e -1 2 z 2 -e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x , (4.60) 
and the eigenvalues of

1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x
are 1e -1 2 z 2 and 1 + e -1 2 z 2 , which shows that:

1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x -1 1 1 -e -1 2 z 2 , where • is the operator norm on End R 2 ⊗ R E ⊗ L d x .
Then, if z ρ, we have:

1 1 -e -1 2 z 2 1 1 -e -1 2 ρ 2 .
Thus,

π d n   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   = 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x Id +O d β-1 1 -e -1 2 ρ 2 . (4.61)
Taking the inverse of eq. ( 4.61), we get:

d π n   E d (0, 0) E d 0, z √ d E d z √ d , 0 E d z √ d , z √ d   -1 = 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x -1 Id +O d β-1 1 -e -1 2 ρ 2
, where we used the mean value inequality and the fact that the differential of Λ → Λ -1 is bounded from above on the closed ball of center Id and radius 1 2 . Finally, eq. ( 4.60) gives the result.

Recall that Λ x (z) is defined for x ∈ M and z ∈ T x M \ {0} by Def. 4.14. Recall also that Λ d (x, y) is defined by Def. 4.8. 

Λ d (x, y) = Λ x (z) + O d β-1 (1 -e -1 2 ρ 2 ) 2
, where the constant in the error term does not depend on (x, z), d or ρ.

Proof. We know that Λ d (x, y) does not depend on the choice of ∇ d (see Rem.4.5). Hence, we can compute Λ d (x, y) with ∇ d trivial over B TxM (0, R) in the real normal trivialization of E ⊗ L d about x. Let β ∈ (0, 1) and ρ ∈ (0, 1), we apply Lemmas 4.30 and 4.31 for β 2 . Then, in the real normal trivialization about x, we have:

π n d n+1 ∂ x E d (x, x) ∂ x E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) E d (x, x) E d (x, y) E d (y, x) E d (y, y) -1 ∂ ♯ y E d (x, x) ∂ ♯ y E d (x, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) = 0 z * -z * 0 ⊗ Id R(E⊗L d ) x +O d β 2 -1 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x -1 × Id +O d β 2 -1 1 -e -1 2 ρ 2 0 -z z 0 ⊗ Id R(E⊗L d ) x +O d β 2 -1 . (4.62) Since, ρ |z| < b n ln d, the norm of 1 e -1 2 z 2 e -1 2 z 2 1 ⊗ Id R(E⊗L d ) x -1 is smaller than 1 -e -1 2 z 2 -1 1 -e -1 2 ρ 2 -1
, and the norms of the other matrices appearing in (4.62) are O(ln d). Hence, the expression (4.62) equals:

e -z 2 1 -e -z 2 0 z * -z * 0 1 -e -1 2 z 2 -e -1 2 z 2 1 0 -z z 0 ⊗ Id R(E⊗L d ) x +O d β-1 (1 -e -1 2 ρ 2 ) 2 = e -z 2 1 -e -z 2 z * ⊗ z e -1 2 z 2 z * ⊗ z e -1 2 z 2 z * ⊗ z z * ⊗ z ⊗ Id R(E⊗L d ) x +O d β-1 (1 -e -1 2 ρ 2 ) 2 , ( 4 
.63) where the error term is independent of (x, z). Finally, eq. (4.63) and Lemma 4.29 yield the result. 

π n d n+1 r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ X( z 2 ) det ⊥ Y ( z 2 ) + O f (ρ 2 ) r(n+1) 2 +4 d β-1 ,
where the constant in the error term does not depend on (x, z), d or ρ.

Proof. Let x ∈ M and z ∈ B TxM (0, b n ln d) \ {0}, let y = exp x z √ d
then we have:

π n d n+1 r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ π n d n+1 1 2 ∇ d x s d det ⊥ π n d n+1 1 2 ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) ,
where

(L ′ d (x), L ′ d (y)) is a centered Gaussian vector in R E ⊗ L d x ⊗ T * x M ⊕ R E ⊗ L d y ⊗ T * y M with variance operator Λ d (x, y). We can consider (L ′ d (x), L ′ d (y)) as a random vector in R 2 ⊗ R E ⊗ L d x ⊗ T *
x M , via the real normal trivialization about x. From now on, we work in this trivialization. Let ρ ∈ (0, 1) and β ∈ (0, 1), we assume that ρ z < b n ln d. Then, by Lemma 4.32, we have:

Λ d (x, y) = Λ x (z) + O d β-1 (1 -e -1 2 ρ 2 ) 2 .
Moreover, by Cor. 4.17 and Rem. 4.18, Λ x (z) -1 f z 2 f (ρ 2 ). Hence, we have:

Λ d (x, y) = Λ x (z) Id +O f (ρ 2 ) d β-1 (1 -e -1 2 ρ 2 ) 2 = Λ x (z) Id +O f (ρ 2 ) 3 d β-1 ,
where we used the fact that f (ρ 2 ) (see the proof of Cor. 4.17). Then, we get:

det (Λ d (x, y)) = det (Λ x (z)) 1 + O f (ρ 2 ) 3 d β-1 (4.64) and Λ d (x, y) -1 = Λ x (z) -1 Id +O f (ρ 2 ) 3 d β-1 = Λ x (z) -1 + O f (ρ 2 ) 4 d β-1 .
Thus there exists K > 0 and ε > 0 such that, whenever f (ρ2 ) 4 d β-1 ε,

