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Variance of the volume of random real algebraic
submanifolds

*

Thomas Letendre

August 17, 2016

Abstract

Let X be a complex projective manifold of dimension n defined over the reals and
let M denote its real locus. We study the vanishing locus Zs, in M of a random real
holomorphic section sq of £ ® £, where £ — X is an ample line bundle and £ — X
is a rank r Hermitian bundle. When r € {1,...,n — 1}, we obtain an asymptotic of
order d"~ %, as d goes to infinity, for the variance of the linear statistics associated to
Zs,, including its volume. Given an open set U C M, we show that the probability
that Z,, does not intersect U is a O of d~% when d goes to infinity. When n > 3,
we also prove almost sure convergence for the linear statistics associated to a random
sequence of sections of increasing degree. Our framework contains the case of random
real algebraic submanifolds of RP™ obtained as the common zero set of r independent
Kostlan—-Shub—Smale polynomials.

Keywords: Random submanifolds, Kac—Rice formula, Linear statistics, Kostlan—Shub—
Smale polynomials, Bergman kernel, Real projective manifold.

Mathematics Subject Classification 2010: 14P99, 32A25, 53C40, 60G57, 60G60.

1 Introduction

Framework. Let us first describe our framework and state the main results of this article
(see Section 2 for more details). Let X be a smooth complex projective manifold of positive
complex dimension n. Let £ be an ample holomorphic line bundle over X and let £ be a
rank r holomorphic vector bundle over X, with » € {1,...,n}. We assume that X, £ and £
are endowed with compatible real structures and that the real locus M of X’ is not empty.
Let he and h, denote Hermitian metrics on £ and L respectively that are compatible with
the real structures. We assume that h has positive curvature w. Then w is a Kéahler form
on X and its induces a Riemannian metric g on M.

For any d € N, the Kahler form w, hr and h, induce a L2-inner product on the space
RHO(X,E ® L) of real holomorphic sections of £ @ LT — X (see (2.1)). Let d € N and
s € RHO(X,E® L?), we denote by Zg the real zero set s~1(0) N M of s. For d large enough,
for almost every s € RHY(X,E ® L?), Z, is a codimension 7 smooth submanifold of M and
we denote by |dV;| the Riemannian measure on Z; induced by g (see Sect. 2.2). In the sequel,
we will consider |dV| as a positive Radon measure on M. Let us also denote by |dVi,| the
Riemannian measure on M.
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Let s be a standard Gaussian vector in RH(X,€ ® £4). Then |dV;,| is a random
positive Radon measure on M. We set Zg = Z,, and |dVy| = |dV;,| to avoid too many
subscripts. In a previous paper [14, thm. 1.3], we computed the asymptotic of the expected
Riemannian volume of Z; as d — 4+00. Namely, we proved that:

Vol (S"~7)

E[Vol (Z4)] = d2 Vol (M) Vol (57

+0(d=7), (1.1)
where, Vol (M) is the volume of M for |dVj| and the volumes of spheres are Euclidean
volumes. Here and in throughout this paper, E[-] denotes the expectation of the random
variable between the brackets, and S™ stands for the unit Euclidean sphere of dimension m.
Let ¢ € C°(M), we denote by ||¢[|, = maxzen |¢(x)| its norm sup. Besides, we denote
by (-,-) the duality pairing between (C°(M), ||| ) and its topological dual. Then, (1.1) can
be restated as:
Vol (S"~7)
Vol (S7)

where 1 € C°(M) stands for the unit constant function on M. The same proof gives similar
asymptotics for E[{|dVy] , ¢)] for any continuous ¢ : M — R (see [14, section 5.3]).

E[(|dVq| ,1)] = d? Vol (M) +0(d27Y),

Theorem 1.1. Let X be a complex projective manifold of positive dimension n defined over
the reals, we assume that its real locus M is non-empty. Let € — X be a rankr € {1,...,n}
Hermitian vector bundle and let L — X be a positive Hermitian line bundle, both equipped
with compatible real structures. For every d € N, let sq be a standard Gaussian vector in
RHO(X,E ® LY). Then the following holds as d — +oco:

Vol (S"~7)

Vo e CO(M),  E[(|dVal ,¢)] dg( M¢|dVM|> Vol (S7)

+ ¢l O(d2 ™) . (1.2)

Moreover the error term O(dg’l) does not depend on ¢.

In particular, we can define a sequence of Radon measures (E[|dVql]),s,, on M by: for
every d > dp and every ¢ € CO(M), (E[|dV4]] ,¢) = E[(|dV4| ,#)]. Then Thm. 1.1 implies

that:
Vol (S™—"

d—+oo Vol (SP)

(d~%)E[|dval] ) |dVml, (1.3)

as continuous linear functionals on (C°(M), |-|..)-

Statement of the results. The main result of this paper is an asymptotic for the covari-
ances of the linear statistics {(|dV4| , ) | ¢ € C°(M)}. Before we can state our theorem, we
need to introduce some additional notations.

As usual, we denote by Var(X) = IE[(X - IE[X])Q} the variance of the real random
variable X, and by Cov(X,Y) = E[(X — E[X]) (Y — E[Y])] the covariance of the real random
variables X and Y. We call variance of |dVy| and we denote by Var(|dVy|) the symmetric
bilinear form on C°(M) defined by:

Vo1, ¢2 € CO(M),  Var(|dVal) (¢1,é2) = Cov({[dVal ,é1), (|dVa] , d2)) - (1.4)

Definition 1.2. Let ¢ € C%(M), we denote by w, its continuity modulus, which is defined
by:
wy: (0,400) — [0, 4+00)
e sup{[o(@) — o) | (z,y) € M?, py(z,y) < e},

where p, (-, ) stands for the geodesic distance on (M, g).



Since M is compact, w, is well-defined for every ¢ € C°(M). Moreover every ¢ € C°(M)
is uniformly continuous and we have:

Yo € CO(M), wg(e) — 0.

e—0
Note that, if ¢ : M — R is Lipschitz continuous, then wy(e) = O(e) as e — 0.

Definition 1.3. Let L: V — V' be a linear map between two Euclidean spaces, we denote
by |det™ (L)| the Jacobian of L:

|det™ (L)| = \/det (LL*),
where L* : V! — V is the adjoint operator of L.

See Section 4.1 for a quick discussion of the properties of this Jacobian. If A is an element
of M, (R), the space of matrices of size r x n with real coefficients, we denote by ’detl- (A)’
the Jacobian of the linear map from R™ to R” associated to A in the canonical bases of R™
and R".

Definition 1.4. For every t > 0, we define (X (¢), Y (¢)) to be a centered Gaussian vector in
M (R) X M,.,,(R) with variance matrix:

~ 1
1— e 0 o ... 0 6_%—561 0 e ... 0
0 1 : 0 e 3
1 : e 2 0
0 e .0 1 0 R R
_t tefé te”* ®Ih
eTE A2 0 0 1— e 0 - .. 0
0 e”2 0 1
; e E 0 ; .10
0 R (R 0 0 1

where I, is the identity matrix of size r. That is, if we denote by X;;(t) (resp. Yi;(t)) the
coefficients of X (¢) (resp. Y (¢)), the couples (X;;(¢),Y;;(t)) with1 <i<rand1<j<n
are independent from one another and the variance matrix of (X;;(¢),Y;;(¢)) is:

] el et (1f t,t) s
. e 1,:6 if j=1, and } € otherwise.
e 2 (1 - 1%) j e

et l—e—t

[SEY
—_

n—r

T+(r+1)(n+1)

Notation 1.5. We set o9 =

We can now state our main result.

Theorem 1.6. Let X be a complex projective manifold of dimension n > 2 defined over the
reals, we assume that its real locus M is non-empty. Let € — X be a rankr € {1,...,n—1}
Hermitian vector bundle and let L — X be a positive Hermitian line bundle, both equipped
with compatible real structures. For every d € N, let sq be a standard Gaussian vector in

RHO(X,E @ LY).



Let B € (0,3), then there exists Cg > 0 such that, for all a € (0,aq), for all ¢1 and
¢ € CO(M), the following holds as d — +oo:

. Vol (S*—1
Var(laVil) (61,62) = % ( [ oncnfavie]) %

61l 02l O(d57) + 11l @ (Cad™") O(d""%), (1.5)

In,r

where

1t (E[|dett (X(1)][dett (v ()] RGN \ o .
In,r—Q/O < (1764)% (2m) (7\/01(8”) ) t 2z dt < +oo.

(1.6)
Moreover the error terms O(d"=2~%) and O(d"~%) in (1.5) do not depend on (¢1, ¢2).

We obtain the variance of the volume of Z; by applying Thm. 1.6 to ¢1 = ¢2 = 1. When
d1 = ¢2 = ¢ we get the following.

Corollary 1.7 (Variance of the linear statistics). In the same setting as Thm. 1.6, let
B € (0,3), then there exists Cg > 0 such that, for all o € (0,a0) and all ¢ € CO(M), the
following holds as d — +oo:

Var((laval o)) =% ( [ 6% javi]) %z

+ [ ll5 O(d ™5 ) + [1gll o wo (Cad ™) O(d %) . (1.7)
Moreover, the error terms do not depend on ¢.

Remarks 1.8. Some remarks are in order.

e The value of the constant ag should not be taken too seriously. This constant apppears
for technical reasons and it is probably far from optimal.

o If ¢ is Lipschitz continuous with Lipschitz constant K, then the error term in Eq. (1.5)
can be replaced by:

1911loc (2l + K) O(d" =5 77)
by fixing 8 > «g, which is possible since % > .

e Thm. 1.6 shows that Var(|dVy|) is a continuous bilinear form on (C°(M), ||-|,.) for d
large enough. Moreover, denoting by (-,-),, the L?-inner product on C°(M) defined

by (¢1,¢2),, = /M 102 |dVy|, we have:

Vol (s"1)
(27T)T Inﬂ“< ’ >M

d® " Var(|dV,])

d—+oo

in the weak sense. A priori, there is no such convergence as continuous bilinear forms
on (C°(M), |||.) since the estimate (1.5) involves the continuity modulus of ¢s.

e The fact that the constant Z, , is finite is part of the statement and is proved below
(Lemma 4.25). This constant is necessarily non-negative. Numerical evidence suggests
that it is positive but we do not know how to prove it at this point.

e Thm. 1.6 does not apply in the case of maximal codimension (r = n). This case
presents an additional singularity which causes our proof to fail. However, we believe
a similar result to be true for r = n, at least in the case of the Kostlan-Shub—Smale
polynomials described below (compare [6, 32]).



Corollary 1.9 (Concentration in probability). In the same setting as Thm. 1.6, let o >
and let ¢ € C°(M). Then, for every e > 0, we have:

P ([(avl ) ~ BVl ,9)]| > d*c) = 0@,

where the error term is independent of €, but depends on ¢.

Corollary 1.10. In the same setting as Thm. 1.6, let U C M be an open subset, then as
d = +o00 we have:
P(ZgnU=0)=0(d"?).

Our last corollary is concerned with the convergence of a random sequence of sections of
increasing degree. Let us denote by dvg the standard Gaussian measure on RH?(X, € @ L£?)
(see (2.4)). Let dv denote the product measure @ oy dvg on [J oy RHY(X,€ @ £4). Then
we have the following.

Corollary 1.11 (Almost sure convergence). In the same setting as Thm. 1.6, let us assume
that n > 3. Let (sa)aen € [Ty RHO(X,E ® L) be a random sequence of sections. Then,
dv-almost surely, we have:

_r Vol (S™~")
Vo € CO(M), d=z (|dV,| , ¢) T Vol &) (/M¢|dVM|).
That is, dv-almost surely,
- 1 n—r
d=%|av,,| VL") | vl

d—+00 Vol (Sn)
in the sense of the weak convergence of measures.

Remark 1.12. We expect this result to hold for n = 2 as well, but our proof fails in this case.

The Kostlan-Shub—Smale polynomials Let us consider the simplest example of our
framework. We choose X to be the complex projective space CP™, with the real structure
defined by the usual conjugation in C**!. Then M is the real projective space RP". Let
L = O(1) be the hyperplane line bundle, equipped with its natural real structure and
the metric dual to the standard metric on the tautological line bundle over CP"™. Then
the curvature form of £ is the Fubini-Study form wpgg, normalized so that the induced
Riemannian metric is the quotient of the Euclidean metric on the unit sphere of C**1. Let
E = C" x CP™ — CP" be the rank r trivial bundle with the trivial real structure and the
trivial metric.

In this setting, the global holomorphic sections of £? are the complex homogeneous
polynomials of degree d in n+1 variables and those of £ L% are r-tuples of such polynomials,
since & is trivial. Finally, the real structures being just the usual conjugations, we have:

RHY(X,E® LY =RE (X0, .., Xn]",
where Rﬁom [Xo, ..., Xy] is the space of real homogeneous polynomials of degree d in n + 1
variables. The r copies of this space in RH? (X, ® L?) are pairwise orthogonal for the inner
product (2.1). Hence a standard Gaussian in RHY(X, & ® L£?) is a r-tuple of independent
standard Gaussian in R [Xo, ..., X,] = RH? (X, £%).

It is well-known (cf. [3, 4, 11]) that the monomials are pairwise orthogonal for the L?-
inner product (2.1), but not orthonormal. Let a = (ay, ..., a,) € N**1 we denote its length
by |a| = ap + - + a,. We also define X* = X§°--- X5 and a! = (ag!) - - - (a!). Finally,



if |a| = d, we denote by (i) the multinomial coefficient % Then, an orthonormal basis of
R [Xo,...,X,] for the inner product (2.1) is given by the family:

la|=d

Thus a standard Gaussian vector in RE_[Xo, ..., X,] is a random polynomial:
[(d+n)! AN,
) Z e\ \a X%

|a|=d

where the coefficients (aa)mzd are independent real standard Gaussian variables. Since we
are only concerned with the zero set of this random polynomial, we can drop the factor
(d+n)!

Tndl
Finally, in this setting, |dVy] is the common zero set of r independent random polynomials
in R¢ [Xo,...,X,] of the form:

hom

> aa <Z) X, (1.8)

loe|=d

with independent coefficients (aq)ja|=q distributed according to the real standard Gaussian
distribution. Such polynomials are known as the Kostlan-Shub—Smale polynomials. They
were introduced in [11, 27] and were actively studied since (cf. [1, 5, 6, 21, 32]).

Related works. As we just said, zero sets of systems of independent random polynomials
distributed as (1.8) were studied by Kostlan [11] and Shub and Smale [27]. The expected
volume of these random algebraic manifolds was computed by Kostlan [11] and their expected
Euler characteristic was computed by Podkorytov [21] in codimension 1, and by Biirgisser
[5] in higher codimension. Both these results were extended to the setting of the present
paper in [14].

In [32], Wschebor obtained an asymptotic bound, as the dimension n goes to infinity,
for the variance of number of real roots of a system of n independent Kostlan—Shub—Smale
polynomials. Recently, Dalmao [6] computed an asymptotic of order V/d for the variance of
the number of real roots of one Kostlan-Shub—Smale polynomial in dimension n = 1. His
result is very similar to (1.5), which leads us to think that such a result should hold for
r = n. He also proved a central limit theorem for this number of real roots, using Wiener
chaos methods.

In [12, thm. 3], Kratz and Leon considered the level curves of a centered stationary Gaus-
sian field with unit variance on the plane R2. More precisely, they considered the length of a
level curve intersected with some large square [T, T] x [-T,T]. As T — 400, they proved
asymptotics of order T2 for both the expectation and the variance of this length. They also
proved that it satisfies a central limit theorem as T' — +o00. In particular, their result applies

to the centered Gaussian field on R? with correlation function (x,%) +— exp (*é |z — ZJH2)

This field can be seen as the scaling limit, in the sense of [19], of the centered Gaussian field
(5a()),cpr defined by our random sections, when n = 2 and r = 1.

The study of more general random algebraic submanifolds, obtained as the zero sets
of random sections, was pioneered by Shiffman and Zelditch [23, 24, 25]. They considered
the integration current over the common complex zero set Z; of r independent random
sections in H°(X', £%), distributed as standard complex Gaussians. In [23], they computed



the asymptotic, as d goes to infinity, of the expectation of the associated smooth statistics
when r = 1. They also provided an upper bound for the variance of these quantities and
proved the equivalent of Cor. 1.11 in this complex algebraic setting. In [24], they gave an
asymptotic of order d?"~m=3% for the variance of the volume of Z4 N U, where U C X is
a domain satisfying some regularity conditions. In [25], they proved a similar asymptotic
for the variance of the smooth statistics associated to Z;. When r = 1, they deduced a
central limit theorem from these estimates and an asymptotic normality result of Sodin and
Tsirelson [29]. Finally, in [26, thm. 1.4], Shiffman, Zelditch and Zrebiec proved that the
probability that Z; N U = @, where U is any open subset of X, decreases exponentially fast
as d goes to infinity.

Coming back to our real algebraic setting, one should be able to deduce from the general
result of Nazarov and Sodin [19, thm. 3] that, given an open set U C M, the probability
that Zg NU = () goes to 0 as d goes to infinity. Corollary 1.10 gives an upper bound for
the convergence rate. In particular, this bounds the probability for Z; to be empty. In
the same spirit, Gayet and Welschinger [9] proved the following result. Let ¥ be a fixed
diffeomorphism type of codimension r submanifold of R™, let € M and let By(x) denote
the geodesic ball of center x and radius ﬁ. Then, the probability that Z;N By(x) contains a
submanifold diffeomorphic to ¥ is bounded from below. On the other hand, when n = 2 and
r = 1, the Harnack—Klein inequality shows that the number of connected components of Z;
is bounded by a polynomial in d. In [7], Gayet and Welschinger proved that the probability
for Z; to have the maximal number of connected components decreases exponentially fast
with d.

Another well-studied model of random submanifolds is that of Riemannian random waves,
i.e. zero sets of random eigenfunctions of the Laplacian associated to some eigenvalue A. In
this setting, Rudnick and Wigman [22] computed an asymptotic bound, as A — +oo, for
the variance of the volume of a random hypersurface on the flat n-dimensional torus T™.
On T2, this result was improved by Krishnapur, Kurlberg and Wigman [13] who computed
the precise asymptotic of the variance of the lenght of a random curve. In [31], Wigman
computed the asymptotic variance of the linear statistics associated to a random curve on
the Euclidean sphere S?. His result holds for a large class of test-function that contains the
characteristic functions of open sets satisfying some regularity assumption. In relation with
Cor. 1.10, Nazarov and Sodin [18] proved that, on the Euclidean sphere S?, the number of
connected components of a random curve times % converges exponentially fast in probability
to a deterministic constant as A = +o0.

About the proof. The idea of the proof is the following. The random section sg4 defines a
centered Gaussian field (sq(z))gex. The correlation kernel of this field equals the Bergman
kernel, that is the kernel of the orthogonal projection onto H°(X,€ @ L£?) for the inner
product (2.1) (compare [3, 14, 23, 24, 25]).

In order to compute the covariance of the smooth statistics (|dVs| , ¢1) and (|dV4| , ¢2),
we apply a Kac—Rice formula (cf. [2, 3, 6, 30, 31]). This allows us to write Var(|dVg|) (¢1, ¢2)
as the integral over M x M of some function Dg4(x, y), defined by (4.9). This density Da(x,y)
is the difference of two terms, coming respectively from

E[(|dVal , ¢1) (|dVal , ¢2)] and E[(|dVal ; o) E[{|dVal , é2)] -

Since the Bergman kernel decreases exponentially fast outside of the diagonal A in M?
(see Section 3.4), the values of s4(x) and s4(y) are almost uncorrelated for (z,y) far from A.
As a consequence, when the distance between x and y is much larger than %, the above
two terms in the expression of Dy(x,y) are equal, up to a small error (see Sect. 4.3.2 for
a precise statement). Thus, Dy(x,y) is small far from A, and its integral over this domain
only contributes a remainder term to Var(|dVy|) (¢1, ¢2)-



The main contribution to the value of Var(|dVy|) (¢1, ¢2) comes from the integration of
Da(z,y) over a neighborhood of A of size about ﬁ. We perform a change of variable in
order to express this term as an integral over a domain of fixed size. This rescaling by ﬁ
explains the factor d~2 in (1.5). Besides, the order of growth of Dy(x,y) close to A is d",
that is the order of growth of the square of E[|[dVy|] (see Thm. 1.1). Finally, we get an order
of growth of d"~% for Var(|dVy|) (¢1, ¢2). The constant in (1.5) appears as the scaling limit
of the integral of Dy(z,y) over a neighborhood of A of typical size ﬁ.