Λ d (x, y) -1 -Λ x (z) -1 Kf (ρ 2 ) 4 d β-1 .
By the mean value inequality, for every

L = (L 1 , L 2 ) ∈ R 2 ⊗ T * x M ⊗ R E ⊗ L d x we have: exp - 1 2 Λ d (x, y) -1 -Λ x (z) -1 L , L -1 K 2 L 2 f (ρ 2 ) 4 d β-1 exp K 2 L 2 f (ρ 2 ) 4 d β-1 , whenever f (ρ 2 ) 4 d β-1 ε.
Let dL denote the normalized Lebesgue measure on this vector space, and recall that we defined (L x (0), L x (z)) above (Def. 4.19). Then, we have:

(2π) nr det (Λ d (x, y)) 1 2 E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) -det (Λ x (z)) 1 2 E det ⊥ (L x (0)) det ⊥ (L x (z)) det ⊥ (L 1 ) det ⊥ (L 2 ) exp - 1 2 Λ x (z) -1 L , L × exp - 1 2 Λ d (x, y) -1 -Λ x (z) -1 L , L -1 dL K 2 f (ρ 2 ) 4 d β-1 det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 × exp - 1 2 Λ x (z) -1 - K 2 f (ρ 2 ) 4 d β-1 Id L , L dL, whenever f (ρ 2 ) 4 d β-1 ε. Since Λ x (d) < 2 
by Cor. 4.17, the smallest eigenvalue of Λ x (z) -1 is larger than 1 2 . Thus, if f (ρ 2 ) 4 d β-1 1 2K , for every L we have:

Λ x (z) -1 - K 2 f (ρ 2 ) 4 d β-1 Id L , L 1 4 L 2 .
Hence, the last integral above is bounded by:

det ⊥ (L 1 ) det ⊥ (L 2 ) L 2 exp - 1 8 L 2 dL < +∞.
Then, we have:

det (Λ d (x, y)) 1 2 E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) = det (Λ x (z)) 1 2 E det ⊥ (L x (0)) det ⊥ (L x (z)) + O f (ρ 2 ) 4 d β-1 ,
and by (4.64), we obtain:

E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) = E det ⊥ (L x (0)) det ⊥ (L x (z)) 1 + O f (ρ 2 ) 3 d β-1 + det (Λ x (z))
Since, for all t > 0 we have (see Lem. 4.15):

1 1 + e -1 2 t 1, 1 1 -e -1 2 t f (t) and 1 + e -1 2 t 1 -e -t + te -1 2 t f (t),
by Cor. 4.17 we have: det (Λ x (z))

-1 2 f (ρ 2 ) r(n+1) 2 
. Besides, by Cor. 4.21, we have:

E det ⊥ (L x (0)) det ⊥ (L x (z)) = E det ⊥ X( z 2 det ⊥ Y ( z 2 ,
and by Lemma 4.22 this quantity is bounded from above by n r . Finally, we have:

E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) =E det ⊥ X( z 2 det ⊥ Y ( z 2 + O f (ρ 2 ) 4+ r(n+1) 2 d β-1 .
The following corollary is not necessary to the proof of Thm. 1.6 but is worth mentioning. 

π n d n+1 r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ X( z 2 det ⊥ Y ( z 2 + O d β-1 ,
where the error term depends on z but not on x.

Proof. Let us fix, β, x and z, then we set ρ = z and we apply Lemma 4.33.

Before we can conclude the proof of Thm. 1.6, we need one last lemma. d . Let β ∈ (0, 1) and let ∇ d be any real metric connection. Then, we have:

π n d n+1 r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 (2r)! r! n r + O d β-1 ,
where the error term is independent of (x, z).

Proof. Let x ∈ M , let z ∈ B TxM (0, b n ln d) \ {0} and let y = exp x z √ d . As in the proof of Lem. 4.33, let (L ′ d (x), L ′ d (y)) be a centered Gaussian vector in R 2 ⊗ R E ⊗ L d x ⊗ T *
x M whose variance operator is Λ d (x, y), read in the real normal trivialization about x. In the sequel, we work in this trivialization. We have:

π n d n+1 r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) .
The proof follows the same lines as that of Lem. 4.22, the main difference being that the variance operator is not explicit. An additional difficulty comes from the fact that the estimate for Λ d (x, y) given by Lemma 4.32 is not uniform in z ∈ B TxM (0, b n ln d) \ {0}, hence it is useless here. Fortunately, we only need to bound its trace, which is bounded from above by that of the unconditional variance operator:

π n d n+1   ∂ x ∂ ♯ y E d (0, 0) ∂ x ∂ ♯ y E d 0, z √ d ∂ x ∂ ♯ y E d z √ d , 0 ∂ x ∂ ♯ y E d z √ d , z √ d   ,
and Lemma 4.29 allows us to bound the latter. By the Cauchy-Schwarz inequality, the coefficients of the matrix of L ′ d (x) in these bases, and by (L ′ d (x) i ) 1 i r its rows. As in the proof of Lem. 4.22, we have:

E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) E det ⊥ (L ′ d (x)) 2 1 2 E det ⊥ (L ′ d (y))
det ⊥ (L ′ d (x)) 2 = det L ′ d (x) (L ′ d (x)) * = det ( L ′ d (x) i , L ′ d (x) j ) L ′ d (x) 1 2 • • • L ′ d (x) r 2 . (4.67) 
Then, we have: (4.68)

E L ′ d (x) 1 2 • • • L ′ d (x) r 2 = E   r i=1   n j=1 (L ′ d (x) ij )
Let j 1 , . . . , j r ∈ {1, . . . , r}, we denote X i = L ′ d (x) i(ji ) . Then, by Wick's formula (see [32, lem. 11.6.1]), we have:

E r i=1 L ′ d (x) i(ji ) 2 = E r i=1 (X i ) 2 = ({ai,bi}) r i=1 E X ⌊ a i 2 ⌋ X ⌊ b i 2 ⌋ ,
where we sum over all the partitions into pairs ({a i , b i }) 1 i r of {1, . . . , 2r}. Hence, by Cauchy-Schwarz inequality again, we get:

E r i=1 L ′ d (x) i(ji ) 2 ({ai,bi}) r i=1 E X ⌊ a i 2 ⌋ 2 1 2 E X ⌊ b i 2 ⌋ 2 1 2 ({ai,bi}) 2r k=1 E X ⌊ k 2 ⌋ 2 1 2
({ai,bi})

r l=1 E (X l ) 2 (2r)! 2 r r! r i=1 E L ′ d (x) i(ji ) 2 .
Thus, we have: Thus, by (4.65), we get: is a variance operator. Hence it is a positive symmetric operator and so is its inverse. Besides, by (4.21), we know that: Note that what we have done so far works for any choice of connection since Λ d (x, y) is independent of this choice. However, the right-hand side of eq. (4.71) depends on the choice ∇ d . We use a real metric connection that is trivial on B TxM (0, R) in the real normal trivialization about x. Then, by Lemma 4.29, we have:

E det ⊥ (L ′ d (x)) det ⊥ (L ′ d (y)) (2r) 
∂ ♯ y E d (x,
Tr (Λ d (x, y)) 2n + O d β-1 .

Conclusion of the proof

We can now prove Theorem 1.6. Lemma 4.36. Let α > 0, let φ ∈ C 0 (M ) and let x ∈ M , then we have:

BT xM (0,d -α ) φ exp x z √ d κ z √ d 1 2 1 d r D d (x, z) -D n,r ( z 2 ) dz = φ ∞ O d (r-n)α ,
where the error term does not depend on x or φ.

Proof. We have: (4.72) Then, since there exists C > 0 such that t 1-e -t C for all t ∈ (0, 1], we get: Hence the integral of this term over B TxM (0, d -α ) is a O(d -nα ).

BT xM (0,d -α ) φ exp x z √ d κ z √ d
Recall that we defined α 0 = nr 2(2r + 1)(2n + 1) (see Ntn. 1.5). Let us denote α 1 = α 0 nr .

Lemma 4.37. Let α ∈ (0, α 1 ), let φ ∈ C 0 (M ) and x ∈ M , then we have:

d -α z <bn ln d φ exp x z √ d κ z √ d 1 2 1 d r D d (x, z) -D n,r ( z 2 ) dz = φ ∞ O d (r-n)α ,
where the error term does not depend on x or φ.

Proof. As in the proof of Lemma 4.36, since κ Since α ∈ (0, α 1 ), we have 0 < nα < 1 2r+1 and we can choose a positive β ∈ nα, 1 2r+1 . Let β ′ ∈ (0, 1) be such that:

1 -2α(8 + r(n + 1))β < β ′ < 1 -2α(8 + r(n + 1))nα < 1.

(4.74)

We already know that -β < -nα, so we only need to check that 0 < 1α(16 + 2rn + 2r + n) to ensure the existence of such a β ′ . This goes as follows:

1α(16 + 2rn + 2r + n) > 1 -2α 1 (8 + rn + n + r) = 3rn + n + r -7 (2r + 1)(2n + 1) > 0. We set α ′ = 1-2α (8 + r(n + 1))-β ′ -nα, so that the error term in (4.75) is a O d -nα-α ′ .

By (4.74), we have α ′ > 0. By Prop. 4.26, applied for β, and eq. ( 4.75) we have: Moreover, nα + α ′ = 1 -2α (8 + r(n + 1))β ′ < β (see eq. (4.74)), so that we have:

1 d r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 det ⊥ ev d x,y = E det ⊥ X( z 2 ) det ⊥ Y ( z 2 ) + O d -nα-α ′ 1 -e -
1 d r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 det ⊥ ev d x,y = E det ⊥ X( z 2 ) det ⊥ Y ( z 2 )
1e -z 2 r 2 + O d (r-n)α-α ′ .

On the other hand, by Lemmas 4.6 and 4.7, we have:

1 d r E det ⊥ ∇ d x s d s d (x) = 0 |det ⊥ (ev d x )| E det ⊥ ∇ d y s d s d (y) = 0 det ⊥ ev d y = (2π) r Vol (S n-r ) Vol (S n ) 2 + O d -1 .
Once again, eq. (4.74) shows that nα + α ′ < β < 1. A fortiori (nr)α + α ′ < 1. Thus, for all x ∈ M and z ∈ T x M such that d -α z < b n ln d, we have:

1 d r D d (x, z) -D n,r ( z 2 ) = O d (r-n)α-α ′ ,
where α ′ > 0 and the error term is independent of (x, z). 