The difficulty in making this sketch of proof rigorous comes from the combination of
two facts. First, we do not know exactly the value of the Bergman kernel (our correlation
function) and its derivatives, but only asymptotics. In addition, the conditioning in the
Kac—Rice formula is singular along A, and so is D4. Because of this, we lose all uniformity
in the control of the error terms close to the diagonal. Nonetheless, by careful bookkeeping
of the error terms, we can make the above heuristic precise.

Outline of the paper. In Section 2 we describe precisely our framework and the con-
struction of the random measures |dV;,|. We also introduce the Bergman kernel and explain
how it is related to our random submanifolds.

In Section 3, we recall various estimates for the Bergman kernel that we use in the proof
of our main theorem. These estimates were established by Ma and Marinescu [15, 16, 17]
in a complex setting. Our main contribution in this section consists in checking that the
preferred trivialization used by Ma and Marinescu to state their near-diagonal estimates is
well-behaved with respect to the real structures on X, £ and £ (see Section 3.1).

Section 4 is concerned with the proof of Thm. 1.6. In Sect. 4.1, we prove a Kac—Rice
formula adapted to our problem, using Federer’s coarea formula and Kodaira’s embedding
theorem. In Sect. 4.2 we prove an integral formula for the variance, using the Kac—Rice
formula (Thm. 4.4). The core of the proof is contained in Sect. 4.3.

Finally, we prove Corollaries 1.9, 1.10 and 1.11 in Section 5.

Acknowledgments. I am thankful to Damien Gayet for his guidance in the course of this
work and for countless mathematical discussions, on this topic and others.
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2 Random real algebraic submanifolds

2.1 General setting

In this section, we introduce our framework. It is the same as the algebraic setting of [14],
see also [8, 9]. Classical references for the material of this section are [10, chap. 0] and [28,
chap. 1].

Let X be a smooth complex projective manifold of complex dimension n > 2. We assume
that X is defined over the reals, that is X is equipped with an anti-holomorphic involution
cx. The real locus of (X, cy) is the set of fixed points of cx. In the sequel, we assume that
it is non-empty and we denote it by M. It is a classical fact that M is a smooth closed
(i.e. compact without boundary) submanifold of X of real dimension n (see [28, chap. 1]).

Let & — X be a holomorphic vector bundle of rank r € {1,...,n — 1}. Let c¢g be a real
structure on &£, compatible with cy in the sense that the projection 7g : £ — X satisfies
cx omg = mg o cg and cg is fiberwise C-anti-linear. Let he be a real Hermitian metric on &,
that is ck(he) = he.

Similarly, let £ — & be an ample holomorphic line bundle equipped with a compatible
real structure ¢, and a real Hermitian metric ho. Moreover, we assume that the curvature
form w of h, is a Kéhler form. Recall that if  is any non-vanishing holomorphic section on
the open set 2 C X, then the restriction of w to 2 is given by:

w/ = %aéln (hL(C, C)) :

This Kahler form is associated to a Hermitian metric gc on X. The real part of gc defines
a Riemannian metric ¢ = w(+,i-) on X, compatible with the complex structure. Note that,
since h. is compatible with the real structures on X and £, we have c¢}(hs) = hg and

chw = —w. Then we have ¢} gc = gc, hence ckg = g and cy is an isometry of (X, g).
Then g induces a Riemannian measure on every smooth submanifold of X'. In the case of
X, this measure is given by the volume form dVx = <. We denote by |dVi/| the Riemannian

measure on (M, g).

Let d € N, then the rank r holomorphic vector bundle £ ® £¢ can be endowed with a
real structure cqg = cg ® cdﬁ, compatible with cy, and a real Hermitian metric hgy = he ® hdﬁ.
If z € M, then cq induces a C-anti-linear involution of the fiber (£ ® £4),. We denote by
R(E ® L), the fixed points set of this involution, which is a dimension r real vector space.

Let I'(€ ® £?) denote the space of smooth sections of £ ® £4. We can define a Hermitian
inner product on I'(€ ® £%) by:

Vsi,80 € T(E @ L), (s1,82) = /X ha(s1(x), s2(x)) dVy. (2.1)



We say that a section s € T'(€ ® £%) is real if it is equivariant for the real structures, that
is: cgos=socy. Let RT'(£ ® L) denote the real vector space of real smooth sections of
€ ® L. The restriction of (-,-) to R['(£ ® £4) is a Euclidean inner product.

Notation 2.1. In this paper, (-,-) will always denote either the inner product on the con-
cerned Euclidean (or Hermitian) space or the duality pairing between a space and its topo-
logical dual. Which one will be clear from the context.

Let HO(X,E ® £%) denote the space of global holomorphic sections of £ ® £%. This space
has finite complex dimension Ny by Hodge’s theory (compare [15, thm. 1.4.1]). We denote
by RHO(X, £ ® L) the space of global real holomorphic sections of £ @ £%:

RHO(X,5®£d):{SEHO(X,5®£d)’cdos:soc;(}. (2.2)

The restriction of the inner product (2.1) to RH?(X, £ ® £4) makes it into a Euclidean space
of real dimension Ny.

Remark 2.2. Note that, even when we consider real sections restricted to M, the inner
product is defined by integrating on the whole complex manifold X

2.2 Random submanifolds

This section is concerned with the definition of the random submanifolds we consider and
the related random variables.

Let d € Nand s € RHY(X, £ ® L), we denote the real zero set of s by Zs = s71(0) N M.
If the restriction of s to M vanishes transversally, then Z, is a smooth submanifold of
codimension r of M. In this case, we denote by |dV;| the Riemannian measure on Z;
induced by g, seen as a Radon measure on M. Note that this includes the case where Z; is
empty.

Recall the following facts, that we already discussed in [14].

Definition 2.3 (see [20]). We say that RHO(X, € ® £4) is 0-ample if, for any z € M, the
evaluation map
evi: RHY(X,E®LY) — R(ELY)

s — s(x) (2:3)

is surjective.

Lemma 2.4 (see [14], cor. 3.10). There exists d; € N, depending only on X, € and L, such
that for all d > dy, RHO(X,E @ L) is 0-ample.

Lemma 2.5 (see [14], section 2.6). If RH?(X,E ® L) is 0-ample, then for almost every
section s € RHO(X,E @ L) (for the Lebesque measure), the restriction of s to M vanishes
transversally.

From now on, we only consider the case d > dj, so that |dV;]| is a well-defined measure
on M for almost every s € RH?(X,E ® L?). Let sy be a standard Gaussian vector in
RHO(X, € ® L), that is s4 is a random vector which distribution admits the density:

1 1, 9
- —— — 2.4
) \/%Ndexp( 2'5”) 24

with respect to the normalized Lebesgue measure on RH?(X, € ® £?). Here ||-|| is the norm
associated to the Euclidean inner product (2.1). Then Zs, is almost surely a submanifold
of codimension r of M and |dV;,| is almost surely a random positive Radon measure on M.
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To simplify notations, we set Zg = Zs, and |dVy| = |dVs,|. For more details concerning
Gaussian vectors, we refer to [14, appendix A] and the references therein.
Let ¢ € C°(M), for every s € RH®(X, € ® L?) vanishing transversally, we set

(1avi| ¢) = / o) |dVa (2.5)

rEL,

Such a ¢ will be refered to as a test-function. Following [25], we call linear statistic of degree
d associated to ¢ the real random variable (|dVy] , ¢).

2.3 The correlation kernel

Let d € N, then (sq(z))zexr is a smooth centered Gaussian field on X. As such, it is
characterized by its correlation kernel. In this section, we recall that the correlation kernel
of s4 equals the Bergman kernel of £ ® £2. This is now a well-known fact (see [3, 8, 23, 25])
and was already used by the author in [14].

Let us first recall some facts about random vectors (see for example [14, appendix A]). In
this paper, we only consider centered random vectors (that is their expectation vanishes), so
we give the following definitions in this restricted setting. Let X; and X5 be centered random
vectors taking values in Euclidean (or Hermitian) vector spaces V4 and V5 respectively, then
we define their covariance operator as:

COV(Xl, XQ) N E[Xl <’U s X2>] (26)

from V5 to V4. For every v € Vs, we set v* = (-,v) € V5. Then Cov(X1, X2) = E[X7 ® XJ]
is an element of Vi ® V5*. The wariance operator of a centered random vector X € V is
defined as Var(X) = Cov(X, X) =E[X ® X*] € V ® V*. We denote by X ~ N(A) the fact
that X is a centered Gaussian vector with variance operator A. Finally, we say that X € V
is a standard Gaussian vector if X ~ A(Id), where Id is the identity operator on V. A
standard Gaussian vector admits the density (2.4) with respect to the normalized Lebesgue
measure on V.

Recall that (£ ® £?) R (€@ L4)* stands for the bundle Py (£ ® L) ® Py ((5 ® L) *) over

X x X, where Py (resp. P») denotes the projection from X x X onto the first (resp. second)
factor. The covariance kernel of (s4(z))cx is the section of (€ ® L)X (€ ® £4)* defined by:

(z,y) = Cov(sa(x), sa(y)) = E[sa(x) @ sa(y)*]. (2.7)

The orthogonal projection from RI'(€ ® £4) onto RHY(X, & ® £4) admits a Schwartz
kernel (see [15, thm. B.2.7]). That is, there exists a unique section Ey of (£ ® L?)K (£ ® L4)*
such that, for any s € RT'(£ ® L£?), the projection of s onto RH?(X, £ ® L?) is given by:

x |—>/ XEd(x,y) (s(y)) dVy. (2.8)

This section is called the Bergman kernel of £®@ L. Note that Eq is also the Schwartz kernel
of the orthogonal projection from I'(€ ® £%) onto H°(X,& @ L?), for the Hermitian inner
product (2.1).

Proposition 2.6. Let d € N and let sq be a standard Gaussian vector in RH(X, & @ L?)
then for all x and y € X', we have:

Cov(sa(),sa(y)) = E[sa(z) ® sa(y)"] = Ea(z,y). (2.9)
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Proof. We will prove that (z,y) — E[sq(z) ® sq(y)*] is the kernel of the orthogonal projec-
tion onto RHO(X, € @ L?), i.e. satisfies (2.8). Let s € R['(€ ® £), then

ex

/ Elsula) @ su(u)"] (s() Ve = % [sd@) / sa(9)* (5()) AV | = Elsa(z) (5. sa)]

If s is orthogonal to RH?(X, € ® L) this quantity equals 0. If s € RHY(X,€ ® L?) then
E[sa(z) (s, 54)] = E[evi(sa)si(s)] = ev (E[sa @ s3] (5)) = evy(Var(sq) s) = evi(s) = s(x)

since Var(sy) = Id. Thus, for any s € RI'(€ ® L4), E[sq() (s,s4)] is the value at = of the
orthogonal projection of s on RH?(X, € ® L?). Finally, the correlation kernel of (sq4(z))zex
satisfies (2.8) and equals Ej. O

Remark 2.7. If (1.4, -.,5N,.4) is any orthonormal basis of RH®(X,€ @ £%), we have:

Nag

By (2,y) — Y sialx) ® sia(y)”. (2.10)

=1

Remark 2.8. If £ is the trivial bundle X x C" — X then Ej; splits as Ey = Id ® e4, where
Id is the identity of C" and ey is the Bergman kernel of £¢. There is no such splitting in
general.

Remark 2.9. In a complex setting, Ey is also the covariance kernel of the centered Gaussian
field associated with a standard complex Gaussian vector in HO(X,€ ® L£%).

The Bergman kernel also describes the distribution of the derivatives of s4. Let V¥ denote
any connection on £ ® L? — X. Then V% induces a connection (V%)* on (£ ® L1)* — X,

which is defined for all n € T ((€ @ £9)") by:
VseT (E@ L), Vz e X, dy (s,m) = (Vis,n(@)) + (s(z),(V)in), (2.11)

where (-, -) is the duality pairing. Let s € T' (€ ® £¢), then s° : x — s(z)* = (-, s(2)) defines
a smooth section of (5 ® Ed)*. Note that we use the notation s® because s* already denotes
(-,s) which is a linear form on I' (€ ® £%). We want to understand the relation between
(Vrs® : T, X — (5®£d): and (Vgs)*. Recall that (Vgs)* = (-, V%s), where the inner
product is the one on (5 ® Ed)m ®T,X* induced by hg and gc. That is, (Vgs)* is the adjoint
operator of Vs : T,X — (5 ® [,d)m. In order to get a nice relation, we have assume that
V< is a metric connection, i.e. that:

vs,teT (E@LY), Vr e X, dy (s,t) = (Vis,t(x)) + (s(z),Vit). (2.12)

Lemma 2.10. Let V¢ be a metric connection on € ® L2, let s €T (5 ® Ed) and let x € X.
Then for allv e T, X,

(Vd)zso.u = (V’is-v)* =v*o (V‘is)*_ (2.13)
Proof. First, for all s,t € T’ (5 ® Ed) and all x € X,

(t(x),s(x)) = (t(z), s(x)") = (t(x),5°(x)) . (2.14)

Then, by taking the derivative of (2.14), we get that for all s,¢t € T (5 ® Ed), forallz € X
and v € T, X:

<t(z) , Vgs . v> + <Vgt ‘v, s(z)> =d, ((t,s)) v= <t(:c) , (Vd);;s<> . v> + <Vgt ‘v, so(z)> )
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The first equality comes from the fact that V¢ is metric (see (2.12)) and the second from the
definition of the dual connection (2.11). Besides (Vit-v,s%(z)) = (V&t- v, s(z)), hence for
all s €' (€ ® L£%) and all z € X we have:

Yo e T, X, (VHzs® v = (Vis- v)* .

Recall that (Vgs)* is the adjoint of V¢s. Hence for all v € T, X and all ¢ € (£ ® Kd)z,

<C,Vgs . v> = <(Vgs)* C,v> =v*o (Vgs)* ©),
which proves the second equality in (2.13). O
Remark 2.11. Conversely, one can show that a connection satisfying th first equality in (2.13)

for every s,z and v is metric.

From now on, we assume that V¢ is metric. Then V¢ induces a natural connection V¢
on Py (€ ® L) — X x X whose partial derivatives are: V¥ with respect to the first variable,
and the trivial connection with respect to the second. Similarly, (V¥)* induces a connection
V4 on P; ((E®£4)*) and V{ ® Id+1d®V4 is a connection on (€ ® £4) K (€ ® L£L4)*. We
denote by 0, (resp. 0y) its partial derivative with respect to the first (resp. second) variable.
By taking partial derivatives in (2.9), we get the following.

Corollary 2.12. Letd € N, let V¥ be a metric connection on EQR LY and let s4 be a standard
Gaussian vector in RHY(X, € ® L) then for all x and y € X, for all (v,w) € T,X x T,X,

Cov(Vis-v,5(y)) =E[(Vis-v) ®s(y)*] = 0:Ealz,y) - v, (2.15)
Cov( Vds w) [ (Vds w) } = 0yEq(z,y) - w, (2.16)
Cov (Vs v, Vds w) = [(V 5-0)® (VZS : w)*} = 0,0y Eq(z,y) - (v,w). (2.17)

Proof. The first equality of each line is simply the definition of the covariance operator. By
applying 9, to (2.9) we get:

E[(Vis) ©s(y)*] = d:Ba(,y),

which proves (2.15). We can rewrite (2.9) as: Va,y € X, Eq(z,y) = E[s(z) ® s°(y)]. By
applying 0, to this equality, we get:

E [s(z) ® (Vd)z SQ:| = 0yEq(z,y).

Then we apply this operator to w € T, X, and we obtain (2.16) by Lemma 2.10. The proof
of (2.17) is similar. O

We would like to write that 8, E4(x,y) is Cov(s(z), Vis) = E {S(Z‘) ® (V;ls)*} Unfortu-

Yy
nately, this can not be true since

OyEa(x,y) € T,X" @ (‘9 ® ‘Cd)x ® (‘9 ® Ed);
while

E {s(z) ® (VZS)*} eT,Xe(EaL)), oEeL!)
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Let 02 Eq(z,y) e T,X ® (E® L) @ (E® Ed); be defined by:
Yw € Ty X, 8£Ed(:c,y) cw* = 0yEq(z,y) - w. (2.18)
Similarly, let 9,0} Ea(z,y) € T,X* @ T,X ® (E® L?) ® (€ ® L) be defined by:
V(v,w) € TpX x T, X, aza;jEd(;c, y) - (v,w") = 0,0y Eq(x,y) - (v, w). (2.19)

Then by Lemma 2.10 and Corollary 2.12, we have the following.

Corollary 2.13. Let d € N, let V¥ be a metric connection on EQ LY and let sq be a standard
Gaussian vector in RHY(X,E @ L%) then for all z and y € X, we have:

COV(Vgs, s(y)) =E [Vﬁs ® s(y)*] = 0. Eq(z,y), (2.20)
Cov (s(), V‘;s) =E {s(:c) ® (VZS)*} = agEd(z, Y), (2.21)
Cov(Vls, Vis) = B [vgs ® (vjs)*] — 0,0 Bu(w, ). (2.22)

3 Estimates for the Bergman kernel

The goal of this section is to recall the estimates we need for the Bergman kernel. Most of
what follows can be found in [15], with small additions from [16] and [17]. The first to use
this kind of estimates in a random geometry context were Shiffman and Zelditch [23]. They
used the estimates from [33] for the related Szegd kernel. See also [3, 24].

In order to state the near-diagonal estimates for the Bergman kernel, we first need to
choose preferred charts on X', £ and £ around any point in M. This is done in Section 3.1.
Unlike our main reference [15], we are only concerned with a neighborhood of the real
locus of X, but we need to check that these charts are well-behaved with respect to the
real structures. Sections 3.2, 3.3 and 3.4 state respectively near-diagonal, diagonal and far
off-diagonal estimates for Ejy.

3.1 Real normal trivialization

In this section, we define preferred local trivializations for £ and £ around any point in M.
We also prove that these trivializations are compatible with the real and metric structures.

Let R > 0 be such that the injectivity radius of X is larger than 2R. Let xo € M,
then the exponential map exp, : T,,X — X at g is a diffeomorphism from the ball
Br, x(0,2R) C Ty, X to the geodesic ball By (zo,2R) C X. Note that this diffeomorphism
is not biholomorphic in general.

Notation 3.1. Here and in the sequel, we always denote by B4 (a, R) the open ball of center
a and radius R > 0 in the metric space A.