φ 1 (x)φ 2 exp x z √ d D n,r ( z 2 ) dz |dV M | + φ 1 ∞ φ 2 ∞ O d -α ,
where the error term does not depend on (φ 1 , φ 2 ).

Proof. Let α ∈ (0, α 0 ), we set α ′ = α n-r ∈ (0, α 1 ). Let φ 1 , φ 2 ∈ C 0 (M ) and let x ∈ M , we apply Lemmas 4.36 and 4.37 for α ′ and φ 2 . Then, we have: 

  2.2). In the sequel, we will consider |dV s | as a positive Radon measure on M . Let us also denote by |dV M | the Riemannian measure on M . 1 Let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ). Then |dV s d | is a random positive Radon measure on M . We set Z d = Z s d and |dV d | = |dV s d | to avoid too many subscripts. In a previous paper [16, thm. 1.3], we computed the asymptotic of the expected Riemannian volume of Z d as d → +∞. Namely, we proved that: E[Vol (Z d )] = d

r 2 - 1 . ( 1 . 2 ) 2 - 1

 211221 Moreover the error term O d r does not depend on φ. In particular, we can define a sequence of Radon measures (E[|dV d |]) d d0 on M by: for every d d 0 and every φ ∈ C 0 (M ), E[|dV d |] , φ = E[ |dV d | , φ ]. Then Thm. 1.1 implies that:

  variable X, and by Cov(X,Y ) = E[(X -E[X]) (Y -E[Y ])]the covariance of the real random variables X and Y . We call variance of |dV d | and we denote by Var(|dV d |) the symmetric bilinear form on C 0 (M ) defined by:∀φ 1 , φ 2 ∈ C 0 (M ), Var(|dV d |) (φ 1 , φ 2 ) = Cov( |dV d | , φ 1 , |dV d | , φ 2 ) .

n 2

 2 -α by fixing β > α 0 , which is possible since 1 2 > α 0 . • Thm. 1.6 shows that Var(|dV d |) is a continuous bilinear form on C 0 (M ), • ∞ for d large enough. Moreover, denoting by • , • M the L 2 -inner product on C 0 (M ) defined by φ 1 , φ 2 M = M φ 1 φ 2 |dV M |, we have: d n 2 -r Var(|dV d |) -----→ d→+∞ Vol S n-1 (2π) r I n,r • , • M

  4.3.2 for a precise statement). Thus, D d (x, y) is small far from ∆, and its integral over this domain only contributes a remainder term to Var(|dV d |) (φ 1 , φ 2 ). The main contribution to the value of Var(|dV d |) (φ 1 , φ 2 ) comes from the integration of D d (x, y) over a neighborhood of ∆ of size about 1 √ d . We perform a change of variable in order to express this term as an integral over a domain of fixed size. This rescaling by 1 √ d explains the factor d -n 2 in (1.5). Besides, the order of growth of D d (x, y) close to ∆ is d r , that is the order of growth of the square of E[|dV d |] (see Thm. 1.1). Finally, we get an order of growth of d r-n 2 for Var(|dV d |) (φ 1 , φ 2 ). The constant in (1.5) appears as the scaling limit of the integral of D d (x, y) over a neighborhood of ∆ of typical size 1 √ d .
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Notation 3 . 1 .

 31 Here and in the sequel, we always denote by B A (a, R) the open ball of center a and radius R > 0 in the metric space A.

  2.3) and its derivatives, read in the real normal trivialization about x of E ⊗ L d ⊠ E ⊗ L d * . It was first established by Dai, Liu and Ma in [7, thm. 4.18'].

Corollary 3 . 8 .

 38 Let x ∈ M , let ∇ d be a real metric connection that is trivial over B TxX (0, R) in the real normal trivialization about x. Let ∂ ♯ y and ∂ x denote the associated partial derivatives for sections of (E ⊗ L d ) ⊠ (E ⊗ L d ) * , then we have the following estimates as d → +∞.

Theorem 4 . 1 (

 41 Kac-Rice formula). Let d d 1 , where d 1 is defined by Lem. 2.4 and let ∇ d be any real connection on E ⊗ L d . Let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ).

Remark 4 . 3 .

 43 In Prop. 4.2, ev d x,y is surjective if and only if det ⊥ ev d x,y

Theorem 4 . 4 (

 44 Kac-Rice formula). Let d d 2 , where d 2 is given by Prop. 4.2, and let ∇ d be any real connection on E ⊗ L d . Let s d be a standard Gaussian vector in RH 0 (X , E ⊗ L d ).

  y) (recall Def. 4.8), and L d (x) and L d (y) are independent with variances Λ d (x) and Λ d (y) respectively (see (4.14)). Then, the distribution of (L d (x), L d (y)) is a centered Gaussian with variance

Notation 4 . 13 .

 413 Let x ∈ M and z ∈ T x M , we denote by z * ⊗ z ∈ T * x M ⊗ T x M the linear map:z * ⊗ z : T * x M -→ T * x M. η -→ η(z)z *Let ∂ ∂x1 , . . . , ∂ ∂xn be an orthonormal basis of T x M and let (dx 1 , . . . , dx n ) denote its dual basis

Proposition 4 . 26 .

 426 x,y when (x, y) ∈ ∆ d . Let α ∈ 0, 1 2r+1 , let x ∈ M and z ∈ B TxM (0, b n ln d). We denote y = exp x z √ d . Then we have:

Lemma 4 . 27 .= 1 -

 4271 Let β ∈ (0, 1) and d d 3 , then for every x ∈ M and z ∈ B TxM (0, b n ln d), e -z 2 r + O d β-1 , where y stands for exp x z √ d . Moreover the error term depends on β but not on (x, z).

1 - 1 -

 11 , let d d β ′ and x ∈ M , then for all z ∈ B TxM (0, d -α ) \ {0} we have: e -z 2 -r -1 Cd -α , by Lemma 4.28. Finally, for all d max(d β ′ , d 3 ), ∀x ∈ M , ∀z ∈ B TxM (0, b n ln d) \ {0}, we have: e -z 2 -r -1 d -α max C, 2 K β 1 + C 0 . Proof of Lemma 4.27. Let d d 3 , let x ∈ M and let z ∈ B TxM (0, b n ln d). We denote y = exp x z √ d . Since z √ d < R, let us write eq. (4.19) in the real normal trivialization of E ⊗ L d about x (see Sect. 3.1). We have:

  .48) and the constant in the term O d β-1 does not depend on (x, z). Since the dominant term on the right-hand side of (4.48) has bounded coefficients, we get the result by taking the determinant of (4.48). Proof of Lemma 4.28. Let d max(d 0 , d 3 ) and let x ∈ M . Recall that D k (z,w) denotes the k-th differential at (z, w) of a map from T x X × T x X to End E ⊗ L d x . The Chern connection reads D + µ d x in the real normal trivialization about x, where µ d x is a 1-form on B TxX (0, 2R). By definition of the real normal trivialization, µ d x (0) = 0. Besides µ d x (z) is a smooth function of (x, z) and grows at most linearly in d. By compactness of M , there exist A and B > 0 such that µ d x z √ d

( 4 .

 4 50) Let x ∈ M and z ∈ B TxM (0, b n ln d) \ {0}. We denote y = exp x z √ d . Let us write eq. (4.19), in the real normal trivialization of E ⊗ L d about x, as in the proof of Lem. 4.27.

  .51) By Taylor's formula, for all z ∈ B TxM (0, b n ln d) \ {0} we have:

1 2 ,- 1 C 1 +

 211 then |det (Id +Λ) -1| C 3 Λ . Hence, by eq. (4.51) and (4.58), we have: for all d d β , for all x ∈ M , for all z ∈ B TxM 0, d β-1 \ {0}, C 2 C 3 d β-1 .(4.59)

  π n d n+1 ∇ d x s d , ∇ d y s d given that s d (x) = 0 = s d (y) for (x, y) ∈ ∆ d . It is enough to compute the limit of Λ d (x, y) as d → +∞. Recall that Λ d is defined by Def. 4.8. Since we work near the diagonal, we can write everything in the real normal trivialization centered at x (see Sect. 3.1). Lemma 4.29. Let x ∈ M and let ∇ d be a real metric connection which is trivial over B TxM (0, R) in the real normal trivialization about x. Let β ∈ (0, 1), then, in the real normal trivialization about x, we have: ∀z ∈ B TxM (0, b n ln d),

Lemma 4 . 32 .

 432 Let β ∈ (0, 1) and ρ ∈ (0, 1). Let x ∈ M and z ∈ B TxM (0, b n ln d) such that z ρ. We denote y = exp x z √ d . Let ∇ d be any real metric connection. Then, in the real normal trivialization about x, we have:

Lemma 4 . 33 .

 433 Let β ∈ (0, 1) and ρ ∈ (0, 1). Let x ∈ M and z ∈ B TxM (0, b n ln d) such that z ρ. We denote y = exp x z √ d . Let ∇ d be any real metric connection. Then,

Corollary 4 . 34 .

 434 Let β ∈ (0, 1). Let x ∈ M and z ∈ B TxM (0, b n ln d) \ {0}. We denote y = exp x z √ d . Let ∇ d be any real metric connection. Then, we have:

Lemma 4 . 35 .

 435 Let x ∈ M and z ∈ B TxM (0, b n ln d) \ {0}. We denote y = exp x z √

  Λ d,1 (x, y) and Λ d,2 (x, y) denote the variance operators of L ′ d (x) and L ′ d (y) respectively, so that:Λ d (x, y) = Λ d,1 (x, y) * * Λ d,2 (x, y) . (4.66)Let us choose orthonormal bases of T x M and R E ⊗ L d x . We denote by (L ′ d (x) ij ) 1 i r1 j n

2 ( 2 (

 22 Tr (Λ d,1 (x, y)) r , (4.69)where Tr stands for the trace operator. Finally, by (4.67), (4.68) and (4.69), we have:E det ⊥ (L ′ d (x)) 2r)! 2 r r! Tr (Λ d,1 (x, y)) r ,and similarly,E det ⊥ (L ′ d (y)) 2r)! 2 r r! Tr (Λ d,2 (x, y)) r .