Since cx is an isometry (see Sect. 2.1), we have that cx o exp,, = exp,, 0 dz,cx. Then
exp,, sends T,y M = ker (dy,cx —Id) to M and agrees on Ty, M with the exponential map
at zo in (M, g). By restriction, we get a diffeomorphism from Br, (0,2R) C Ty, M to the
geodesic ball By (wo,2R) C M. Moreover, on Br, x(0,2R) we have:

dyocx = (exp,, )" ocx oexp,, . (3.1)

We say that exp, ~defines a real normal chart about xo.
Since @ - Tyo M = ker (dg,cx + Id), we have Ty X = Tpo M @i - Ty, M. Note that T, M
and ¢ - Ty, M are orthogonal for g,,, since these are distinct eigenspaces of an isometric
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involution. Moreover, we know from Sect. 2.1 that ¢} gc = gc. This implies that (gc)a,
takes real values on T, M x T, M, ie. the restrictions to T M of (gc)s, and g, are
equal. Thus, (gc)z, is the sesquilinear extension of g,, restricted to T,,M. Let Z be an
isometry from 7, M to R™ with its standard Euclidean structure, 7 extends as a C-linear
isometry Zc : Ty, X — C™, such that Z¢ o dy cx © I(El is the complex conjugation in C™.
Thus, exp, oZy ' Ben(0,2R) — Bx(z0,2R) defines normal coordinates that induce normal
coordinates Bg» (0,2R) — By (2o, 2R) and such that Z¢ o (exp,,) "' ocx oexp,, oZg " is the
complex conjugation in C™. Such coordinates are called real normal coordinates about xg.

We can now trivialize £ over By (xo,2R). Let V¢ denote the Chern connection of £. We
identify the fiber at exp, (z) € Bx(wo,2R) with &,, by parallel transport with respect to
V¢ along the geodesic from z to exp,, (z), defined by ¢ — exp, (tz) from [0, 1] to X (cf. [15,
sect. 1.6] and [16]). This defines a bundle map ¢z, : Br, x(0,2R) X €4y — £/By (20,2R) that
covers exp, . We say that ., is the real normal trivialization of £ over Bx(xo,2R).

Since xg € M, cg(E,) = &z, and we denote by cg 4, the restriction of cg to £;,. Then
(dzoCx, e z) 18 a veal structure on Br, x(0,2R) x &, compatible with the real structure on
Br, x(0,2R). We want to check that ¢, is well-behaved with respect to the real structures,
i.e. that for all z € Br, x(0,2R) and ¢° € &,

05(90960 (Zﬂ CO)) = Pxq (dzocX © 2, CE xg (CO)) . (32)
This will be a consequence of Lemma 3.4 below.

Definition 3.2. Let £ — X be a holomorphic vector bundle equipped with compatible real
structures c¢ and cy and let V be a connection on £, we say that V is a real connection if
for every section s € T'(£) we have:

Ve e X, Vi(ceosocy) =ceoVeyms0dcy.

Remark 3.3. Let x € M, v € T,M and s € RT'(§). If V is a real connection on &, then
Vs -v € RE,. Indeed,

Vs v =V @)sodecx -v=ce(Vy(cgosocy) v) =ce(Vys-v).

Lemma 3.4. Let £ — X be a holomorphic vector bundle equipped with compatible real
structures ce and cx and a real Hermitian metric hg. Then, the Chern connection V& of £
18 real.

Proof. Since cg and cy are involutions and (d,cx )™t = d, ycx, we need to check that

x(z

Vs eT(E),Ve e X Vis=ceoVE ) (csosocy)odycy. (3.3)

cx(x)

Let V be defined by Vs = CgOVfX(I) (ccosocy)odyey, for all s € I'(E) and € X. Then

V is a connection on & and it is enough to check that it is compatible with both the metric
and the complex structure. Indeed, in this case V = V¢ by unicity of the Chern connection,
which proves (3.3).

Let us check that V satisfies Leibniz’ rule. Let s € ['(£) and f : X — C. We have:

Va(fs) =ceo fo(z) ((focx)(ceosocy)) odyex
=cgo (mex(z) (ceosocy) +de,@)(focx)® Cg(S(:L'))) odzcxy
= f(x)%ms +d.f ® s(x).
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. . =& .
Since V¢ is the Chern connection, its anti- holomorphlc partisd . T hen, dycx and cg being

anti-linear (resp. fiberwise), the anti-linear part of Vs equals cg o@CX (z) (ce 050 cx)odycx.
By computing in a local holomorphic frame, one can check that:

Vs e T'(€),Vx € X, Cgoacx(z) (CgOSOCX)OdICXZEiS.

Thus, V is compatible with the complex structure. Finally, we check the compatibility with
the metric structure. Let s,t € I'(€) and = € X, since hg = c%(hg) we have:

d.(he(s,t)) = dy (E(Cg 08,cg0 t)) = dey (2) (E(Cg osocy,ccoto cX)) odycy
= he (vcm)(% 0s0cx), Cg(t(z))) odyex
+he (c (s(x)), Vg (CgOﬁOCX)) odgcy
= he ( ce 0 VE, (o (ce osocx),t(x)) odyex
+hg( (), CgoVCX(I)(CgosocX)) o dgc
= he (6335,1?(90)) + he (s(m),%mt) . O

Let us now prove (3.2). Let z € Br, x(0,2R), let ¢° € &, and let ¢ : Bx(x0,2R) = €
be the section defined by ¢ : & — ¢q, ((exp,,) " (x),¢?). We denote by v : [0,1] — X the
geodesic t — exp, (tz). We have for all t € [0,1], ((y(t)) = @, (tz,¢°) and, by the definition
of ¢4,, we have:

vie[0,1], Vi) =0. (3.4)

Let us denote E: ceoCocy and ¥ = cy 0. Since V¢ is real, (3.4) implies that for all
t € 0,1],

VEWCT (1) = VE, (€ 0 dyy(ca) - 7/ (8) = ce 0 Vi ¢ -7/ (£) = 0. (3.5)

Since cx is an isometry, 7 is a geodesic. More precisely, 7 : ¢ — exp,, (tdg,cx - 2). Besides,
((@0) = ce(¢(w0)) = ce.0(¢°). Then by (3.5), for all ¢ € [0, 1],

Pxo (tdzocX "2 CE xg (CO)) = Pz (tdzocX iz E(:L'())) = C(i(t))
Finally, we get (3.2) for t = 1:

Pzxo (dIOCX ’ Z’05,10(<0)) = 5(7(1)) = 05(4(7(1))) = Ce ((pIO(Z,CO)) :

Recall that RE is the set of fixed points of cg. Then RE is naturally a rank r real vector
bundle over M, as a subbundle of £y. Let (° € RE,,, and ¢ : x +— ¢g, ((exp,,) ' (2),¢°)
then, for all € Bx(xo,2R),

cg 0 Cocx(x) = ce 0 pu, ((expy,) " (ca (@), ¢")
= cg 0 Pay (dpycx o (expy,)” Hx), ¢ )
= @ ((expg,) 7" (), ce 00 (7))
= (().

Hence, ( is a real local section of £ and in particular, Vo € M, ((z) € RE,. This shows that
¢z, induces, by restriction, a bundle map Br, a(0,2R) x RE,, — RE/p,,(x,,2r) that covers
the restriction of exp,, to Br, wm(0,2R).
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Let (¢¥,...,¢%) be an orthonormal basis of RE,,. Since RE,, = ker (cg 4, —Id) and
ez, is C-anti-linear, we have &£,, = RE;, ® ¢ - RE,,. Moreover, since hg ,, and cg 4, are
compatible, (¢9,...,¢?) is also an orthonormal basis of €,,. Let i € {1,...,7}, we denote by
i : Bx(xo,2R) — £ the real local section defined by:

Gt g, ((eXPxo)_l(x)v Cz'o) :

Then, for every z € Bx(0,2R), (¢1(z),...,¢-(x)) is an orthonormal basis of £,. Indeed, the
sections (; are obtained by parallel transport for V€ along geodesics starting at xo, and V¢
is compatible with he. Hence, for all ¢ and j € {1,...,r}, for all 2 € By (zo,2R),

d
= (he(Gi(expy, (t2)), ¢j(expy, (t2)))) = he (vfxpzo(tZ)Ci o dy, exp,, -z, Cj(expm(tz))))
+ he (Ci(expxo(tz))), Ve (120G © dis exp,, z) =0.

The function « — he(((x), (j(z)) is then constant along geodesics starting at xo, hence on
Bx(2o,2R). Since (he(Gi(2),(j(2))) ¢, j<, is the identity matrix of size r at o, (C1,...,¢)
is a smooth unitary frame for £ over By (0, 2R). In particular, this shows that the real normal
trivialization ., is unitary. Since the (; are real, (¢1(z),...,{-(x)) is an orthonormal basis
of RE, for all x € M. Hence ((1,...,() is also a smooth orthogonal frame for RE over
By (0,2R). We say that ((3,...,¢.) is a local real unitary frame.

Similarly, let ¢ ~denote the real normal trivialization of £ over Bx(xo,2R). Then any
unit vector ¢§ € RL,, defines a local real unitary frame ¢, for £:

o @ = ¢ ((exp,,) 7' (2),40) -

Then, for any d € N, ¢, and ¢} induce a trivialization ¢, ® (¢}, )? of £ ® £4. This
trivialization is the real normal trivialization of £ ® L over By (xo,2R), i.e. it is obtained
by parallel transport along geodesics starting at xo for the Chern connection of & ® L.
Moreover, a local real unitary frame for £ ® £¢ is given by ((1 ® (&, ..., (- ® ¢4).

3.2 Near-diagonal estimates

We can now state the near-diagonal estimates of Ma and Marinescu for the Bergman kernel.
In the sequel, we fix some R > 0 such that 2R is smaller than the injectivity radius of X.
Let x € M, we have a natural real normal chart

exp, X exp, : Br,x(0,2R) x Br,x(0,2R) — Bx(z,2R) X Bx(x,2R).

Moreover, the real normal trivialization of £ ® £? over Bx(z,2R) (see Section 3.1) induces
a trivialization

*

Br,x(0,2R) x Br,x(0,2R) x End ((5 ® Ed)z) = (5 ® ﬁd) & (5 ® ‘Cd)/BX(z,QR)xBX(z,QR)

that covers exp, x exp,. This trivialization coincides with the real normal trivialization of
(E® L) R (£® L) over Bx(z,2R) x Bx(,2R).

Recall that dVx denotes the Riemannian measure on X. When we read this measure in
the real normal chart exp,, it admits a density x : By, x(0,2R) — Ry with respect to the
normalized Lebesgue measure of (I,X, g,). More precisely, we have k(z) = /det(g;;(2))
where (g;j(2)) is the matrix of ((exp,)*g),, read in any real orthonormal basis of (T, &X', g..).
Since we use normal coordinates and X' is compact, we have

K(z) =1+ O(||z||2) (3.6)
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where ||-|| is induced by g, and the estimate O(||z||2) does not depend on z.

Similarly, on the real locus (M, g), |dVas| admits a density, in the real normal chart exp,,
with respect to the normalized Lebesgue measure on (T, M, g,). This density is:

1

2 det (((ex059).) o ar) (37)

from Br,0(0,2R) to Ry. As we already explained in Sect. 3.1, on the real locus, g¢ is the
sesquilinear extension of the restriction of g to TM. Hence, for all z € By, 3(0,2R) we have:

det (((ex02.9).) 7, 01) = et ((ex29).)

which means that the density of |dV);| in the chart exp, is v/ : Br,m(0,2R) — R..
The following result gives the asymptotic of the Bergman kernel F; (see Sect. 2.3) and
its derivatives, read in the real normal trivialization about = of (5 ® Ed) X (5 ® Ed)*.

Theorem 3.5 (Ma—Marinescu). There exists C' > 0 such that, for any p € N, there exists
Cp such that Vk € {0,...,p}, Vd € N, Vz,w € Br,»(0,R),

Id
o (EQLY),

DE o | Eazow) - (g)” exp (—5 (lIZH + |lw||” — 2<Z,w>))

r(2)V/ K (w)

2n+6-+

< CpdntEt (1 +V(||z]) + ||w||)) ¥ exp (fc'\/a Iz — w||) +0(d),

where:

e Dk

(z,w

X the k-th differential at (z,w) for a map Tp,X x T, X — End ((5 ® Ed)x),
o the Hermitian inner product (-,-) comes from the Hermitian metric (gc),,

o the norm ||| on T, X is induced by g. (or equivalently {-,-)),

o the norm ||-|| on (T,X*)®? ® End (@ L)) is induced by go and (ha)e.

Moreover, the constants C, and C' do not depend on x. The notation O(d~°°) means that,
for any l € N, this term is O(d_l) with a constant that does not depend on x, z, w or d.

Proof. This is a weak version of [15, thm. 4.2.1], with k¥ = 1 and m/ = 0 in the notations
of [15]. We used the fact that Fy in [15] is given by:

1 1
Falew) = = exp (= (141 + Jul - 2(.0)) ) Mieseon.

(compare (4.1.84), (4.1.85) et (4.1.92) pp. 191-192 and (5.1.18) p. 46 in [15]) and F; = 0.
See [15, Rem. 1.4.26] and [16]. O

Remark 3.6. Note that our formula differs from the one in [15, 16] by a factor 7 in the
exponential. This comes from different normalizations of the Kéhler form w.

We are only interested in the behavior of E; at points of the real locus, hence we restrict
our focus to points in M and derivatives in real directions. Similarly, for x,y € M, Eq(x,y)
restricts to an element of R(£ ® Ed)x OR(E® Ed);, still denoted by E4(x,y). Note that we
can recover the original Eg(z,y) : (5 ® Ed)y — (5 ® Ed)m from its restriction by C-linear
extension.

First, we need to know the behavior of F; and its derivatives up to order 1 in each
variable in a neighborhood of the diagonal in M x M.
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Corollary 3.7. There exist C and C' > 0, not depending on x, such that Vk € {0,1,2},
Vd € N, Vz,w € By, (0, R),

d)nexp (=412 - wl?)

K Z,w)— | — d
D(z,w) Ed( ’ ) ( mm Id]R($®C )

Y
2n+8
<Ca B (T4 V() + wl)) T exp (~C'VA |z - w]) + 0(d™),

where D¥ is the k-th differential for a map from TyM x TyM to End (R (5 ® [,d)m), the
norm on T, M is induced by g, and the norm on (TmM*)®q ® End ((5 ® Ed)z) s induced by
gz and (hq)s.

Proof. We apply Theorem. 3.5 for p = k € {0,1,2} and set C = max(Cy, C1,C3). Then we
restrict everything to the real locus. o

3.3 Diagonal estimates

In this section, we deduce diagonal estimates for Ey and its derivatives from Thm. 3.5. Let
x € M, then the usual differential for maps from T, X to (€ ® L£%), defines a local trivial
connection V% on (£®.L%) /Bx(0,2R), Via the real normal trivialization. Since this trivialization

is well-behaved with respect to both the metric and the real structure (cf. Sect. 3.1), v is
metric and real. By a partition of unity argument, there exists a real metric connection v
on £ ® L% such that V¢ agrees with V¢ on Bx(0, R). In the remainder of this section, we
use this connection V¢, and the induced connection on (£ ® L) X (£ ® £4)*, so that the
connection is trivial in the real normal trivialization about z.

Recall that 85Ed and (%cagEd are defined by (2.18) and (2.19) respectively.

Corollary 3.8. Letx € M, let V¥ be a real metric connection that is trivial over Br, x (0, R)
in the real normal trivialization about x. Let 85 and 0, denote the associated partial deriva-

tives for sections of (£ @ LY) X (€ @ L)*, then we have the following estimates as d — +00.

dn
Ey(z,7) = — Iz (eg o, +0(d" ), (3.8)
0. Eq(z,x) = O(d”fé) , (3.9)
0% B, z) = o(dn-%) , (3.10)
dn+1
008 Eq(x, x) = — ldp(egce), @Tdr, - +0(d"). (3.11)

Moreover the error terms do not depend on x.

Proof. Let x € M and let us choose an orthonormal basis of T, M. We denote the corre-
sponding coordinates on T, M x T, M by (z1,...,2p,w1,...,w,) and by 0., and 0y, the
associated partial derivatives. Let us compute the partial derivatives of Fy; read in the real
normal trivialization of (5 ® Ed) X (5 ® Ed)* about (x,z). By Cor. 3.7, we only need to
compute the partial derivatives at (0,0) of

o () (319

& (z,w0) —
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for any d € N. For all ¢ and j € {1,...,n} and all (z,w) € Br, (0, R) we have:

st = (e S T
DuyEalz, ) = (d(zj —wy) - é%{;ﬁ”) exp%;;(—gQ) (3.14)
and
0. 00, oo 0) = — (,:(illz;<:)ll2) g
(d(sij P — w) (2 — wy) — 2 = ) a:g()z) 4 e = wi) a“:&%”) . (3.15)

where d;; equals 1 if ¢ = j and 0 otherwise. Recall that, by (3.6), x(0) = 1 and the partial
derivatives of x vanish at the origin. Then evaluating the above expressions at (0,0) gives:

§d(0, 0) = 1, 6zi§d(0, 0) =0= awjfd(o, 0) and 8zi6wj£d(0, 0) = (Sijd.
By Cor. 3.7, we have the following estimates for the partial derivatives of E4 read in the real

normal trivialization about z: for all ¢,5 € {1,...,n},

3

d
Ea(0.0) = = Id(ece), +O(d" 1), 0, Ba(0,0) = 0(a" %),
m+1 (316)

8z-gawj Ed(Ov 0) = 51’]’

——Idssacs, +O(d"). 9. Ea(0,0) = 0(a"%).
Moreover these estimates are uniform in € M. Equations (3.8), (3.9), (3.10) and (3.11)
are coordinate-free versions of these statements. (]

3.4 Far off-diagonal estimates

Finally, we will use the fact that the Bergman kernel and its derivatives decrease fast enough
outside of the diagonal. In this section we recall the far off-diagonal estimates of [17, thm. 5],
see also [15, prop. 4.1.5].

Let d € N and let S be a smooth section of R (5 ® Ed) KR (5 ® Ed)*. Let z,y € M, we
denote by [|S(z,y)| o« the maximum of the norms of S and its derivatives of order at most k
at the point (x,y). The derivatives of S are computed with respect to the connection induced
by the Chern connection of £ ® £¢ and the Levi-Civita connection on M. The norms of the
derivatives are the one induced by hy and g.

Theorem 3.9 (Ma—Marinescu). There exist C' > 0 and dy € N such that, for all k € N,
there exists Cy > 0 such that ¥d > dy, Yo,y € M

| Ea(, p)llex < Crd™ b exp (~C'Vd py(w,y) ) .

where py(-,-) denotes the geodesic distance in (M, g).

Proof. This is the first part of [17, thm. 5], where we only considered the restriction of Ey4
and its derivatives to M. Note that the Levi—Civita connection on M is the restriction of
the Levi-Civita connection on X. Hence the norm ||-||,x, such as we defined it, is smaller
than the one used in [17]. O
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4 Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Recall that X is a compact K&hler manifold of
dimension n > 2 defined over the reals and that M denotes its real locus, assumed to be
non-empty. Let &€ — X be a rank r € {1,...,n — 1} real Hermitian vector bundle and
L — X be real a Hermitian line bundle whose curvature form is w, the Kéhler form of X.
We assume that £ and £ are endowed with compatible real structures. For all d € N, Ey
denotes the Bergman kernel of £ ® £%. Finally, sq denotes a standard Gaussian vector in
RHO(X,E® L), which real zero set is denoted by Z4, and |dVj| is the measure of integration
over Zg.

4.1 The Kac—Rice formula

The first step in our proof of Thm. 1.6 is to prove a version of the Kac—Rice formula adapted
to our problem. This is the goal of this section. First, we recall the Kac—Rice formula we
used in [14] to compute the expectation of Vol (Z4) (Thm. 4.1). Then we prove a Kac—Rice
formula adapted to the computation of the covariance (Thm. 4.4), compare [2, thm. 6.3] and
[30, chap. 11.5].

Let L : V — V' be a linear map between two Euclidean spaces, recall that we denote by
|det* (L)| its Jacobian (cf. Def. 1.3). Since LL* is a semi-positive symmetric endomorphism
of V', det(LL*) > 0 and |det* (L)| is well-defined. The range of L* is ker(L)*, hence
ker(LL*) = ker(L*) = L(V)*. Thus |det™ (L)| > 0 if and only if LL* is injective, that is if
and only if L is surjective. In fact, if L is surjective, let A be the matrix of the restriction of
L to ker(L)* in any orthonormal basis of ker(L)* and V', then we have:

|det™ (L)| = /det (AA?) = |det(A)].