2 2 (

 22 ! 2 r r! Tr (Λ d,1 (x, y)) r Tr (Λ d,2 (x, y)) r 2r)! 2 r r! Tr (Λ d (x, y)) r .(4.70) Let β ∈ (0, 1), by eq. (4.70), we only need to prove that Tr (Λ d (x, y)) 2n + O d β-1 to complete the proof. By eq. (4.19), E d (x, x) E d (x, y) E d (y, x) E d (y, y)

1 2 1 2 d |κ| 1 2 2 1 -e -ρ 2 r 2 ρ n- 1 2 VolB 2 ( 1

 1221221221 d r D d (x, z) -D n,r ( z 2 ) dz φ ∞   sup BT x M 0,bn ln d √ d |κ| 1 BT xM (0,d -α ) 1 d r |D d (x, z)| + D n,r ( z 2 ) dz. Since κ(z) = 1 + O z 2 uniformly in x (see (3.6)), we have:supBT x M 0,bn ln d √ = 1 + O (ln d) 2 d ,and this term is bounded. Thus, we only need to consider the integrals of1 d r |D d (x, z)| and D n,r ( z 2 ). By Lemma 4.22, we have:B(0,d -α ) D n,r ( z 2 ) dz Vol S n-1 d -α ρ=0 E det ⊥ X(ρ 2 ) det ⊥ Y (ρ dρ + (2π) r Vol (S n-r ) Vol (S n ) TxM 0, d -α e -t ) r 2 dt + O d -nα .

1 -e -z 2 r 2 1+ 1 -e -z 2 r 2 ,

 1212 d -α ) D n,r ( z 2 ) dz = O d (r-n)α . Let us denote y = exp x z √ d . By the definition of D d (x, z) (cf. (4.42)), we have:1 d r |D d (x, z)| 1 d r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 det ⊥ ev d x,y + 1 d r E det ⊥ ∇ d x s d s d (x) = 0 |det ⊥ (ev d x )| E det ⊥ ∇ d y s d s d (y) = 0 det ⊥ ev d y .Then, let β ∈ (0, 1) and β ′ ∈ 0, 1 2r+1 , by Prop. 4.26 and Lem. 4.35 we have:1 d r E det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 det ⊥ ev d x,y (2r)! r! n r + O d β-1 O d -β ′ C 1for some large C. By a polar change of coordinates similar to (4.72) and (4.73), we show that the integral of this term over B TxM (0, d -α ) is a O d (r-n)α . Finally, by Lem. 4.6 and 4.7 we have:1 d r E det ⊥ ∇ d x s d s d (x) = 0 |det ⊥ (ev d x )| E det ⊥ ∇ dy s d s d (y) = 0 det ⊥ ev d y = O(1) .

1 2

 1 is bounded on B TxM 0, b n ln d √ duniformly in x ∈ M , we only need to prove that:1 d r D d (x, z) -D n,r ( z 2 ) = O d (r-n)α-α ′ for some α ′ > 0. Then, since Vol (B TxM (0, b n ln d)) = O((ln d) n ) = O d α ′ ,we get the result by integrating over B TxM (0, b n ln d) \ B TxM (0, d -α ).

By Lemma 4 . 33 ,E

 433 for every x ∈ M and z ∈ B TxM (0, b n ln d) such that z d -α we have:det ⊥ ∇ d x s d det ⊥ ∇ d y s d ev d x,y (s d ) = 0 = E det ⊥ X( z 2 ) det ⊥ Y ( z 2 ) + O f (d -2α ) r(n+1) 2 +4 d β ′ -1 , (4.75) 53 where, as usual, y stands for exp x z √ d . Recall that we have: f (t) ∼ 12 t 2 as t → 0 (cf. Rem. 4.18). Then, we get: f (d -2α ) r(n+1) 2 +4 = O d 2α(8+r(n+1)) .

z 2 r 2 1+ 2 ) 1 -e -z 2 r 2 +

 2212 O d -β , (4.76) for all x ∈ M and z ∈ T x M such that d -α z < b n ln d. Since 1e -d -2α -r 2 = O(d rα ) ,and the numerator of (4.76) is bounded (cf. Lemma 4.22), the right-hand side of equation (4.76) equals:E det ⊥ X( z 2 ) det ⊥ Y ( z O d (r-n)α-α ′ + O d rα-β .

Proposition 4 .√ d 1 2 dz

 42 38. Let α ∈ (0, α 0 ), let φ 1 and φ 2 ∈ C 0 (M ), we have the following asymptotic as d → +∞:1 d r x∈M z∈BT x M (0,bn ln d) φ 1 (x)φ 2 exp x z √ d D d (x, z)κ z |dV M | = x∈M z∈BT x M (0,bn ln d)

1 dd 1 2 d 1 2 dz+ 1 2 = 1 + 2 .|φ 1 2 (b n ln d) 2 dS n- 1 (bn ln d) 2 t=0

 12211212212 r z∈BT x M (0,bn ln d)φ 1 (x)φ 2 exp x z √ d D d (x, z)κ z √ dz = z∈BT x M (0,bn ln d) φ 1 (x)φ 2 exp x z √ d D n,r ( z 2 )κ z √ |φ 1 (x)| φ 2 ∞ O d (r-n)α ′ ,(4.77)and the error term can be rewritten as O(d -α ).Since κ(z) O z 2 (cf. (3.6)), there exists C > 0 independent of x such that for all z ∈ B TxM (0, R), κ(z) Then, we get:z∈BT x M (0,bn ln d) φ 1 (x)φ 2 exp x z (x)| φ 2 ∞ C (b n ln d) 2 d z∈B(0,bn ln d) D n,r ( z 2 ) dz |φ 1 (x)| φ 2 ∞ C Vol |D n,r (t)| t n-2 2 dt. Since |D n,r (t)| t n-22is integrable on (0, +∞) (Lem. 4.25) and α < 1, we have:z∈BT x M (0,bn ln d) φ 1 (x)φ 2 exp x z x M (0,bn ln d) φ 1 (x)φ 2 exp x z √ d D n,r ( z 2 ) dz + |φ 1 (x)| φ 2 ∞ O d -α ,(4.78)where the error term in independent of x. By (4.77) and (4.78), we have:1 d r z∈BT x M (0,bn ln d) φ 1 (x)φ 2 exp x z x M (0,bn ln d) φ 1 (x)φ 2 exp x z √ d D n,r ( z 2 ) dz + |φ 1 (x)| φ 2 ∞ O d -α ,uniformly in x ∈ M . Integrating this relation over M yields the result.