Theorem 4.1 (Kac-Rice formula). Let d > dy, where dy is defined by Lem. 2.4 and let V¢
be any real connection on €@ L. Let sq be a standard Gaussian vector in RH(X, € @ L),
Then for any Borel measurable function ¢ : M — R we have:

E[/Z% ¢($)|dVd|:| =(27r)—%/z ﬂﬂx@“dew (Vgsd)“sd(ac):O} Vi (4.1)

cM |detJ‘ (evg
whenever one of these integrals is well-defined.

The expectation on the right-hand side of (4.1) is to be understood as the conditional
expectation of |det™ (Visy)| given that sq(x) = 0. This result is a consequence of [14,
thm. 5.3]. See also Section 5.3 of [14], where we applied this result with ¢ = 1, in order to
compute the expected volume of Z;.

Let us denote by A = {(z,y) € M? | x = y} the diagonal in M?. Let d € N and let

(z,y) € M?\ A we denote by evd , the evaluation map:

evi,: RHU(X,E®LY) — R(EL) dR(E®LY),

| ; — (s(2). 5(3)) “2)

The following proposition is the equivalent of Lemma 2.4 for two points (z,y) ¢ A. One
could prove this result using only the estimates of Section 3. We give instead a less technical
proof, using the Kodaira embedding theorem. See [15, sect. 5.1] for a discussion of the
relations between these approaches.

Proposition 4.2. There ezists do € N, depending only on X, £ and L, such that for every

d > dy and every (z,y) € M2\ A, the evaluation map evgyy s surjective.
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Proof. Recall that there exists d; € N such that, for all d > d;, the map ev‘i defined by (2.3) is
surjective for any € M (see Lem. 2.4). Then, for all d > d; and all € M, the complexified
map & : HO(X,E@ L) — (E® £4)  defined by &vl(s) = s(x) is also surjective.

For any | € N, we denote by ¥; : X — P (HO(X, L',l)*) the Kodaira map, defined
by U;(z) = {s€ H'(X,L')|s(x) =0}. By the Kodaira embedding theorem (see [10,
chap. 1.4]), there exists lyp € N such that ¥, is well-defined and is an embedding.

We set do = lg +di. Let d > dy and let (z,y) € M?\ A. Since ¥;,(z) and ¥, (y) are
distincts hyperplanes in H?(X, £0), there exist 0, and o, € H(X, L) such that:

{ o.(x) #0, and { oy(x) =0,

ox(y) =0 ay(y) # 0.
Since d — lg > dq, e~vi is onto and there exist o1 4,...,0., € HO(X,£ ® £L47!0) such that
(01,2(2),...,0p2(x)) is a basis of (£ ® £L47!) . Similarly there exist 01,4, ...,0, such that

(01,y(y), ..., 0ry(y)) is a basis of (€® Ed_l")y. We define global holomorphic sections of
ER LYY sk y = Opx ® 0y and s, = 0k @ 0y for all k € {1,...,7}. These sections are
such that (sg»(z))1<k<r 1S a basis of (5 ® Ed)z, (Sk,y(¥))1<k<r 1s a basis of (5 ® Ed)y and
for all k € {1,...,7r}, sk (y) =0 = sg4(x). This proves that the map

evp,: HU(X.EwLY) — (EwLd) o(EoLld), .
s — (s(2), 5())

has rank at least 2r (as a C-linear map). Since e~viy is the complexified map of evgyy, the
latter must have rank at least 2r (as a R-linear map), hence it is onto.

Remark 4.3. In Prop. 4.2, evg,y is surjective if and only if ’detL (evﬁ,y)’ > 0, that is if and
only if ev? (evgﬁy)* is non-singular. Since the latter is the variance operator of evd  (sq),
where s4 ~ N(Id) in RHO(X, € @ L), we see that the surjectivity of ev?  is equivalent to
the non-degeneracy of the distribution of (sq(x), sq(y)).

We can now deduce a Kac-Rice type formula from Prop. 4.2. For any d € N, we define
F; to be the following bundle map over M?2:

Fy: RHOX,E@LY)x M? — R(E@LY) xR(E®LY).
(s,2,9) — (s(z),s(y))
Let V¢ be any real connection on & ® £L? — X (see Def. 3.2). Then by Rem. 3.3, the

restriction of V¢ defines a connection on R(£ ® L) — M. Let V?F,; denote the vertical
component of the diffential of F;. Then, for all (so,x,y) € RH(X,£ ® L) x M?, we have:

Fq: RHOX,E@ L) xTuMxT,M —  R(E®LY) @R(ERLY) .
(S,’U,’LU) — (S(‘r)—’—ngO 'Uas(y)+vl;30 ’LU)

d
(s0,%,y)

We denote by 9 F; the partial derivative of F; with respect to the first variable (meaning s),
and by 04 F; its partial derivative with respect to the second variable (meaning (,y)). Then
for all (sg,x,y) € RHO(X,E @ L%) x M? we have:

I Fy(so,z,y) = evg,y and  99Fy(s0,2,y) : (v,w) = (Viso - v, sto cw) . (4.3)
From now on, we assume that d > ds, where ds is given by Prop. 4.2. We define an incidence
manifold ¥4 by:

Sa = (Fa) 7' (0) N (RE(X,E @ L£Y) x (M?\ A)).
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By Prop. 4.2 and Eq. 4.3, for all (s,z,y) € RHO(X,& ® L) x (M?\ A), 8{Fyp(s,z,y) is
surjective. Thus, the restriction of F; to RHO(X,E ® L) x (M?\ A) is a submersion and
¥4 is a submanifold of RHO(X,€ ® £4) x M? of codimension 2r. Note that we are only
concerned with the zero set of Fy, hence none of this depends on the choice of V4. We can
now state the Kac—Rice formula in this context.

Theorem 4.4 (Kac—Rice formula). Let d > da, where da is given by Prop. 4.2, and let vé
be any real connection on €@ LY. Let sq be a standard Gaussian vector in RHO(X,E @ L4).
Then for any Borel measurable function ® : ¥4 — R we have:

1

E/ D(sq, ,y) |dVa|? / T ¥
l ()€ Za)?\A 2m)" J@yem\a |dett (evd )|

E {(I)(sd,x,y) |detL (Vgsd)| |det ™ (V‘;sd)‘ ‘sd(x) =0= sd(y)} |dVar|?  (4.4)

1

whenever one of these integrals is well-defined. Here, |dVM|2 stands for the product measure
on M2 induced by |AVa|. Similarly, |dVy|* is the product measure on (Z4)2.

The expectation on the right-hand side of (4.4) is to be understood as the conditional
expectation of ®(sq, z,y) |det (Visq)||det™ (Vst)| given that sq(z) = 0 = s4(y).

Proof. The proof of Thm. 4.4 uses the double fibration trick, that is apply Federer’s coarea
formula twice. See for example [14, App. C] and the reference therein.

The Euclidean inner product on RH®(X, £® L?) defined by Eq. (2.1) and the Riemannian
metric g induce a Riemannian metric on RH(X,€ ® £4) x M?, and on ¥4 by restriction.
Let m : ¥g — RHY(X, £ ® L) and 7 : ¥g — M? \ A denote the projections from ¥4 to
the first and second factor, respectively. For all s € RHY(X, € ® £%), 77 '(s) is isometric to
Z, and we identify these spaces. Similarly, for all (z,y) € M?\ A we identify ;! (x,y) with
the isometric space ker(ev] ).

We denote by ds the Lebesgue measure on RH(X,E @ L) or any of its subspaces,
normalized so that a unit cube has volume 1. Let ® : ¥; — R be a Borel measurable

function. Then
—31lsl1?
e 2
:/ / @(s,z,y)i%|dvd|2 ds,
SERHO(X,£0L4) \J(z,y)ery () (2m)=

E / ® |dV,|
(Za)2\A

where N is the dimension of RH%(X,& ® £%). Then, by the double fibration trick [14,
Prop. C.3] this quantity equals:

—2llsI* |det* (04 F,

e 2 € d\$, T, Y

/ / O(s,7,y) — | - ( - ( ) ds | [AVas)®.  (4.5)
(z,y)EM2\A seker(evg,y) (27T)T |de‘E (81Fd(s,z,y))‘

Then Eq. (4.3) shows that 05F,(s,z,y) = Vis @& Vis. Moreover, by definition of the

metrics, T, M is orthogonal to T, M and R(£ ® £%),. is orthogonal to R(€ ® £%),. Thus

[dett (98 Fu(s, @, y))| = det (95 Fuls, 2,y) (9§ Fals,z,1))")”

() F )

Vis(Vis)* 0 )
—der (VI *
0 VZS(VZS)

= |de‘uL (Vgs)‘ |de‘uL (VZS)‘ .

=

23



Besides, Eq.(4.3) also shows that |det (0{Fu(s,z,y))| = |det* (evd )|, which does not
depend on s, so that (4.5) equals:

1 e 3lsll?

—_— @ |dett (Vis)| |det* (V4 ds | [dVas]?.
/(z,y)e]MZ\A ‘detL (evg,y)‘ (/seker(evgwy) ’ © ( S)H ° ( ys)’ (27r)Nf s>| u

Finally, by Prop. 4.2, ker(ev?) is a subspace of codimension 2r of RH?(X, £® L%). Hence, the
inner integral in (4.5) can be expressed as a conditional expectation given that evgyy(sd) =0,
up to a factor (2m)". This concludes the proof of Thm. 4.4. O

4.2 An integral formula for the variance

In this section, we fix some d > max(dy, d1, d2) where dy, d; and dp are defined by Thm. 3.9,
Lem. 2.4 and Prop. 4.2 respectively. We denote by V? a real connection on £ ® £%. Let
é1, ¢ € CO(M), we want to compute:

Var(|dVal) (¢1, ¢2) = Cov({|dVal , ¢1), (|dVal , d2))

—E[(aVal ,61) {|dVal , é2)] — E[(dVal , o) EQIVal )], O
First, by Thm. 4.1, we have:
E[(aVal , é1)] ELdVal , 62)] = ﬁ
E Udetl (Visq)] ‘sd(x) = 0} EﬂdetL (Vst)’ ’sd(y) = 0} )
. o1(z)d2(y) et (ovd)] ot (evd)] AV 2. (4.7)

On the other hand,

B{laval o) (aval . oa)) [ o) avi) ( [, o )|

_E / 61(2) 2 (y) [V 2
(z,y)€(Z4)?\A

Indeed, Z, is almost surely of dimension n —r > 0, so that (Z;4)> N A (that is the diagonal
in (Z4)%) has measure 0 for |[dVy|>. We compute this integral by Thm. 4.4:

/ 61(2)d2(y) [V 2
(z,y)e(Za)?\A

E [[det* (Vésa)| |det* (Visa)|

E

1 P1(z)p2(y) «
Jemenno Fit (o]

2" Jagema [dett (evd )]

sa(z) =0 = sd(y)} dAVas[?.  (4.8)

Let Dy be the function defined by: V(z,y) € M?\ A,

E[|det* (Vidsa)||det* (Vis0)| |evd,(s) = 0]

‘detl (eV%y) ‘

Dd(xvy) =

E Udetl (Visq)| ‘sd(x) = 0} E Udetl‘ (Visq)| ‘sd(y) = 0}
a |det- (evd)| [det (evd)|

(4.9)
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Since dimM = n > 0, A has measure 0 in M? for |dVy;|>. Thus, by (4.6), (4.7), (4.8)
and (4.9), we have:

Var(AVil) (61.02) = e | 01(@)0a)Dut. )[4V (4.10)

Remark 4.5. At this stage, it is worth noticing that the values of the conditional expectations
appearing in the definition of Dy (see Eq. (4.9)) do not depend on the choice of V<. In fact,
the whole conditional distribution of Vs, given that sq(z) = 0 (resp. of Vst given that
sa(y) = 0, resp. of (Visg, Visg) given that sq(z) = 0 = sq(y)) is independent of the choice
of V4. Indeed, if s4(x) = 0 then V%s,; does not depend on V¢ and we conditioned on the
vanishing of sg4(z) (resp. sq(y), resp. sq(z) and sq(y)). Thus, in the sequel, we can use any
real connection we like, even one that depends on (x,y) € M2\ A.

4.3 Asymptotic for the variance

In this section we compute the asymptotic of the integral in Eq. (4.10). The main point is to
write M? as the disjoint union of a neighborhood of A, of size about %, and its complement.
In (4.10), the set of points that are far from the diagonal will contribute a term of smaller
order than the neighborhood of A. This is a consequence of the fast decrease of the Bergman
kernel outside of the diagonal. The values of s4 at x and y are not correlated, up to some
small error, outside of a neighborhood of A.

We still assume that d > max(dp, d1,d2) and we denote by s4 a standard Gaussian vector
in RHO(X, & ® LY.

4.3.1 Asymptotics for the uncorrelated terms

Let us first compute asymptotics for the terms in the expression of Dy (see Eq. (4.9)) that
only depend on one point, say z € M. For all x € M, ev? is linear. Hence s4(z) = ev?(sq)
is a centered Gaussian vector in R (5 ® Kd)z with variance operator:

evd (ev?)” = E[sq(z) ® (s4())"] = Ea(z,2), (4.11)
where Ej is the Bergman kernel of £ ® £ and the last equality is given by Prop. 2.6.

Lemma 4.6. For every x € M, we have:
™) (det* (ev?)| = 1+ O(d!
T Jaett (evt) | =1+ 0(d™).
where the error term O(d_l) does not depend on x.

Proof. Let x € M, then |det* (evg)|2 = det E4(z,z) by (4.11). By (3.8), we have:

™

(E)m |detJ‘ (evg)‘2 = det (IdR(5®£d)I JrO(d’l)) -1+ O(dil) .
The error term in (3.8) is independent of z, hence the same is true here. n

Let V¢ be a real connection on £ ® £¢. We assume that V¢ is a metric connection, so
that Lem. 2.10 and Cor. 2.12 are valid in this context. Recall that the Chern connection is
an example of real metric connection.

For all z € M, let j& : s (s(z),Vgs) denote the evaluation of the 1-jet at x, from
RHY(X,E@LY) toR(E ® Ed)m ® (R @® T, M*). Since j¢ is linear, (sq(z), V&sq) is a centered
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Gaussian vector with variance operator j¢ (jg) *. This operator splits according to the direct
sum R(E ® Kd)z @ R(E ® Kd)z ®Q Ty M*:

i (59" = E[’g(sd (& Sd))*}
_ (E[ d(z) ® sa(2)*]  E[sa(z) ® (Visa)® D
E[Visq @ sq(x)*] E[Visq® (Visq)*

_ ( Ey(z,x) Ot Eq(x, x) )
azEd(.T .T) 618 d( ) ’

IE
(4.12)

where the last equality comes from Cor. 2.13. We chose d > di, so that evg is surjective
(see Lem. 2.4), i.e. det (ev‘i (evg)*) > 0. Hence, the distribution of sg4(z) is non-degenerate.

Then (see [2, prop. 1.2]), the distribution of Vs, given that sq(z) = 0 is a centered Gaussian
in R(S ® Ed)z ® T, M* with variance operator:

ama;jEd(;c, z) — 0y Eq(z, x) (Bq(z,2)) " agEd(:E, x). (4.13)
Lemma 4.7. For every x € M, we have:

Vol (S77)
Vol (S7)

(1+0(d™1)),

™\ 2
<dn+1> E [[det* (Vésa)|

where the error term is independent of x.

sa(@)| = (2m)*

Proof. Let z € M, and let Ly(z) be a centered Gaussian vector in R(€ @ Ed)x ® T M* with
variance operator:

"

Ag(z) = prES) (8 ol D Ea(z,r) — 0. FEa(x, ) (Ba(z,2))" agEd(x,x)) . (4.14)

By (4.13) and the above discussion, the distribution of Vs, given that sq(x) = 0 equals
that of (£, ) La(). Then,

cl+1

E[det* (Visa)|

Sd (x)} =E

det <(d:1>%Ld<x>> H - <dﬁ+1> E[|det* (La(x))]]

(4.15)

Recall that the distribution of V¢s; given that s4(x) = 0 does not depend on the choice

of V¢ (Rem. 4.5). Hence Ag4(x) does not depend on the choice of V¢. For the following

computation, we choose V¢ to be trivial over Br, (0, R) in the real normal trivialization

about x. Then we can use the diagonal estimates of Cor. 3.8 for the Bergman kernel and

its derivatives. We have: Ag(x) = Idgggra), ® Idp, - +O(d™"), where the error does not
depend on x. Hence,

det (Ag(x)) =1+ O(d‘l) : (4.16)

Besides, there exists some K > 0 such that HAd( — Id|| Kd=! for all d large enough.
Then, by the mean value inequality, for all L € R(E ® LY, @ T,M*

exp f§<(Ad(x)*1fld)L,L> -1 <2—|\L|\2exp 2—||L||2 .
(o0 (=3 ) 1) < ggirtew (g101)
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Let LY(z) ~ N(Id) in R(€ ® £4), ® T, M* and let dL denote the normalized Lebesgue
measure on R(E @ £4), ® T, M*. Then we have:

(2m)F [det (Aa(2))* E[|det* (La(x))]] — E[|det* (L3() ]|

< /\detL (L)| e 211 Jexp (—1 {(Ag(x)~" —1d) L,L>) — 1‘dL

<2 [laert e (<2 (12 o)z

The integral on the last line converges to some finite limit as d — +oo. Thus, by (4.16),
E[|det™ (La(x))|] = det (Aa(z)) ™% (E[|det* (LY(2))|] + O(d™))
= E[[det™ (Lg(x))|] + O(d7"),

uniformly in 2 € M. Lemma 4.7 follows from (4.15), (4.17) and the following equality, that
was proved in [14, lem. A.14]:

(4.17)

B [Jdet (£3(0) ] = (2n)F (419

4.3.2 Far off-diagonal asymptotics for the correlated terms

We can now focus on computing terms in the expression of Dy that depend on both x and y.
For all (z,y) € M?\ A, ev  (sq) = (sa(x),sa(y)) is a centered Gaussian vector with variance
operator:

eviﬁy(

evgyy)* E [evg y(84) ® evy y(sd)*}
_ (E[ sa(r) @ sa(z)"]  Elsa(z) ®Sd(y)*])
Elsa(y) ® sa(x)*]  E[sa(y) ® sa(y)”]
_ (Ed(fc,w) (:E,y))
Eq(y,z) Ea(
where we decomposed this operator according to the direct sum R(E ® Ed) &3] R(E ® Ed)
Since we assumed d > do, ’detL ev )’ > 0 (see Prop. 4.2) and the distribution of
(sa(x), sq(y)) is non-degenerate.
We denote by jiy DS (s(x), s(y), Vis, Vgs) the evaluation of the 1-jet at (z,y). Then
jd, is a linear map from RH®(X, € ® L) to

(4.19)

R€® L), eR(E L) & R(ESLY), @T,M") & (R(E ®L%), ® TyM*) . (4.20)

and jg’y(sd) is a centered Gaussian vector, with variance operator j;l,y (]gy)* We can split
this variance operator according to the direct sum (4.20). Then by Cor. 2.13, we have:

gty (G8,)" = B[, (s0) @ (72, (s0)"]

E[sa(z) ® sa(x)*]  E[sa(z) @ sa(y)*] E[sa(z) ® (Visa)*] E[sa(z) @ (Visa)*]
_ | Elsa(y) ® sa(x)*]  E[sa(y) ® sa(y)”] E[sq(y) @ (Visa)*| E[sa(y) @ (Visa)*]
E[Visq®sa(x)] E[Visqa®sa(y)*] E|[Visq® (Visq)*| E[Visq® (Visa)*]
E|Visq®sq(x)*| E[Visq®sa(y)*| E|[Visq® (Visa)*| E|[Visq® (Visa)*]
Eq(z,z) Eq(z,y) 0% Eq(x, ) Ot Eq(x,y)
_ | Baly,x)  Ealy.y) c’?“Ed(y, x)  0iEa(y,y)
OeEq(x,x) 0Ba(w,y) 0.05Eq(x,x) 0,0%Eq(x,y)
9:Ea(y,x) 0:Ea(y,y) Gzaf,Ed(y,w) 9,0 Eq(y,y)

(4.21)
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Since the distribution of (sq(z), sa(y)) is non-degenerate, the distribution of (Vis, V{s)
given that ev, ,(sq) = 0 is a centered Gaussian with variance operator:

)
) (e

Definition 4.8. For every (z,y) € M?\ A and every d large enough, we define A4(z,y) to
be the operator such that dn:lAd(z,y) equals (4.22). That is, Ag(z,y) is the conditional

™

89385Ed(x, x) 89385Ed(x, y
(&@%Ed(y, x) 0.0 Eq(y,y
(&CEd (r,2) O Eq(z,y
OzEa(y,x) 0uEa(y,y

)

) (e ).

)

1
variance of (F57)? (Vis, Vis) given that ev, y(sa) = 0.

Let C’ > 0 be the constant appearing in the exponential in Thm. 3.9. We denote

1 /n
b= = (5 + 1) (4.23)
and
Ind
Ag = {(w,y) € M? | py(z,y) < bnﬁ} : (4.24)

where, as before, p, is the geodesic distance in (M, g).
Lemma 4.9. For every (z,y) € M?\ A4, we have:

[det (evt )| = [det (eve)| [det* (evi)| (1+0(a 3 71)),
where the error term is uniform in (x,y) € M?\ Ay

Proof. For all (z,y) € M?\ Aq, we have p,(z,y) > bn%. Then, by Thm. 3.9,

| Eq(z, )| < Cod™exp (—C'b,Ind) < Cod? .

Then, by (4.19) we have:

Besides, by (3.8),

(Flee) o) = () tasoy o). a2

so that

Ei(z,x) Eq(z,y)\ _ (Ealzr,z) 0 s
(EZ(y,x) Ej(y,y)) - < ‘ 0 Ed(y,y)> (Id+O(d ) - (4.26)

We conclude the proof by taking the square root of the determinant of this last equality
(recall (4.11)). O
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Lemma 4.10. For every (z,y) € M?\ A4, we have:

E“detl‘ (Vgsd)| ‘detJ‘ (Vgsd)‘ ’eviﬁy(sd) = 0} =

E Udetl‘ (Visa)| |salz) = 0} E UdetJ‘ (std)‘

saly) = 0} (1+0(d"37Y)),

where the error term is uniform in (x,y) € M?\ Aq
This lemma is a consequence of the following technical result.

Lemma 4.11. For every (z,y) € M?\ A4, we have:

uniformly in (z,y) € M2\ Aq.
Proof of Lemma 4.10. Let (La(z), Lq(y)) and (L) (z), L) (y)) be centered Gaussian vectors
in
d * d *

RE @ L), @ T.M*) @ (R(E@ L), © T,M")
such that: the variance of (L/,(z), L’ (y)) is Aq(z, y) (recall Def. 4.8), and Lq(z) and Lq(y) are
independent with variances Ag(z) and A4(y) respectively (see (4.14)). Then, the distribution
of (La(x),La(y)) is a centered Gaussian with variance (Ado(m) Ado(y)). From the definitions
of Ag(z), Ag(y) and Ag(x,y), we have:

E [|det* (Vgsd)]‘sd(x) —o0| = (d::) E[|det* (La(x))[],
E“detJ‘ (std)} Sd(y): <d”+1) E |deti— Ly( ))H

1 (wd 1 (wd d dmtty Logr 1
IEUdet (Vmsd)Hdet (Vysd)’ ‘GVLy(Sd) :0] = < — ) EHdet (Ld(:c))Hdet (Ld(y))H

Since Lg(z) and Lg(y) are independent, we only need to prove that:

E [|det™ (Lj(2))] [det* (L}(y))|] = E[|det (La(@))| [det* (La(y)[] (1 +O(d"%71)) .
(4.27)
By Lemma 4.11,

det (Ag(z,y)) = det ((Adéx) Ad(zy)) (Id+O(d~ 7= 1))) (428)
= det (Aq(z)) det (Ag(z)) (1+O(d"271)).
Besides Lem. 4.11 shows that:
Aa(z,y) ™t = (Adéx) Ad(;y)) (Id+0(a 271)).
By Cor. 3.8 and Eq. (4.14), we have: (Adéx) Ado(y)) =1Id —|—O(d_1). Hence,
Aa(@) 0 7 _ -
( o Ad(y)> =Id+0(d™") (4.29)
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uniformly in (x,y), and

Aa(z,y)™t - (Adéx) A;Ey)) — o).

Thus there exists K > 0 such that, for all d large enough,

Ag(z,y)~" — (Ad(gx) Adtzy)) :

Then, for every L = (L1, L2) € (R(E ® ﬁd)z @ Ty M*) ® (R(E ® Ed)y ® TyM*), we have:

1 1 (Aa@) 0 \7! K||L|” K||L|”

Let dL denote the normalized Lebesgue measure on this vector space. We have:

(2m)"

(Aalw,9))? E[[det (Lj(2))] [det™ (L(y))]]

— det (Ag(2))® det (Aa(y))? E[|det* (La(x))| [det™ (La(y))|] \
< / |det (Ly)| |det™ (Ls)| exp (—% <(Ad0<””> Aﬁy))_lL,L>> x
exp <% <<Ad(:c,y)1 f (Adg” Af@)_l) L,L>) f 1‘ L

. / |det™ (Ly)| |det™ (La)| | L])* x

1 Aa(@) 0 \ 1 K
exp <§<<( 0 A,i(y)) 72d%—+11d L,L dL
Let us prove the last equality. By Eq. (4.29), for every d large enough (uniform in (z,y)),

-1
Ad(l') 0 K
—(1+—7—]1Id
‘( 0 Ad(y)) ( T oaE
so that:

1 . -1 K
[t et e e (<3 (44 5,) - i) £.2) ) at
1
< / |det™ (Lq)| |det™ (Lo)| | L||* exp (Z |L||2) dL

And the last integral is finite since ’detl- (Ll)‘ ‘detJ- (Lg)’ |IL||? is a polynomial in L.
Eq. (4.16) and (4.28) show that det(Aq(z,y)) = 1+ O(d™'). Then, by the previous
computations and Eq. (4.28), we have:

=0(d 37,

1
2

E[|det" (Ly(x))| |det™ (Lj(y))]]
et (Aqg( et (A 3 L y .
( " d:t Addzt;))d( ))) E[|det* (La(x))| |det* (La(y))[] + O(d~ 31
= E[Jdet" (La(x))| |det™ (La(y))[] (1 +O(@%71)) +0(a 27).
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Equations (4.17) and (4.18) proves that
E[|det™ (La(x))| |[det™ (La(y))[] = E[|det™ (La(2))|] E[|det" (La(y))|]
converges to some positive constant. This proves (4.27) and establishes Lemma 4.10. (|

Proof of Lemma 4.11. First, recall that Ag(x,y), Aq(x) and Ag(y) do not depend on the
choice of V¥ (see Rem. 4.5). In this proof, we use the Chern connection which is both real
and metric. Let (z,y) € M?\ Ay, then p,(z,y) > bn%. By Thm. 3.9, we have:

10 Eq(z, y)|| < C1d" 2 exp (—C'by Ind) < C1d% 2.

Similarly, |0, Eq(y, x)|, ||85Ed(:c,y)|| and ||85Ed(y,z)|| are smaller than C;d"z . Then

(6 ais) = (5 o) ol) e
EEy(x,x) OBz, “Eq(z,x not
(B62 0) (0 b)) o

and, by Eq. (4.26),
Ey(z,z) Eq(z,y) ! _ (Eq4(x,x) 0 - iy
(Eorn mom) =07 mi) (o).
Using Eq. (3.9), (3.10) and (4.25), we get:

<8IEd(x,x) azEd(x,y)> <Ed(x,x) Ed(x,y)>1 <8§Ed($,x) agEd(:E,y))
azEd(yax) azEd(yay) Ed(yax) Ed(yay) a:gEd(y’x) a;gEd(yay)

N (@Edé:v,x) c’?mEdO(y,y)) (Ed(g,x) Ed((z)/,y)>1 <6§Ed(§:v,:v) 85Ed0(y,y))
+0(d27")  (4.33)

Using Thm. 3.9 once more, we know that H@I%Ed(x, y) H and H@I%Ed(y, x)H are smaller
than Cyd?. Then we have:

0.0 Eq(z,x) 0,0%FEq(z,y) 0.0 E4(z, ) 0 n
y ) Uy ) _ Uy ) 2
(amagmy,x) 0:05 Ealy,y)) ~ 0 0,0 Ea(y,y)) TOW). (434

We substract Eq. (4.33) to Eq. (4.34) and divide by d;f
and Ag(y) (see Def. 4.8 and Eq. (4.14)),

Ag(z,y) = (Adéx) Aim) +o(d 31 = (Adéx) Adtzy)) (Id+0(d~371)),

where we used the fact that Ag(z) = Id+O0(d™1) = Aq(y) to obtain the last equality. O

. By definition of A4(z,y), Aq(x)

Proposition 4.12. Let ¢1, ¢z € C°(M), then we have the following as d — +00:
[ 0i@on)Palany) [4Varl* = 1] ol O
M2\Aq

where the error term is independent of (¢1, ¢2).
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Proof. We combine Lemmas 4.9 and 4.10, which gives:

E [[det* (Vidsa)| [det* (Visa)| [eve ,(sa) = 0]
|det (evgyy)‘
E[det* (Visq)| | sa(x) = 0] B [[det* (Visa)|
et (evd)| [det (evd)|

saly) = 0]

(1+0(d"271Y)).

for all (z,y) € M?\ A,4. Besides, by Lemmas 4.6 and 4.7,

E DdetJ‘ (Vgsd)} sq(x) = 0}

|det+ (evd)]

o) - E [[det* (Visa)|

sa(y) = 0)
[det® (evd)]

Recalling the definition of Dy (Eq. (4.9)), we obtain that:
V(z,y) € M*\ Ay,  Dy(z,y) =O0(d""371),

uniformly in (z,y) ¢ Aq. Then, for any continuous ¢; and ¢ € C°(M), we have:

< 61l 12l Vol (M) < sup |Dd|>

M2\Ay

}/ ¢1(2) 2 (y)Dalz, y) [AVas|?
M2\Ag4

= |61l 92l O(d"5 7).

and the error term does not depend on (¢1, ¢2). O

4.3.3 Properties of the limit distribution

Before we tackle the computation of the dominant term in (4.10), that is the integral over Ay,
we introduce the random variables that will turn out to be the scaling limits of (Vgsd, V‘;sd)

given that evd (sq) = 0. We also establish some of their properties.

Notation 4.13. Let x € M and z € T, M, we denote by 2* ® z € T, M* ® T, M the linear
map:
2Rz T,M* — T,M*.
no o n(z)"

Let (6%1, cel %) be an orthonormal basis of T, M and let (dz1,...,dx,) denote its dual
basis. If z = Zia%,_- then z*®z =Y z;z;dz; ® 6%]_, i.e. the matrix of 2*®z in (dz1, ..., dx,)

is (Zizj)lgi,jgn'
Definition 4.14. For all z € M and z € T, M \ {0}, we define

Ay(2) €End (R(E®LY) ®T,M")

by:
Id L emhmr -3l21” (1q __2"®z _
T,M* —1_ izt ®z e ToM* — 1~ =12
Ap(2) = i . olz? ® ldg(egca), -
e (IdeM**pefuzuZ) IdTIM*flfef\lz\IZZ B2

We need information about A, (2), especially concerning the vanishing of its eigenvalues.
This will be useful in the estimates involving A, (z) below.
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Lemma 4.15. For allx € M and z € T, M \ {0}, the eigenvalues of A, (z) are:
o 1—e 2l gna 1+ e’%”ZHQ, each with multiplicity (n — 1)r,
1— e =17 4 ||z 2 emzll=l 1— e l=17 —||z) 2 e—zll=l
o 1,2 nd —1,2
14 o3l 1— =3l

Proof. Let x € M and z € By, (0,0, Ind) \ {0}. By definition of A,(z), its eigenvalues are
the same as that of

, each with multiplicity r.

—l=12 _ 1412 *
Idy, pr ——S——2* @ 2 e~ 3zl Idr, s+ ,%
T_e—l=I T_e—l=I (4.35)
e— 3zl (14 .2z Id ) _ﬁz* ® 2 ’ :
ToM* =1 =12 ToM* =1 T=12

with multiplicities multiplied by 7. Hence, it is enough to compute the eigenvalues of the
operator (4.35).

Let us choose an orthonormal basis (6%7 ce ai) of T,,M such that z = ||z|| ai’ and
1 Tn T

let us denote by (dz1,...,dz,) the dual basis. Then, z* ® z = ||z||> da1 ® 6%1. Let (e, e2)
denote the canonical basis of R?, then the matrix of

—l=1? 122 *
__e Pl o« =3 ll=ll __ZQz _
IdTIM* PR AN e IdTmM* 1_e—llz12
2
—1z)? 2 Rz eIzl «
2 e Do __c @
€ ldr, m — 220 Idr, m — s ® 2
in the orthonormal basis (e; ® dx1,...,e1 @ drp,e2 @ dxy,. .., e2 @ da,) is:
1 lzze = 0 o b2l (1 — Lzl 0
1767“2“2 1—6*“2“2
12
0 y - 0 e 220, 4
_ 2 9
—12) 1] ll=)?e =1
3 S (7 _ e
€ L e 0 L P P 0
_1ys)2
0 e~z l#0r, 4 0 L1

(4.36)
where I,,_1 stands for the identity matrix of size n — 1. If we re-order the basis, the matrix
of this operator in (e1 ® dz1,e2 ® dx1,...,e1 Qdxy,. .., ea ® dx,) is:

1= H1Z”2€:u”zu!2‘ 1 (1 — 71 HZJHZ H?) 0
182 l1z]12 llz]2e~ =12
=31zl (17 767“2“2) 1 Ll 0
1 o SlI=IP
’ " ‘ (e;”Z”z 1 ® In1

(4.37)

The bottom-right block has eigenvalues 1 —e~2l12” and 14-¢—2 HZH27 each with multiplicity
n — 1. To conclude the proof of Lemma 4.15, we only need to observe that, for all ¢ > 0, the
eigenvalues of

. N
1- = e 2t (1 - 17teft)
—t
et (1 - 1—teft) 1 - 1t—ee*t
are:
te=t 1 t 1—et—te 3t
1— ——— +e 2t (1 =
lfe*t—i— ( let) 1 — e~ 3t



and

- _ —1
L te™? —e_%t(l— t ):1—et+1§e 2t-
1+ e 3t

Note that the latter one is the largest. o

Definition 4.16. We define the function f : (0, +00) — R by:

vt >0, f(@t)

Corollary 4.17. Let x € M and z € T, M \ {0}, then we have:

det (A (2)) =
(1 - eszH?)T("_Q) (1 — el 2 efénzH?)T (1 —e I g efénzHZ)T < 0.
(4.38)
Moreover,
[Az(2)] <2 and HAI(Z)_IH —f (HZHQ) , (4.39)

where ||-|| denote the operator norm on End (R* @ R (€ ® Ed)m ® T, M*).

Proof. First, the formula for det (A;(z)) is a direct consequence of Lem. 4.15, and we only
need to check that the eigenvalues of A, (z) are positive. Clearly, 1 + e~2" >0 when t > 0.
Then, for all positive ¢, we have:

-t it —1¢ _ 1y
1-¢ tle Lo ¢ 21 (e%t—efétft):eizl 2sinh ! —t],
1 —e 2t 1—e 2t 1 —e 2t 2
and 2sinh (£) > ¢. Besides,
1—et4te 3t e~ 2t . t
T = — [ 2sinh ( = | +¢t) > 0.
1+e 2t 1+ e 2t 2

Recall that [|[A;(2)]| is the larger eigenvalue of A, (2), and ||A;(z) ™[] is the inverse of the
smallest eigenvalue of A, (z). For all ¢ > 0 we have

O<l—-e2<lde s <

Besides,

l—et—te 2t 1—et4te 2t te?

. + i . =2(1- < 2,
1—e 2t 1+ ezt -t

and we just proved that both these terms are positive. Hence, each of them is smaller than 2.

Thus, all the eigenvalues of A, (z) are smaller than 2 and ||A,(2)] < 2.
For all t > 0,

17€7t7t67%t _t ¢ _1 _t ¢ t _t
—————<l—€e? <= 1l—e"—teT2 <1224 <= 1—-<e 2,
1—e 2t 2
and this is always true by convexity of the exponential. Thus, the smallest eigenvalue of
1— el — 2|2 e— 21207 1
Ay(z) is — = , which proves our last claim. O
— e 3ll=ll 2
l—e 2 FAI=7)
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Remark 4.18. To better understand the estimate (4.39), note that f is a decreasing function
on (0,400). Moreover,

() —— 1, and £l ~

when ¢ goes to 0.

Definition 4.19. For every z € M, and z € T, M \ {0}, let (L,(0),L,(%)) be a centered
Gaussian vector in R ® R (£ ® Ed)m ® T M* with variance operator A, (z).

Recall that we defined the random vector (X (t),Y(t)) for all ¢ > 0 in the introduction
(see Def. 1.4). Then (X (t),Y(t)) and (L,(0), Ly(z)) are related as follows.

Lemma 4.20. Let x € M and z € T, M \ {0}, then there exists an orthonormal basis of
T, M such that, for every orthonormal basis of R (5 ® Ed)z, the couple of r X n matrices

associated to (Lg(0), Ly(2)) in these bases is distributed as (X (||z]*),Y (||z]]*)).

Proof. As in the proof of Lem. 4.15, let us choose an orthonormal basis (a%l, cee 6%) of

T, M such that z = ||z|| 6%1. Let (dxq,...,dx,) denote its dual basis. Let ((1,...,¢.) be any
orthonormal basis of R (€ ® L',d)z, and let (eq,e2) denote the canonical basis of R

Then 2* @ z = ||z||° doy @ aixl and the matrix of the operator (4.35) in the orthonor-
mal basis (e1 ® dxy,...,e1 @ dry,es @dry,...,e2 @ dry,) is given by (4.36). Since A,(z) is
exactly this operator tensor Idgggcay , the matrix of A;(2) in the orthonormal basis:

(e1®dr1 ®Ciy...e1 @de, ® (1 e2 @dry (... e @ dry, ®(,
e1®dry ® (2, ..., Qdr, @ (2,0 @dT1 @ (py ..o y2 @ day, @ C)

is exactly the variance matrix of (X (||z]|°), Y (||z]|°)) (cf. Def. 1.4).
Let M, (0) and M, (z) denote the matrices of L,(0) and L, (d) in the bases (a%l, e %)

and (Cy,...,¢). Then (M,(0), M,(z)) is a centered Gaussian vector in M,.,,(R)?. Moreover,
we have just seen that the variance matrix of this random vector is the same as that of
(X(|1z1*), Y (|2|/*))- This concludes the proof. O

Corollary 4.21. Let x € M and z € T, M \ {0}, then we have:
E[|det (L, (0))] |det* (Lo(2))]] = E[|det* (X(I121)]| [aet* (v (1=1P)) ]
Proof. With the same notations as in the proof of Lemma 4.20 above, we have:
E[|det* (M (0))] [det* (M (2))][] = E[det* (X (1121 [det (v(1121%)]]

since (M,(0), M,(z)) and (X(||z]|*), Y (||z]|*)) have the same distribution. Besides,

|det™ (Ly(0))| = |det™ (M (0))] and |det" (Ly(2))] = |det™ (M,(0))] . -

Let us now establish some facts about the distribution of (X (¢),Y(t)) for ¢ > 0.