  Lebesgue measure on RH 0 (X , E ⊗ L d ). Here • is the norm associated with the Euclidean inner product (2.1). Then Z s d is almost surely a submanifold of codimension r of M and |dV s d | is almost surely a random positive Radon measure on M . To simplify notations, we set Z d = Z s d and |dV d | = |dV s d |. For more details concerning Gaussian vectors, we refer to [16, appendix A] and the references therein.Let φ ∈ C 0 (M ), for every s ∈ RH 0 (X , E ⊗ L d ) vanishing transversally, we set

	2 φ(x) |dV s | . s 2 Such a φ will be referred to as a test-function. Following [27], we call linear statistic of degree (2.4) x∈Zs (2.5) with respect to the normalized |dV s | , φ = d associated with φ the real random variable |dV d | , φ .

  .9)Proof. We will prove that (x, y) → E[s d (x) ⊗ s d (y) * ] is the kernel of the orthogonal projection onto RH 0 (X , E ⊗ L d ), i.e. satisfies (2.8). Let s ∈ RΓ(E ⊗ L d ), then Thus, for any s ∈ RΓ(E ⊗ L d ), E[s d (x) s , s d ] is the value at x of the orthogonal projection of s on RH 0 (X , E ⊗ L d ). Finally, the correlation kernel of (s d (x)) x∈X satisfies (2.8) and equalsE d . Remark 2.8. If E is the trivial bundle X × C r → X then E d splits as E d = Id ⊗ e d , whereId is the identity of C r and e d is the Bergman kernel of L d . There is no such splitting in general.

	y∈X	E[s d (x) ⊗ s d (y) * ] (s(y)) dV X = E s d (x)	y∈X	s d (y) * (s(y)) dV X = E[s d (x) s , s d ] .
	If s is orthogonal to RH 0 (X , E ⊗ L d ) this quantity equals 0. If s ∈ RH 0 (X , E ⊗ L d ) then
	E[s d (x) s , s d ] = E ev d x (s d )s * d (s) = ev d x (E[s d ⊗ s * d ] (s)) = ev d x (Var(s d ) s) = ev d x (s) = s(x)
	since Var(s d ) = Id. Remark 2.7. If (s 1,d , . . . , s N d ,d ) is any orthonormal basis of RH 0 (X , E ⊗ L d ), we have:
			N d	
		E d : (x, y) -→	i=1	s i,d (x) ⊗ s i,d (y) * .	(2.10)

  ). , . . . , ζ 0 r ) be an orthonormal basis of RE x0 . Since RE x0 = ker (c E,x0 -Id) and c E,x0 is C-anti-linear, we have E x0 = RE x0 ⊕ i • RE x0 . Moreover, since h E,x0 and c E,x0 are compatible, (ζ 0 1 , . . . , ζ 0 r ) is also an orthonormal basis of E x0 . Let i ∈ {1, . . . , r}, we denote by ζ i : B X (x 0 , 2R) → E the real local section defined by:

	Let (ζ 0 1

  so that the connection is trivial in the real normal trivialization about x.

	Recall that ∂ ♯

y E d and ∂ x ∂ ♯ y E d are defined by (2.18) and (2.19) respectively.

  .10) Remark 4.5. At this stage, it is worth noticing that the values of the conditional expectations appearing in the definition of D d (see eq. (4.9)) do not depend on the choice of ∇ d . In fact, the whole conditional distribution of ∇ d x s d given that s d (x) = 0 (resp. of ∇ d y s d given that s d

  .22) Definition 4.8. For every (x, y) ∈ M 2 \ ∆ and every d large enough, we define Λ d (x, y) to be the operator such that d n+1 π n Λ d (x, y) equals (4.22). That is, Λ d (x, y) is the conditional variance of π n

	1
	2
	d n+1

  .34) We substract eq. (4.33) to eq. (4.34) and divide by d n+1 π n . By definition of Λ d (x, y), Λ d (x) and Λ d (y) (see Def. 4.8 and eq. (4.14)),

  .35) with multiplicities multiplied by r. Hence, it is enough to compute the eigenvalues of the operator (4.35). ∂ ∂x1 , and let us denote by (dx 1 , . . . , dx n ) the dual basis. Then, z * ⊗ z = z 2 dx 1 ⊗ ∂ ∂x1 . Let (e 1 , e 2 ) denote the canonical basis of R 2 , then the matrix of the operator (4.35) in the orthonormal basis (e 1 ⊗ dx 1 , e 2 ⊗ dx 1 , . . . , e 1 ⊗ dx n , . . . , e 2 ⊗ dx n ) is:

	Let us choose an orthonormal basis ∂ ∂x1 , . . . , ∂

∂xn of T x M such that z = z

  . Let x ∈ M and let us choose an orthonormal basis M . We denote the corresponding coordinates on T x M × T x M by (z 1 , . . . , z n , w 1 , . . . , w n ) and by ∂ zi and ∂ wj the associated partial derivatives. Let (dx 1 , . . . , dx n ) denote the dual basis of ∂ ∂x1 , . . . , ∂ ∂xn . By definition of ∇ d and ∂ x ∂ ♯ y E d (see eq. (2.19)), for all z, w ∈ B TxM (0, R), the matrix of ∂ x ∂ ♯ y E d (z, w) in the orthonormal basis (dx 1 , . . . , dx n ) is:

	∂ ∂x1 , . . . , ∂ ∂xn	of T x

  ∂ x E d (x, x) ∂ x E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) E d (x, x) E d (x, y) E d (y, x) E d (y, y) -1 ∂ ♯ y E d (x, x) ∂ ♯ y E d (x, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) are non-negative, and so is its trace. Finally, by the definition of Λ d (x, y) (Def. 4.8), we have:

	Tr (Λ d (x, y))	π n d n+1 Tr	∂ x ∂ ♯ y E d (x, x) ∂ x ∂ ♯ y E d (x, y) ∂ x ∂ ♯ y E d (y, x) ∂ x ∂ ♯ y E d (y, y)	.	(4.71)

x) ∂ ♯ y E d (x, y) ∂ ♯ y E d (y, x) ∂ ♯ y E d (y, y) = ∂ x E d (x, x) ∂ x E d (x, y) ∂ x E d (y, x) ∂ x E d (y, y) * .

Then, the diagonal coefficients of:

O f (ρ 2 ) 4 d β-1 1 + O f (ρ 2 )

d β-1 .

Now, let α ∈ (0, α 0 ), let φ 1 and φ 2 ∈ C 0 (M ), then by eq. (4.10), Prop. 4.12, eq. (4.43) and Prop. 4.38 we have:

where the error term is independent of (φ 1 , φ 2 ). Then, we have:

where ̟ φ2 is the continuity modulus of φ 2 (see Def. 1.2). Besides, by a polar change of coordinates, we have:

and this quantity is bounded, by Lemma 4.25. Then,

where the error term is independent of (φ 1 , φ 2 ). Let β ∈ 0, . Then there exists some C > 0 such that, for all t large enough,

Ce -t 4 . Then, for d large enough we have:

(4.83)

By equations (4.82) and (4.83), we get:

Finally, recall that we defined I n,r by eq. (1.6) and D n,r by Def. 4.24. Hence, we have:

and this quantity is finite by Lemma 4.25. This concludes the proof of Theorem 1.6.

5 Proofs of the corollaries 5.1 Proof of Corollary 1.9

Corollary 1.9 is a direct consequence of Thm. 1.6 and the Markov inequality. Let φ ∈ C 0 (M ), then, by (1.7) we have:

where the error term depends on φ. Now, let α > r 2 -n 4 and ε > 0. We have:

Proof of Corollary 1.10

We obtain Cor. 1.10 as a consequence of Cor. 1.9. Let U ⊂ M be an open subset. We denote by φ U ∈ C 0 (M ) the function such that φ U (x) is the geodesic distance from x to the complement of U in (M, g). Then we have:

and φ U is non-negative. Hence,

Then, by Thm. 1.1, for d large enough we have:

Thus, for d large enough, we have:

And by Cor. 1.9, this is a O d -n 2 .

Proof of Corollary 1.11

In this section we assume that n 3. We consider a random sequence (s d ) d∈N of sections of increasing degree, distributed according to the probability measure dν = d∈N dν d on d∈N RH 0 (X , E ⊗ L d ). Strictly speaking, |dV s d | is not defined for small d. However, dνalmost surely, |dV s d | is well-defined for all d d 1 , so the statement of Cor. 1.11 makes sense.

Our proof follows the lines of the proof of Shiffman and Zelditch [25, sect. 3.3] in the complex case. First, we prove that for every fixed φ ∈ C 0 (M ) we have:

Then we use a separability argument to get the result. In the complex algebraic setting of [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], the scaled volume of s -1 d (0) ⊂ X is a deterministic constant, independent of d. In our real algebraic setting this is not the case.

Let φ ∈ C 0 (M ), then we have:

by Cor. 1.7. Hence, dν-almost surely, we have:

Then, by Thm. 1.1, |dV s d | , φ satisfies (5.1) dν-almost surely. Let (φ k ) k∈N be a dense sequence in the separable space C 0 (M ), • ∞ . Without loss of generality, we can assume that φ 0 = 1, the unit constant function on M . Then, dν-almost surely, we have:

Let s = (s d ) d∈N ∈ d∈N RH 0 (X , E ⊗ L d ) be a fixed sequence such that (5.2) holds. For every φ ∈ C 0 (M ) and k ∈ N we have:

Recall that φ 0 = 1. Then, by (5.2), the sequence (d -r 2 |dV s d | , 1 ) d∈N converges. Hence it is bounded by some positive constant K s . Let φ ∈ C 0 (M ) and let ε > 0. Let k ∈ N be such that:

.

Then, for every d large enough we have:

Thus, φ satisfies (5.1). Finally, whenever (5.2) is satisfied we have: for every φ ∈ C 0 (M ), φ satisfies (5.1). Since the condition (5.2) is satisfied dν-almost surely, this proves Cor. 1.11.