Lemma 4.22. For all t > 0, we have:

E[|det™ (X (£))] |dett (Y(t))}]<<n te~t ) <.
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Proof. First, by the Cauchy—Schwarz inequality, we have:

1
2

E[|det™ (X (£))| |det™ (Y(£))|] <E [\detl (X(t))ﬂ 'E [\detl (Y(t))ﬂ

Then, the definition of (X (¢),Y (¢)) (Def. 1.4) shows that both X (¢) and Y (¢) are centered
Gaussian vectors in M,.,(R) with variance matrix:

_ e te?
I-T= 0 el (4.40)
0 In—l

in the canonical bases of R” and R". Here I,. and I,,_; stand for the identity matrices of size
r and n — 1 respectively. Hence,

E[|det™ (X ()] |det* (v (1))]] < E[|detL (X(t))ﬂ = E[det (X (1) X ()] .
We denote by X1(t),...,X,(t) the rows of X (¢). Then

XX = (Xi(t), X;(0)1<ij<r»

X

where we see X;(t) as an element of R and (-, ) is the usual inner product on R™. Hence,
det (X (£)X (¢)*) is the Gram determinant of the family (Xi(¢),..., X, (¢)), which is known
to be the square of the r-dimensional volume of the parallelepiped spanned by these vectors.
In particular,
2 2
det (X)X (®)") < [ X2 X"

By (4.40), the X;(t) are independent identically distributed centered Gaussian vectors with

variance matrix: ,
te” "
(1 1—e—t 0 ),
0 Infl

det (X(H)X () <E[IX: (1)) X, ()]°] < E[”Xl(t)“zy N <” 1t—€_t > -

so that:

Lemma 4.23. We have the following estimate as t — +o00:
Vol (S"~7)\? .
1 €L — T 2
E[|det™ (X (¢))] |det™ (Y (£))]] = (27) ( Vol (§7) ) +O(te ) .

Proof. Let (X (0),Y(c0)) be a standard Gaussian vector in M,,(R)? ~ R?"" ie. X (c0)
and Y (co) are independent standard Gaussian vectors in M., (R). Then,

EHdetJ‘(X(oo))"detJ‘(Y(oo))H Hdetl‘ (X(c0)|] E Hdetl‘ (00))]]
— E[|det" (X (0))|]”
(Yol
= (S

where we used (4.18) to get the last equality.
Then the proof is basically the same as that of Lemma 4.7. From Definition 1.4, we see

that the variance operator A(t) of (X(¢),Y (t)) equals Id4+O (te*é). Hence:

det (A(t)) =1+ o(te—%) and Al =1d +o(te—%) .
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Let C' > 0 such that ||A(f)~! —1d|| < Cte~2. We denote by L = (L1, L) a generic element
of M,,(R)? and by dL the normalized Lebesgue measure on this space. Then,

(27T)rn

det (A(t))? E[|det™ (X (¢))| |det™ (Y(£))|] — E[|det" (X (c0))| |det™ (Y(oo))m
= / |det™ (L1)| |det™ (La)]| (eXp (—% ((A(t)~ —1d) L,L>) - 1) =3I qr,
< Stet / et (L1)| |det* (Lo)| |1 L] exp (_% (1 _ %te—%) ||L|2) dL

= O(te_%).

Thus

E[|det™ (X (¢))| |det™ (Y ())]]
= det (A(1)"* (E[|det™ (X (00))| [det* (¥ (o0))|] + O(te™#))

= (2m)" <7V€/ZS;;)) > . Ofte?). O

Definition 4.24. Let D, , : (0,4+00) — R be the function defined by:

vt € (0,400), Dy, (t)

_ E[jdet" (X@)][dett ()] . (Vol(8" )\
) (1-e)F e (et )

Lemma 4.25. We have:

+oo n—2
/ 1D ()] 5 dt < +o0c.
0

Proof. We first check the integrability of |D,, . (¢)] t"2" at t = 0. By Lemma 4.22, about
t =0 we have:

iz ao E[dett (X(0))] |dett (V(#)[]  ae . . (VOI(S"7)\?
| Dn,r ()] ¢ St (1— e—t)% +t(2m) ( Vol (S7) )
< tﬁ roust) = o1+,

And this is integrable at ¢ = 0 since n —r < 1.
Then, by Lemma 4.23, we have: |D,, .(t)|t"T = O(t% e’%) when ¢ goes to infinity. This
proves the integrability at infinity. O

4.3.4 Near-diagonal asymptotics for the correlated terms

The next step of the proof is the compute the contribution of the integral (4.10) on A,. Let
R > 0 be such that 2R is smaller than the injectivity radius of X', as in Section 3. Let d3 € N
be such that Vd > ds, bn% < R. In the sequel we consider d > max(do, d1, da, d3).

Since we chose d large enough that bn% < R we can compute everything in the expo-
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nential chart about x. Let ¢1, ¢ € CO(M), we have:

R $1(2)d2(y)Palz, y) [dVar|®

=/ (/ ¢1(x)p2(y)Da(z,y) |dVM|> |V |
xeEM yEBM (z,bn%)

- / / 61 (2)d2(exp, () Da(x, exp, () v/A(2) dz | [AVar]
veM \JzeBr,a (0,6,124)

(4.41)

e

where /k is the density of |[dVjs| with respect to the normalized Lebesgue measure on T, M
(see Sect. 3.2). Let x € M, for all z € B, (0,b,, Ind) we define

Dy(z,z) = Dy (m exp, (%)) , (4.42)

where Dy is defined by (4.9). Then, by a change of variable in (4.41),

. ¢1(2)d2(y)Da(z, y) |dVar|> =

4% /IEM </zegw<o,bn L B <expz (%)) Da(z, 2) <n <%>) : dz) 1AV

(4.43)

and we need to compute the asymptotic of Dg4(x,2) as d goes to infinity. We start by
computing |det* (ev? )| when (z,y) € Aq.

Proposition 4.26. Let a € (0, 57 +1) let v € M and z € By, y(0,b,1nd). We denote

Y = eXp, (ﬁ) Then we have:

(3) " det (ot 0,)) = (1= 1) (v 0@@)),

where the error term does not depend on (x, z).
We will deduce Proposition 4.26 from the following two lemmas.

Lemma 4.27. Let 8 € (0,1) and d > ds, then for every x € M and z € By, p(0, by, Ind),
we have: )
T\ d d AN -1
(E) det (evy, (evg,)) = (1 — e lI=ll ) +O(dﬁ ),

where y stands for exp,, (\/3) Moreover the error term depends on 8 but not on (z, z).

Lemma 4.28. There exists C > 0 such that, for all B € (0,1), there exists dg € N such
that: Vd > dg, Yz € M, Vz € B, (0,d°71) \ {0},

2nr « 2\ —T ~
()" et (ot (0xt,)) (1 1) ) < G,

where y stands for exp,, (ﬁ)
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Let us assume Lemmas 4.27 and 4.28 for now, and prove Prop. 4.26.

Proof of Proposition 4.26. First, note that if (4.44) holds for z € By, 3/(0, b, Ind)\ {0}, then
the same estimate holds for z € Br, 3/(0, b, Ind) since both sides of the equality vanish when
z = 0. In the sequel we assume that z # 0.

Let a € (0, T{H)’ let d > ds and let € M. Then for any z € T, M such that ||z|| > d~¢,

we have: .
(1=e17) " < (1= exp (~d72)) 7" (4.45)

Since 1 —e™* =t (1 — L + O(t?)) as t — 0, there exists Cy such that for all ¢ € (0, 1),
(L—e) =t

Hence, by (4.45), for any d > ds, for any « € M and any z € T,, M such that ||z|| > d™¢, we
have:

< Cot' . (4.46)

(1- e—nznz)”” < (@2 + God®=22) < a2 (14 Co). (4.47)

Let 8=1—(2r+ 1)a and f/ =1 — «, then 8 and 8’ € (0,1). By Lemma 4.27, there
exists K > 0 such that: for all d > ds, Vo € M, Vz € By, m(0,b,Ind),
2nr
‘(E) det (evg,

Yy x,Y

pi (ev?,)) — (1 — ellzlz)r‘ < Kpd?' = Kpd-CrtDo,

where y = exp, (ﬁ) Then, by (4.47), we have: ¥d > ds, Yo € M, Vz € Br, 1(0, b, Ind)

such that ||z]| > d~@ = d#' 1,

TN 2nr d d *”ZHZ —-r =~ . ~
() det(evi, (evi,) (1—eW) " —1) < Kga (14 Co).
Besides, let d > dg and x € M, then for all z € By, (0,d™%) \ {0} we have:

‘(5)2" det (eve, (et ) (1= 1) =1

by Lemma 4.28. Finally, for all d > max(dg/,ds), Vo € M, Vz € By, m (0,b,Ind) \ {0}, we
have:

()" der(et, (et ) (1) < max (628 (14 G)) . D

z,y

<Cd,

Proof of Lemma 4.27. Let d > d3, let * € M and let z € Br,(0,b,1nd). We denote
Y = exp, (ﬁ) Since % < R, let us write Eq. (4.19) in the real normal trivialization of

€ ® L4 about x (see Sect. 3.1). We have:

) ) n [ Eq0,0) By (0,
(g) evd (v ) :(g) Ey (ﬁ,()) Eq (ﬁ’ d)

Then, by the near-diagonal estimates of Cor. 3.7, we have:

(W)n Ea(0,0)  Ea(0, ;)

33
S

S

V\Ea(70) ()
_1
s, e A (s (_d_l) "deac 0 ((ln d)2n+8> :
6_%HZ|\2 (H (L)) 2 Id(g®l:d) (H (Ld) Id($®£d)x d



where the error term does not depend on (z, z). Recall that  satisfies (3.6). Hence for all

z € B(0,b, Ind),
“(72)=ro (M)

uniformly in 2 and z. Let 8 € (0,1), then we have:

o . 1 el )
() even e2) :<e;|z|2 1 >®Id<6®ad>x +0 (d77), (4.48)

and the constant in the term O(d”’~!) does not depend on (z,z). Since the dominant term
on the right-hand side of (4.48) has bounded coefficients, we get the result by taking the
determinant of (4.48). O
Proof of Lemma 4.28. Let d > max(dy,ds) and let x € M. Recall that D?z,w) denotes the
k-th differential at (z,w) of a map from T,X x T, X to End ((€ ® L) ).

The Chern connection reads D + u, in the real normal trivialization about x, where
tg is a 1-form on B, x(0,2R). By definition of the real normal trivialization, pu,(0) = 0.
Besides p,(2) is a smooth function of (x, z). Then, by compacity of M, there exists K > 0
such that ||ug(2)|| < K for all z € M and all z € By, »(0, R). Hence, there exists K’ > 0
independent of x such that, for any smooth section S of R (5 ® Ed) X R (5 ® Ed)* over
Br, (0, R) X Br,p(0, R), we have:

VZ,’LU € BTIM(OaR)v HD(z,w)SH < K’ HS (expz(z)vexpz(w))”(ﬂ )

where ||-||o: was defined in Section 3.4. Since we use the exponential chart, we can argue
similarly for the Levi—Civita connection. This gives a similar result for the higher derivatives
of S. For all k € N, there exists K > 0 independent of x such that, for any smooth section
Sof R(£E®LY) KR (E®LY)" over Br,m(0, R) x Br,a(0, R), we have:

Vz,w € Br, (0, R), HD@MSH < Ky ||S (expy (2), exp, (w)) e . (4.49)
Since d > dy, by Eq. (4.49) and Thm. 3.9 we have: Vz,w € Br, (0, R),

HD%Z*“])EdH < Ko || Eq (exp,(2), exp, (w)) || o2 < CoKad™ . (4.50)

Let x € M and z € Br,p(0,b,1nd) \ {0}. We denote y = exp, (ﬁ) Let us write

Eq. (4.19), in the real normal trivialization of £ ® £% about x, as in the proof of Lemma 4.27.
We have:

Eq(0,0) By (o, ﬁ)

z 4 4
Ea(5.0) Ei(Z5)
Then, by elementary operations on rows and columns,

evd  (evl,) =

1 . 1 Eq(0,0)  Eq(0,-55
W det (ev‘i’y (evgyy) ) = W det E . 0 E (z ‘i) =
: : 1(20) Ea(G )
Eq(0,0) it (B (0.25) - Fal0,0)
z
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By Taylor’s formula, for all z € By, ar(0,b,Ind) \ {0} we have:

FEy (0,—) — FE4(0,0)—D Ey- (0 —)H sup HD w EdH (4.52
H \/E ( ) (0.0) wel0, 2= ] 0,w) )

Then, by (4.50), we have:

™" 1 z z
TV = Ea (0,22 ) = Ea(0,0) — Doy Ea - (0,

(2) e | (0. 75) - Eat0.01 - P - (0. 7
Similarly, for all z € Br,(0,b,1nd) \ {0} we have:

z

)l <
(g)"H—iH Eq (%,0)&1(0,0) Dio.0)Ea - <\/E’0> <zl CaKor™.  (4.54)
(

A second order Taylor’s formula gives:
z oz z z
Eyl—=,— | —Eq|—,0| — FE ,— | + E4(0,0)
H( d(m \/E) d(ﬁ ) ( \/E) .
9 z
oot ((0-72) (7))l <

and since d > do, by Thm. 3.9 and Eq. (4.49) we have:
T\ 1 z oz z
IV — (e (=, 2)-Es(=,0)-E
(3) 121 <d<\/ﬁ m) “(%8 ) !

Finally, by Equations (4.53), (4.54) and (4.55),

E4(0,0) T (Ed (0,

n | ﬁ z
G I 1 R €

=

LY (o, e,

%\—

(Y Ba(0,0) R (02) ) (1)
47\ ErPoo Ea- (I’O) = Do) d((o’id) %,0)) e

(4.56)

where the error term is uniform in x and d.
On the other hand, for every € M and every z € T,, M \ {0}, the diagonal estimates of

Sect. 3.3 give (see (3.16)):

m\"* 1 z z " z z
D o ((073) (720) = #m o (() ()
(@) fpPo d(( Vi) \Vi art OO ) el

where the error term is independent of x and z. Similarly,

@) e Voo (0’%> - (%)n\/LED(O,O)Em <0,ﬁ> —0(d™),
(g)" ||1|| (0.0)Fa - (%’0) = (g)n \/LED(O,O)Ed' (ﬁ,()) =0(d™"),
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and

e n
(E) E4(0,0) = Tdg(eg ey, +O(d ™).

Thus
m\n E4(0,0) H HD(OO)Ed (O, Zd) 1 O(dil) (4. 7)
@)\ Dot (30) ePiooma((0.2) (G0))) ~ 100 42

where the error term is uniform in (z,z). By (4.56) and (4.57), there exist 51 and 52 >0
such that we have: Vd > max(dy,ds), Vo € M, Vz € Br,0(0,b,1nd) \ {0},

E4(0,0) ﬁ(Ed( =) - 0
(g) 1 (Ba(55.0) - Fa0,0) 2 Ed<ﬁ’ﬁ NG )

=1l Va’ ll=]I?
—FE410, + E4(0,0)
d( \/E> (
~ 1
<Ozl + 023- (4.58)

Let 8 € (0,1), then for all d > max(dy, ds), for all z € M and all z € By, (0, dﬁ’l), we
have: C~'1 Iz]| + C~'2d’1 < dP-1 (51 + 6'2) Let dg € N be such that (dg)ﬁ’1 (51 + 52) < %
Since the determinant is a smooth function, there exists 53 > 0 such that, for every operator

A, if [JA]| < 1, then |det (Id+A) — 1| < Cs [|A]|. Hence, by Eq. (4.51) and (4.58), we have:
for all d > dg , for all z € M, for all z € By, (0,d°71) \ {0},

2rn *
% (%) det (eviﬁy (evgyy) ) —1

121

< (51 + 52) Csdf1. (4.59)

Recall that Cy was defined in the proof of Prop. 4.26 (see Eq. (4.46)) and that, for all
x € M, for all z € Br,p(0,1) \ {0}, we have:

(£l
TEr=ERY

Then we have: Vd > dg, Vo € M, Vz € Br,a (0,d°~1) \ {0},

(3" e vt (vt ) ) (1) T

o . 2r
(5)" o aer (o <evg,y>)%_l‘

— 1| < Collz|?.

[El L w2 A (aod V) _ [
(1 ezl ) ||z||2r (d) det (eVLy (evm,y) ) 1)+ (1 — e*HZHZ)T 1
(1 + Cod?*~ 2) (51 + 52) C3d?~1 + Cod?P 2
dﬁ ((51 + 52) 53 (1 + 50) + 6’0) = dﬁilé,
where we define C' > 0 by the equality on the last line. O
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We now want to compute the limit of the conditional distribution of dnﬂ (Vgsd, Vst)
given that sq(z) = 0 = sq(y) for (x,y) € Ag. Tt is enough to compute the limit of Ag(z,y)
as d — +o0o. Recall that Ay is defined by Def. 4.8. Since we work near the diagonal, we can
write everything in the real normal trivialization centered at x (see Sect. 3.1).

Lemma 4.29. Let x € M and let V? be a real metric connection which is trivial over
Br, 1 (0, R) in the real normal trivialization about x. Let 8 € (0,1), then, in the real normal
trivialization about x, we have: Yz € Br,p(0,b, Ind),

o [ 0.00B40,0)  9,04E, (0,%) -
dntl : B
0.0 (77.0) 0:05E4 (57 57)
Id7, ar- ezll=l’ (Idg, p+ —2* ® 2) 5-1
¥ ¥ ® Id +0(d ,
( 3= (g, pr —2* @ 2) 1de, as- rEoc, +O(d)
where the error term does not depend on (x,z).
Proof. Let x € M and let us choose an orthonormal basis (6%1, s Be ) of T,M. We

denote the corresponding coordinates on T, M x T,M by (z1,...,2n,w1,...,w,) and by
0., and 0y, the associated partial derivatives. Let (dw1,...,dx,) denote the dual basis of

(6%1’ e Bar ) By definition of V¢ and 0,04 Eq (see Eq. (2.19)), for all z,w € Bz, m(0, R),
the matrix of 8I85Ed(z, w) in the orthonormal basis (dx1,...,dz,) is:

(0:,0u0,Eq(z,w))

1<ij<n

Note that this is a matrix with values in End (]R (5 ® Ed)z). Recall that we defined the
function &4 by (3.12). Then, by Cor. 3.7, for all z,w € By, (0, b, Ind), we have:

z w d\"
0.0 Fal—=,—<)=(—=) 0.0, Id +0((Ind)*+8
l Jd(\/E \/E) (w) 1 fgd(f f) reoen, T
Then, Eq. (3.15) shows that:

o)l ) () ()
V(2 — w;)0z,k (id) V(2 — w;)Dy, i (%)
() 2 (%)

= dexp (—% (e w|2> (8ij — (2 — wi) (27 — wy)) + O((Ind)*)

where we used the fact that, uniformly in z € Br, (0, b, Ind), we have:

(Ga)=ree(t5F)

and Vi€ {1,...,n}, 0.k <%> = o<%) :

Hence, for all z,w € Br, (0, b, Ind), we have:

W=

+

dbij — d(zi — wi)(z5 — wy) —

ik zZ W
——— 0,0 Ey| —=,—= | =
gt O=: 0 d(ﬂ’ﬂ)

1 In d)?"+8
exp (=l = 0l ) (0 = s = w5 = i) Hngesen, +0( 20— )
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where the error term is independent of z, z and w. Furthermore, for any 8 € (0, 1), the term
2n+8
o(%) can be replaced by O (d°~1). Finally, for all z,w € Br, (0, b, In d), we have:

dn+1a 0% Eq(z,w) =

1
exp <§ ||z — w|2> (Idpp —(z—w)* @ (z —w)) ® IdR(5®£d)I +0 (dﬁfl) ,

which yields the result. o

A similar proof, using Cor. 3.7 and the expressions (3.13) and (3.14) for the partial
derivatives of &; yields the following.

Lemma 4.30. Let v € M and let V¥ be a real metric connection which is trivial over
By, p(0, R) in the real normal trivialization about x. Let 8 € (0,1), then, in the real normal
trivialization about x, we have: ¥z € By, p(0,b, Ind),

n 0. FE4(0,0 O E , 2 *
d:# 0, iy O.E d( f) — ez ( Oz ZO) ®Idgeges, +O(d7Y)
2 d (I,O) xLd (7, Nz

n [ 91E.(0,0) aﬁEd( , ) _
d::T " ! ; Vi — e l2I? (g OZ) ® ldregeay, +0(d”71),
» \ose, (ﬁ,o) 0% B, (f f)
where z* € T,M* is to be understood as the constant map t — z* from R to T, M™* and

z € T, M is to be understood as the evaluation on z from T,M* to R. Moreover, the error
terms does not depend on (z, z).

We would like to get a similar asymptotic for the last term in the conditional variance
operator (4.22), namely:

-1
Ed(0,0) Ed ( 5 \f) .
Eq (ﬁ,o) Eq (ﬁ, ﬁ)
Unfortunately, this term is singular on A, and this kills all hope to get a uniform estimate on

Br,1(0,b, Ind)\{0}. Instead, we obtain a uniform estimate on By, a(0, by, Ind)\ Br, 1 (0, p)
for some p > 0. We need to carefully check how this estimate depends on p.

Lemma 4.31. Let 8 € (0,1) and p € (0,1). Let x € M and z € Br,3(0,b, Ind) such that
||z|]| = p. Then, in the real normal trivialization about x, we have:

(g)n Ez(o,()) Ed(,f) _1:
Ey

) \E(0) Ea ()

1 1 _e— 3zl 481
PR Id [d+0| ——— ) ).
1— e l=I? <—e $=0? 1 ® ldr(egra), + 1_ o307

Here, the notation O<1 dﬂipz) means a quantity such that there exists C > 0 and € > 0,
—e 2
independent of x,z,d and p, such that whenever - dﬁ:lpo < g, the norm of this quantity is
—e 2

smaller than C dﬁ:j .
1 P

—e 2
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Proof. By Eq. (4.19) and (4.48), we have:

(@ E;EZ(;OE)) EEdd((ﬁde)) <e—%1nzu2 1” ”2>®IdR<€®m>m+0(d“),

where the error term is independent of (z, z). Besides,

1 eblaR -
edier | @ldresey, | =
(4.60)

1 1 —e—3l=l?
1— eIzl <e 120 1 ® ldregca), ,

T
<e%|z|2 ) @ ldreaes,

are 1 — e~ 212I” and 1 + e=2112I° | which shows that:

lz )2 ! 1
e 217
H T ) ®IdR<5®“>z> ST EE

where ||-|| is the operator norm on End (RZ@R (€ ® Ed) ). Then, if ||z|| > p, we have:

and the eigenvalues of

1 < 1
1-— e_%”'z”2 = 1— 67%p2 '

oy [ Ea0.0)  Ea(0,2)
(o m(ﬂm&if
1

o311 s
=\e-ster ) @ldreecy, (d+0{ 5 | |- (461)

Taking the inverse of Eq. (4.61), we get:

d E4(0,0) E(o ﬁ) B

—1
1 bl b1
((e—%w L) ®ldrescy, (Id +O<71 g )) )

where we used the mean value inequality and the fact that the differential of A — A lis
bounded from above on the closed ball of center Id and radlus . Finally, Eq. (4.60) gives
the result. O

Recall that A, (z) is defined for € M and z € T, M \ {0} by Def. 4.42. Recall also that
Ay (z,y) is defined by Def. 4.8.
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Lemma 4.32. Let 8 € (0,1) and p € (0,1). Let x € M and z € By, (0, b, Ind) such that
lz]] = p. We denote y = exp, (ﬁ) Let V¢ be any real metric connection. Then, in the

real normal trivialization about x, we have:

Aao) = 0u2) + O — ),

(1—e2¢°)2
where the constant in the error term does not depend on (x, z), d or p.

Proof. We know that Ag(z,y) does not depend on the choice of V¥ (see Rem.4.5). Hence,
we can compute A4 (x,y) with V¥ trivial over Br, (0, R) in the real normal trivialization
of £ ® L4 about .

Let 8 € (0,1) and p € (0,1), we apply Lemmas 4.30 and 4.31 for g Then, in the real
normal trivialization about x, we have:

I3

i (&CEd(:c,:c) 8IEd(x,y)) (Ed(:c,:c) Ed(:c,y)>_1 (agEd(z,m 9L Eq( ,y))
drt1 \ 0 Ea(y,x)  0:Ea(y,y)) \Ea(y,z) Ea(y,y) 2Ea(y,x) 0iEa(y,y)

—1
0 2 . L emdleI
B
dz"! 0 -z B_
<1d+0<1 — ew)) <<Z 0 > ® Idg(egia), +O(d2 1)> . (4.62)

Since, p < |z| < by, Ind, the norm of

1 edlar -
bz | ®ldrescy,

-1 -1
is smaller than (1 — e’%”ZHZ) < (1 - 67%92) , and the norms of the other matrices

appearing in (4.62) are O(Ind). Hence, the expression (4.62) equals:

—=11? * —e—3lzl? _ p—-1
e 0 z 1 e 2 0 z d
1—el=I? <—z* 0 ) (e—%IIZII2 1 ><z 0 > ® Id]R(5®N)gc +O<(1 — eép2)2)

—ll=1? * —3lIz0? df—1
c ( Ges e ®Z> ® ldregca, +0(7),

= —1 — e—HZH2 675”ZI|22’* ® z o Rz (1 B 6_%’)2)2
(4.63)

where the error term is independent of (x, z). Finally, Eq. (4.63) and Lemma 4.29 yield the

result. O

Lemma 4.33. Let 8 € (0,1) and p € (0,1). Let x € M and z € By, (0, b, Ind) such that

lz]] = p. We denote y = exp,, (ﬁ) Let V4 be any real metric connection. Then,

(22 flart (w2t (720 et ) =] -
EHdeti (X(||z||2))} ‘detL (y(||z|‘2)) H N O(f(p)wﬂdg_l) ’

where constant in the error term does not depend on (x,z), d or p.
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Proof. Let x € M and z € Br,p(0,b,Ind) \ {0}, let y = exp, (id) then we have:

<—d:+1) E UdetJ‘ (Visd) ‘ |detJ‘ (ijsd)| ‘evgyy(sd) = 0}

:E[detl ((dZH) Vgsd> dett ((d:“) VZSd)

=E[|det™ (Lj(x))||det* (L(y))]] ,

where (L/)(x), L,(y)) is a centered Gaussian vector in

R(E®L), 0T,M @R(E®LY) @T,M"

with variance operator Ag(z,y). We can consider (L)(z),L!(y)) as a random vector in
R2®R (5 ® Ed)z ®T,M*, via the real normal trivialization about . From now on, we work
in this trivialization. Let p € (0,1) and 8 € (0, 1), we assume that p < ||z|| < b, Ind. Then,
by Lemma 4.32, we have:

Mg (z,y) Am(z)+O<L).

(1—em20%)2
Moreover, by Cor. 4.17, |[A,(2)]| " < f (||z||2) < f(p). Hence, we have:

dsP=1

(1 — e 2r°)2

At = 0.0 (10 +0( 700 )) = Aslo) (1 50(r(pa" ).

where we used the fact that - L < f(p) (see the proof of Cor. 4.17). Then, we get:
R4

det (A (,y)) = det (A (2)) (1 + O(f(p)*d" 1)) (4.64)

and
Ad(2,9)7" = Au(2) 7 (Id+O(F(p)’d" 7)) = Au(2) ™" + O(F(p)*d" 7).

Thus there exists K > 0 and € > 0 such that, whenever f(p)*d®~! < ¢,

[Aa(z, )™t = Au(2) 72| < K f(p)*d® 1.

By the mean value inequality, for every L = (L1, L) € R2@ T,M* ® R(E ® Ed)m we
have:

1
exp (5 ((atean) ™ = A 1.1 1
K _ K _
<G I e (5 1L S0 ).
whenever f(p)*d®~! < e. Let dL denote the normalized Lebesgue measure on this vector
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space, and recall that we defined (L, (0), L,(z)) above (Def. 4.19). Then, we have:

(2m)"" |det (Ag(z,y)) % HdetL (L( :I:))‘ ’detL (Lil(y))H

1

— det (Ax(2)) % E[|det™ (L,(0))|[det™ (L.(2))]] ]
< [ faet* ()] aet* (2) exp (_% <Az(z)_1L,L>) x

exp <% ((Aa(z, )" = Aa(2)7h) L,L>) - 1‘ dL

<

| =

£ [ et (L) [det (L) 1 x

exp <% <<Az(z)1 — gf(p)‘*dﬁ*l Id> L,L>) dL,

whenever f(p)*d®~! < e. Since A (d) < 2 by Cor. 4.17, the smallest eigenvalue of A,(z)~!
-1

is larger than £. Thus, if f(p)*d < 5k, for every L we have:

<(Az<z>-1 Ok Id) L,L> > LI

Hence, the last integral above is bounded by:
/]detL (L1)||det™ (L2)] |IL]|* exp <é |L|2) dL < +oo0.
Then, we have:
det (Aq(x,y))? E[|det™ (L,()))| ]deﬁ (Lyw)|] =
det (Ay(2))? E[|det™ (Ly(0))| |det™ (La(2))]] + O(f(p)*d°~1),
and by (4.64), we obtain:
E[|det™ (Li(x))| |det" (Ly(y))|] = E[|det™ (Ly(0))] |det" (La(2))]] (1 +O(f(p)?d"~"))
+ det (A, (2 ))—%o(f(p) A1) (1+0(f(p)*d°Y)).
Since, for all ¢ > 0 we have (see Lem. 4.15):

1 1 1+67%t
— o<, < ad —ECE g,
14+e 2 1—e2 l—et4te 2

r(n+1)

by Cor. 4.17 we have: det (Am(z))_% < f(p) . Besides, by Cor. 4.21, we have:

E[|det™ (Lo(0))] |det™ (L.(2))|] = EHdetL (X(W)‘ ‘deﬁ (Y(||z||2)H ,
and by Lemma 4.22 this quantity is bounded from above by n”. Finally, we have:
E[|det™ (L} (x))| |det* (L4(y))]] :EHdetl (X(||z||2)’ ‘detl (Y(||z||2) H

+O(fipy ). 0

The following corollary is not necessary to the proof of Thm. 1.6 but is worth mentioning.
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Corollary 4.34. Let 8 € (0,1). Let x € M and z € Br,p(0,b,1Ind) \ {0}. We denote

Y = exp, (ﬁ) Let V% be any real metric connection. Then, we have:

" T N 4 . ] )
(dn+1) E[‘det (Vmsd)Hdet (VySd)’ ‘evcw(sd) = 0} =
E [[det* (X (I2)7)| [aet* (Y (1217)|] + 0(2"Y),
where the error term depends on z but not on x.

Proof. Let us fix, 8, z and z, then we set p = ||z|| and we apply Lemma 4.33. O
Before we can conclude the proof of Thm. 1.6, we need one last lemma.

Lemma 4.35. Let x € M and z € By, p(0,b,1nd) \ {0}. We denote y = exp,, (id) Let

B € (0,1) and let V¢ be any real metric connection. Then, we have:

n T |
(#) E[Jdett (Visa)|ldet* (V)| [ev?, (s) = 0] <« Bl 0@

where the error term is independent of (x, z).

Proof. Let © € M, let z € Br,3(0,b,Ind) \ {0} and let y = exp,, (ﬁ) As in the proof

of Lem. 4.33, let (L/(x), L',(y)) be a centered Gaussian vector in R? @ R (£ ® Ed)m Ty M*
which variance operator is Ag4(z,y), read in the real normal trivialization about z. In the
sequel, we work in this trivialization. We have:

(er) Bl (st (V)] ot ) = 0] =

E[|det™ (L (2))| |det" (Ly(y))|] -

The proof follows the same lines as that of Lem. 4.22, the main difference being that
the variance operator is not explicit. An additional difficulty comes from the fact that the
estimate for A4(x,y) given by Lemma 4.32 is not uniform in z € By, (0, by, Ind)\ {0}, hence
it is useless here. Fortunately, we only need to bound its trace, which is bounded from above
by that of the unconditional variance operator:

o [ 005E0,0)  9.05Ea (0. %)
TN 0,008, (23.0) 0,054 (5.5 )

and Lemma 4.29 allows us to bound the latter.
By the Cauchy-Schwarz inequality,

E[|det™ (Ly(x))] |det* (Ly())]] < E[\detl (L;(x))fr]E[\deH (L;(y))fr. (4.65)

Let Ag1(x,y) and Ag2(z,y) denote the variance operators of L;(z) and L/,(y) respectively,

so that:
[ Agi(z,y) *
Aa(z,y) = ( % Ago(z,y) ) (4.66)
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Let us choose orthonormal bases of T, M and R (£ ® L) . We denote by (L}(2)i;)1<i<r
1<j<n
the coefficients of the matrix of L/(z) in these bases, and by (L} (x);) its rows. As in

1<ikr
the proof of Lem. 4.22, we have:

|det™ (L) ()| = det (Li(z) (Ly(x))*) = det ((Ly(x)s , Ly(@);))

(4.67)
2 2
< Zh - @) ).
Then, we have:
2 2 . = 2
E[ILa@) - 1Zo@) )] =B | TT | 3 (Eat)i)
v (4.68)

— Z]E

Let ji,...,jr € {1,...,7}, we denote X; = Lj(x);(j,). Then, by Wick’s formula (see [30,
lem. 11.6.1]), we have:

11 (Lfi(fc)im))ﬂ :

=1

T 9 ks ks
E([] (Za@)igy)"| =E H(Xi)Q] = 3 TIE[Xps X)),
i=1 i=1 ({as,b;}) i=1
where we sum over all the partitions into pairs ({ai,bi})lgi@ of {1,...,2r}. Hence, by

Cauchy-Schwarz inequality again, we get:

1 1

Elﬁ(L;(x)i(m)Q]< > ﬁE{(XL%J)Q]ZE{(XL?J)Q]Z
Pl ({arbi}) i=1 1

< > TIE|(r)]

({ai,bi}) k=1
< ¥ IIE[e]
({ai,bi}) =1

< (22:;,)!! .T E|(Lie)iin)’] -

Thus, we have:

/A
N
S~
—1-
INgE
=
| — |
—
h
=
&
Y
>,
—_

=1 \g=1 (4.69)

VAN
|
&
=
-
INgE
=
|
—~
=
~—
8
~—
N
~
S
[\v}
L,




where Tr stands for the trace operator. Finally, by (4.67), (4.68) and (4.69), we have:

(2r)!
27!

E Udetl (L'd(x))ﬂ < Tr (Agq(z,y))",

and similarly,
(2r)!
27!

B [|det* (Ly(y))|’] <
Thus, by (4.65), we get:

Tr (Ag2(z,y))" .

(2r)!
27!
2r)!
27!
Let 3 € (0,1), by Eq. (4.70), we only need to prove that Tr (Aq(z,y)) < 2n + O(d°~1)

to complete the proof. By Eq. (4.19),

(Ed(z, x) Ey(x, y))
Ea(y,z) Ea(y,y)

is a variance operator. Hence it is a positive symmetric operator and so is its inverse. Besides,
by (4.21), we know that:

85Ed(zaz) a,EEd(SC,y) _ aIEd(SC,SC) azEd(zay) :
agEd(yv'r) a'BEd(yay) B axEd(yaz) 81Ed(y7y) .
Then, the diagonal coefficients of:
(azEd(w,w) azEd(w,y)) (Ed(w,w) JEd(ﬂMJ))_1 (%Ed(%w) %Ed(%y))
OeEq(y, ) 0:Ea(y,y)) \Ealy,x) Ealy,y) DEq4(y,x) 0iEa(y,y)

are non-negative, and so is its trace. Finally, by the definition of Ag4(z,y) (Def. 4.8), we have:

g axaﬂEd(x7:C) QzaﬁEd(fE,y)
Tr(Ad(x,y»<WTf(axa§Ed(y,z> 0.0, Pa(y.v))

E[|det™ (Ly())|[det™ (Lu(y))[] < Tr (A1 (2,9)) Tr (Aaa(,y))*

(4.70)

—~

< Tr (Ad(‘ray))T .

(4.71)

Note that what we have done so far works for any choice of connection since Ag4(z,y)
is independent of this choice. However, the right-hand side of Eq. (4.71) depends on the
choice V?. We use a real metric connection that is trivial on Br, (0, R) in the real normal
trivialization about z. Then, by Lemma 4.29, we have:

Tr (Ag(z,y)) < 2n+O(d°1). O

4.3.5 Conclusion of the proof

n—r
Thm. 1.6. 11 that we defined o = Ntn. 1.5).
We can now prove Thm. 1.6. Recall that we defined oy T DT D (see Ntn. 1.5)

(7)) - 1
n—r T+@F+Dn+1)
Lemma 4.36. Let a € (0,a1), let ¢ € C°(M) and x € M, then we have:

o Ga)= () (300Dt

where the error term does not depend on x or ¢.

Let us denote o =

= [[¢ll. O(d=m) .
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Proof. We have:

o Ga) () (300 Dot

1 1
<ol | st f (
Br,m <O,bn %) By m(0,d)

T —Dy(z, 2)

+[Dus ) o

Since k(z (H ||2) uniformly in z (see (3.6)), we have:

1 Ind)?
sup |/€|2:1+O((an)),

Br,m (07bn %)

and this term is bounded. Thus, we only need to consider the integral of

1
7 Dalz,2) = Dy (l121%)] -

By Lemma 4.22, we have:

/B(o,da)

dia 1 2 J_
Dn,r(l\ZIIQ)‘dz<Vo1(snfl)/ E [|det (X (p*))] |det" ( s
p:O ( —e p)
Vol (S*~7)
+ (2m)" <W> Vol (Br, ar (0,d=%))

d2a n—2

n” e t =z

Cdt+0(d).
t=0 (1—e7t)2

Then, since there exists C' > 0 such that —t

(4.72)
= < C for all t € (0,1], we get:
d—2a tan d—Za o
/ < C/ £ At = O(d(“")“) . (4.73)
t=0 (1 —e7t)> t=0
Hence, / Dy, (|12l )’ dz = O(d(T ")O‘). By the definition of Dg(z,z) (cf. (4.42))
B(0,d=*)
we have:

E||dett (Vesq)||det* (Vs ‘evg ) =0
0y« 2 El0 T e S8l o0 =)

‘detl (eV%y) ‘

E[‘detl (Visq)] ‘sd(x) = 0} E UdetL (Vst)’ ’sd
det (evd)]

dr

:o}.

‘detl (evg)’

Then, let 5 € (0,1) and 5’ € ( , 2T+1) by Prop. 4.26 and Lem. 4.35 we have:
1 E [[det (Visa) ||det* (Visa)| [eve , (sa) = 0] _ o)

dr |dett (evd )|

T,y N (1767”2”2)% (1+O<d7ﬁ,))
<o)
1 — el

s

52



for some large C'. By a polar change of coordinates similar to (4.72) and (4.73), we show that
the integral of this term over Br, s (0,d™%) is a O(d(T_")O‘). Finally, by Lem. 4.6 and 4.7
we have:

1 EUdetL (Vgsd)‘ ‘sd(ac) = 0} E Udetl (Vgsd)’ ‘sd(y) = 0}
dr |det+ (evd)] ’deti- (evg)’

= 0(1).

Hence the integral of this term over Br,as (0,d™%) is a O(d—"%). O

Lemma 4.37. Let a € (0,a1), let ¢ € C°(M) and x € M, then we have:

Lo G (Foe - 2t

where the error term does not depend on x or ¢.

= [[¢ll. O(d=m) .

Proof. As in the proof of Lemma 4.36, since k% is bounded on Br, v (O,bn%), we only

need to prove that:

1
—=Da(,2) = Dy (12| = O(ar=2-)
for some 3 > 0. Then, since Vol (Br, 1(0,b,1nd)) = O((Ind)") = O (d?), we get the result
by integrating over By, (0, by Ind) \ By, ar(0,d™%).

Let us fix some 8 € (0,1) which value will be chosen below. By Lem. 4.33, for every
x € M and z € By, (0, b, Ind) such that ||z]| = d~* we have:

( dﬂl)rza [det* (Vs5)[det (V)] [eve, (50) = 0] =
E[[aet (X(12l®)| [aer (v (1=1%) ] + 0 (st s +4ar) @)

where, as usual, y stands for exp, (ﬁ) Recall that we have: f(t) ~ 1—22 as t — 0 (cf.

Rem. 4.18). Then, we get:
f(d—a)—“";”ﬂ _ O(da(8+7‘(n+1))) 7

so that the error term in (4.74) is a O (d*®G+7("*+1)=1+8) et us now choose j to be:
1 o 1
—-(1- 2.
=3 (m0) < 02)

a(8+r(n+1))f1+ﬂ:fom+agfl+ﬂ:fom—ﬂ, (4.75)
1

Then we have:

and the error term in (4.74) is a O(d~"*#), with 8 > 0. Now, let 8’ € (0, Tlﬂ), by
Prop. 4.26 and Eq. (4.74) we have:
| E[[det* (Vsa)||det* (Visa)| |evd(s0) = 0] B
dr ‘detl (evgﬁy)‘
B [[dett (x(1=1P)) | aet (v(Uz0)) [ + O(de#)

(1- e—nzn?)%

(1 + O(dﬁ"l)) . (4.76)
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for all z € M and z € T, M such that = < ||z]| < by Ind. Since (1 - e—d”“) = O(d™),

and the numerator of (4.76) is bounded (cf. Lem. 4.22), the right-hand side of Eq. (4.76)
equals:

E [[det* (X (I2]))| [det (v(l1z1)]]
(1— e ls1%)

Moreover, 1 —na— 8 = a(8+r(n+1)) + 8 > 0 (see Eq. (4.75)), so that we can assume
that 8’ <1 —na — B. Then we have: ra+ ' —1 < (r —n)a — 3, and

+O(dr=mef) o(are ).

1 E UdetL (Visq)||det (Visa)l ‘eviy(sd) = 0}
dr ’deti- (evg’y)’
E [[det* (X(1217) | [aet* (v(1=1))]]
(1— e l=1%) 2
On the other hand, by Lemmas 4.6 and 4.7, we have:

+ O(d“—")a—ﬁ) .

1 E[[dett (Vsa)| [ sue) = 0] E[|det (Visa)| | salw) = 0]
dr |dett (evd)] |det+ (evd)|
Vol (S"=7)\? .
2m)" | ——= o(d™).
(2m) ( Vol (§7) ) +O(d)
Once again, Eq. (4.75) shows that —na — 8 > —1, a fortiori (r — n)a — 8 > —1. Thus, for
all z € M and z € T, M such that d= < ||z|| < by Ind, we have:

— (=5

1
EDCI(ZE, Z) - Dn,T(HZHQ)

where 8 > 0 and the error term is independent of (z, z). O

Proposition 4.38. Let a € (0,ap), let ¢1 and ¢o € C°(M), we have the following asymptotic
as d — +oo:

1 . N
y zeM </Z€BTIJ\/I(O7bn Ind) ¢1($)¢2 (esz (\/_E)) Dd(.T,Z)H (ﬁ) dZ) |dV]\/1|
- ~ 2
= /zeM </ZEBTQEM(O,bn 1nd)¢1($)¢2 (esz (\/a)) D, (]|#]] )dz) |dV|

+161ll o 1921l O(d™) ,

where the error term does not depend on (¢1, ¢2).

Proof. Let a € (0,ap), we set o/ = -2 € (0,a1). Let ¢1,¢2 € CO(M) and let z € M, we

n—r

apply Lemmas 4.36 and 4.37 for o’ and ¢3. Then, we have:

1 z 2\ ?
E 2€Br, 0 (0,bn Ind) ¢1(z>¢2 (epr (ﬁ)) Dd(z,Z)H (ﬁ) a

_ 2 WEAS
- /ZGBTIM(O,bn Ind) ¢1($)¢2 (esz (\/8)) D"J“(HZH )K (\/8) 1z
+lo1 @) Izl (=), (4.77)
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and the error term can be rewritten as O(d~%).
Since k(2)2 = 1+ 0 (Hz||2) (cf. (3.6)), there exists C' > 0 independent of z such that for

all z € Br, (0, R),

/ o G062 (0502 (Z5)) Do a1 (n (ﬁ) - 1) :

H(z)% — 1’ <C ||z||2 Then, we get:

by Ind)?
<lor(o)l sl L2 D1 (1212
2€B(0,by, Ind)
C (b, Ind)? _y [(ntnd)? a2
<l loall § Cg Vot (67) [ D01
t=

Since | Dy, (t)] "7 is integrable on (0, +00) (Lem. 4.25) and a < 1, we have:

~ 2 i% _
Lo o @0 (o2 (7)) et (5) "0
/ 61(2) (expx (7)> D (212) dz + 161 (@) ]l O(d~), (4.78)
2€Br, m(0,by, Ind) d

where the error term in independent of z. By (4.77) and (4.78), we have:

1
1 2

z z
F Lo 2100 (52 (35)) Pote1e (35) o=
/ZGBTIM(O,bn In d) P1(@)2 <expz (%)) Dn’T(HZ||2)dZ + ()] ||¢2Hoo O(dia) )

uniformly in « € M. Integrating this relation over M yields the result. O

Now, let a € (0,ap), let ¢1 and ¢ € CO(M), then by Eq. (4.10), Prop. 4.12, Eq. (4.43)
and Prop. 4.38 we have:

Var(|dVa]) (é1, ¢2) =

dr—% z 9
= n,r d d
([ o (5] s

+ b1l 192llc O(d=577) - (4.79)

where the error term is independent of (¢1, ¢2). Then, we have:

Z)) - 2
/263W<0,bn ina) ("” ()0 (e’“’r (m)) ” @)@(@) Dy o(2]%) d2
b, Ind )
< 61l oo (—\/a )/ZGB(O,bnlnd)‘Dmr('zH )‘dz,

where wg, is the continuity modulus of ¢ (see Def. 1.2). Besides, by a polar change of
coordinates, we have:

1 (bn, Ind)? o
/ Do (1) dz = 5 Vol (5771) [ Do (O[T A, (4.80)
2€B(0,by, Ind) 2 t=0
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and this quantity is bounded, by Lemma 4.25. Then,

c 2
— n,r dz =
/ZEBTIJM(O,bn Ind) ¢1(x)¢2 (eXpI (ﬁ)) D ) (HZH ) z
Pr)02 () /ZGBTmJ\l(Ob lnd)D U2l dz + 1]l o oe Va O(1), (4.81)

where the error term is independent of (¢1, ¢2).

Let 3 € (0,3), then there exists C5 > 0 such that for all d € N*, b, 54 < Cd~". Since
@e, 18 a non-decreasing function, we have wg, (bn%) < @y, (Cpd™?). By (4.79), (4.80)
and (4.81), we obtain:

Var(|dVal) (¢1, ¢2) =

Vol Sn 1 1 (by, In d)? -
o / d102 |dV| 5/ D, (t)t = dt
t=0

+ ||¢1H0o 162116 O(d" ™3 7%) + (|91l oo @gs (Cad™?) O(d™™%) . (4.82)

By Lemma 4.23, we have: |D, .(t)| = O(te’%). Then there exists some C' > 0 such
that, for all ¢ large enough,

| Dy, (t)] t 7 < Cei.
Then, for d large enough we have:
+oo n—2 +oo t 1
/ D, ()t =z dt| < C e”1dt <4Cexp (——bi(ln d)2) =0(d™").
t=(bn Ind)? t=(bn Ind)? 4

(4.83)
By Equations (4.82) and (4.83), we get:

. Vol (s~ +o0
Var(ava) (0n.60) = = ([ onanlavaa ) LEL (3 [ 0,015 )
101 92l O 572) + [n]l o e (Cod™) O(@=5) . (4.8)

Finally, recall that we defined I,, , by Eq. (1.6) and D,, , by Def. 4.24. Hence, we have:

1 [t nez
Toy =2 / Dy (8)] 4272 it
2 0

and this quantity is finite by Lemma 4.25. This concludes the proof of Theorem 1.6.

5 Proofs of the corollaries

5.1 Proof of Corollary 1.9

Corollary 1.9 is a direct of Thm. 1.6 and the Markov inequality. Let ¢ € C°(M), then,
by (1.7) we have:

Var({|dVy| , ¢)) = O(d"~ %),
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and € > 0. We have:

where the error term depends on ¢. Now, let a > 5 — %

P ([(1aval ;) — EL(aVal . @)]| > d°c) = P (4~ |(|aVal ,¢) — E[(ldVal , 9)]| > )

/N

1
5 Var(d~ (ldVal )

N

6—12d‘20‘ Var((|dVy| , #)) .

5.2 Proof of Corollary 1.10

We obtain Cor. 1.10 as a consequence of Cor. 1.9. Let U C M be an open subset. We
denote by ¢y € C°(M) the function such that ¢y (z) is the geodesic distance from z to the
complement of U in (M, g). Then we have:

U={xeM]g¢y(x) >0},

and ¢y is non-negative. Hence, Z; N U = § if and only if (|dVy] ,¢u) = 0. Let € > 0 such

that: . v I(S )
O n—r
<3 (/M ou |dVM|) Vol (57)

Then, by Thm. 1.1, for d large enough we have:

1

d™2E[(|dVa| , ¢u)] — e = 3 ( du |dVM|>
M

Vol (S"7)

Vol

Thus, for d large enough, we have:

P ((|dVa| , ¢u) = 0)

<P ((|dVal , pu) <E[(|dVa] , ¢u)] — d2e)
<P ([(1aval , 6u) — E[laval ,6u)]| > d¥e) .

P(ZdﬂUZQ))

And by Cor. 1.9, this is a O(d™2).

5.3 Proof of Corollary 1.11

In this section we assume that n > 3. We consider a random sequence (s4)qen of sections
of increasing degree, distributed according to the probability measure dv = &) oy dva on
[Tyen RHO(X,€ ® L£%). Strictly speaking, |dV;,| is not defined for small d. However, dv-
almost surely, |dV;,| is well-defined for all d > d;, so the statement of Cor. 1.11 makes
sense.

Our proof follows the lines of the proof of Shiffman and Zelditch [23, sect. 3.3] in the
complex case. First, we prove that for every fixed ¢ € C°(M) we have:

_r Vol (S*~7)
d=2 (|dVs,| , dV; . 5.1
4Vl )+ oo ([ o1aval) (5.1
Then we use a separability argument to get the result. In the complex algebraic setting
of [23], the scaled volume of s;'{0} C X is a deterministic constant, independent of d. In
our real algebraic setting this is not the case.

Let ¢ € C°(M), then we have:

E

S (a7 ((1avi,| .0~ El(java] ,¢>1))21 = Y Var(([Val ,0)) < +oc,

deN deN

o7



since d~" Var((|dVy| , ¢)) = O(d~%) by Cor. 1.7. Hence, dv-almost surely, we have:

S (a5 (aVaul o) — Eaval o))’ < +oc,

deN

and
(a7% (aVeul 1 0) = d"5E[(|aVa] ,¢)]) —— 0.
—+0o0
Then, by Thm. 1.1, (|dVs,| , ¢) satisfies (5.1) dv-almost surely.
Let (¢x)pey be a dense sequence in the separable space (C°(M),||]|,,). Without loss of
generality, we can assume that ¢g = 1, the unit constant function on M. Then, dv-almost
surely, we have:

_r Vol (S™~7)
VEEN, A7 (|dVayl - 6x) d—+oo Vol (S7) (/ P 14V | ) - (5:2)

Let s = (54) gen € [Tgen RHO(X,E @ L?) be a fixed sequence such that (5.2) holds. For
every ¢ € C°(M) and k € N we have:

r Vol (S"—"
vl o) - St ([ olavad)|

<|d2(|dVy, |, ) — d75 (|dVa,| o)
Vol S" T
T /¢k|de| | olavad

_r Vol (S"~7)
sl av) o) - S0 ([ otavi )

- Vol (S™—T
<o oull (a7 Gava,] 1)+ B vor o))

_r Vol (S*~7)
sl av) oo - et ([ oviava ).

Recall that ¢g = 1. Then, by (5.2), the sequence (d~% (|dVj,| ,1))4en converges. Hence
it is bounded by some positive constant K. Let ¢ € CO(M) and let ¢ > 0. Let k € N be

such that:
Vol (S"~) !
_ < K,+ ——*Vol(M .
16~ onll < & (Koot S Vol ()

Then, for every d large enough we have:

- Vol (S7—
‘d—i ([dVs,| » dr) — % (/M b |dVM|)‘ <e,

_r Vol (S*~7)
s av) o) - S ([ olavad)| <2

Thus, ¢ satisfies (5.1).
Finally, whenever (5.2) is satisfied we have: for every ¢ € C°(M), ¢ satisfies (5.1). Since
the condition (5.2) is satisfied dv-almost surely, this proves Cor. 1.11.

and

o8



References

[1]

[12]

[13]

[14]

[15]

[16]

[17]

18]

J.-M. Azais and M. Wschebor, On the roots of a random system of equations. The
theorem of Shub and Smale and some extensions., Found. Comput. Math. 5 (2005),
no. 2, 125-144.

, Level sets and extrema of random processes and fields, 1st ed., John Wiley &
Sons, Hoboken, NJ, 2009.

P. Bleher, B. Shiffman, and S. Zelditch, Universality and scaling of correlations between
zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351-395.

E. Bogomolny, O. Bohigas, and P. Leboeuf, Quantum chaotic dynamics and random
polynomials, J. Statist. Phys. 85 (1996), no. 5-6, 639-679.

P. Biirgisser, Average Euler characteristic of random real algebraic varieties, C. R. Math.
Acad. Sci. Paris 345 (2007), no. 9, 507-512.

F. Dalmao, Asymptotic variance and CLT for the number of zeros of Kostlan—Shub—
Smale random polynomials, C. R. Math. Acad. Sci. Paris 353 (2015), no. 12, 1141-1145.

D. Gayet and J.-Y. Welschinger, Fzponential rarefaction of real curves with many com-
ponents, Publ. Math. Inst. Hautes Etudes Sci. (2011), no. 113, 69-96.

, Betti numbers of random real hypersurfaces and determinants of random sym-
metric matrices, J. of Eur. Math. Soc. (2014), To appear.

, Expected topology of random real algebraic submanifolds, J. Inst. Math. Jussieu
14 (2015), no. 4, 673-702.

Ph. Griffiths and J. Harris, Principles of algebraic geometry, 2nd ed., Wiley Classics
Library, John Wiley & Sons, New York, 1994, Reprint of the 1978 original.

E. Kostlan, On the distribution of roots of random polynomials, From topology to com-
putation: proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 1993,
pp. 419-431.

M. F. Kratz and J. R. Leén, Central limit theorems for level functionals of stationary
Gaussian processes and fields, J. Theoret. Probab. 14 (2001), no. 3, 639-672.

M. Krishnapur, P. Kurlberg, and I. Wigman, Nodal length fluctuations for arithmetic
random waves, Ann. of Math. (2) 177 (2013), no. 2, 699-737.

T. Letendre, Ezpected volume and FEuler characteristic of random submanifolds, J.
Funct. Anal. 270 (2016), no. 8, 3047-3110.

X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, 1st
ed., Progress in Mathematics, vol. 254, Birkhauser, Basel, 2007.

, Remark on the off-diagonal expansion of the Bergman kernel on compact Kdhler
manifolds, Commun. Math. Stat. 1 (2013), no. 1, 37-41.

, Exponential estimate for the asymptotics of Bergman kernels, Math. Ann. 362
(2015), no. 3—4, 1327-1347.

F. Nazarov and M. Sodin, On the number of nodal domains of random spherical har-

monics, Amer. J. Math. 131 (2009), no. 5, 1337-1357.

99



[19]

[20]

[21]

22]

, Asymptotic laws for the spatial distribution and the number of connected com-

ponents of zero sets of Gaussian random functions, arXiv preprint: arXiv: 1507.02017
(2015).

L. Nicolaescu, Critical sets of random smooth functions on compact manifolds, Asian J.
Math. 10 (2015), no. 3, 391-432.

S. S. Podkorytov, The Euler characteristic of a random algebraic hypersurface, J. Math.
Sci. 104 (2001), no. 4, 1387-1393.

Z. Rudnick and I. Wigman, On the volume of nodal sets for eigenfunctions of the Lapla-
cian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109-130.

B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic
sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661-683.

, Number variance of random zeros on complex manifolds, Geom. Funct. Anal.
18 (2008), no. 4, 1422-1475.

, Number variance of random zeros on complex manifolds II: smooth statistics,
Pure Appl. Math. Q. 6 (2010), no. 4, 1145-1167.

B. Shiffman, S. Zelditch, and S. Zrebiec, Overcrowding and hole probabilities for random
zeros on complex manifolds, Indiana Univ. Math. J. 57 (2008), no. 5, 1977-1997.

M. Shub and S. Smale, Complezity of Bezout’s theorem II: volumes and probabilities,
Computational algebraic geometry (Nice, 1992) (F. Eyssette and A. Galligo, eds.),
Progress in Mathematics, vol. 109, Birkhauser, 1993, pp. 267-285.

R. Silhol, Real algebraic surfaces, 1st ed., Lecture Notes in Mathematics, vol. 1392,
Springer, Berlin - Heidelberg, 1989.

M. Sodin and B. Tsirelson, Random complex zereos I: asymptotic normality, Israel J.
Math. 144 (2004), 125-149.

J. E. Taylor and R. J. Adler, Random fields and geometry, 1st ed., Monographs in
Mathematics, Springer, New York, 2007.

I. Wigman, Fluctuations of the nodal length of random spherical harmonics, Comm.
Math. Phys. 298 (2010), no. 3, 787-831.

M. Wschebor, On the Kostlan-Shub—Smale model for random polynomials: variance of
the number of roots, J. Complexity 21 (2005), no. 6, 773-789.

S. Zelditch, Szegs kernels and a theorem of Tian, Int. Math. Res. Not. (1998), no. 6,
317-331.

60



	Introduction
	Random real algebraic submanifolds
	General setting
	Random submanifolds
	The correlation kernel

	Estimates for the Bergman kernel
	Real normal trivialization
	Near-diagonal estimates
	Diagonal estimates
	Far off-diagonal estimates

	Proof of Theorem 1.6
	The Kac–Rice formula
	An integral formula for the variance
	Asymptotic for the variance
	Asymptotics for the uncorrelated terms
	Far off-diagonal asymptotics for the correlated terms
	Properties of the limit distribution
	Near-diagonal asymptotics for the correlated terms
	Conclusion of the proof


	Proofs of the corollaries
	Proof of Corollary 1.9
	Proof of Corollary 1.10
	Proof of Corollary 1.11


