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Variance of the volume of random real algebraic

submanifolds

Thomas Letendre ∗

December 17, 2019

Abstract

Let X be a complex projective manifold of dimension n defined over the reals and

let M denote its real locus. We study the vanishing locus Zsd
in M of a random real

holomorphic section sd of E ⊗ Ld, where L → X is an ample line bundle and E → X
is a rank r Hermitian bundle. When r ∈ {1, . . . , n − 1}, we obtain an asymptotic of

order dr−
n
2 , as d goes to infinity, for the variance of the linear statistics associated with

Zsd
, including its volume. Given an open set U ⊂ M , we show that the probability

that Zsd
does not intersect U is a O of d−

n
2 when d goes to infinity. When n > 3, we

also prove almost sure convergence for the linear statistics associated with a random

sequence of sections of increasing degree. Our framework contains the case of random

real algebraic submanifolds of RPn obtained as the common zero set of r independent

Kostlan–Shub–Smale polynomials.

Keywords: Random submanifolds, Kac–Rice formula, Linear statistics, Kostlan–Shub–
Smale polynomials, Bergman kernel, Real projective manifold.

Mathematics Subject Classification 2010: 14P99, 32A25, 53C40, 60G57, 60G60.

1 Introduction

Framework. Let us first describe our framework and state the main results of this article
(see Section 2 for more details). Let X be a smooth complex projective manifold of positive
complex dimension n. Let L be an ample holomorphic line bundle over X and let E be a
rank r holomorphic vector bundle over X , with r ∈ {1, . . . , n}. We assume that X , E and L
are endowed with compatible real structures and that the real locus M of X is not empty.
Let hE and hL denote Hermitian metrics on E and L respectively that are compatible with
the real structures. We assume that hL has positive curvature ω. Then ω is a Kähler form
on X and it induces a Riemannian metric g on M .

For any d ∈ N, the Kähler form ω, hE and hL induce a L2-inner product on the space
RH0(X , E ⊗ Ld) of real holomorphic sections of E ⊗ Ld → X (see (2.1)). Let d ∈ N and
s ∈ RH0(X , E ⊗Ld), we denote by Zs the real zero set s−1(0)∩M of s. For d large enough,
for almost every s ∈ RH0(X , E ⊗ Ld), Zs is a codimension r smooth submanifold of M and
we denote by |dVs| the Riemannian measure on Zs induced by g (see Sect. 2.2). In the sequel,
we will consider |dVs| as a positive Radon measure on M . Let us also denote by |dVM | the
Riemannian measure on M .

∗Thomas Letendre, École Normale Supérieure de Lyon, Unité de Mathématiques Pures et Appliquées,
UMR CNRS 5669, 46 allée d’Italie, 69634 Lyon Cedex 07, France;
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Let sd be a standard Gaussian vector in RH0(X , E ⊗ Ld). Then |dVsd | is a random
positive Radon measure on M . We set Zd = Zsd and |dVd| = |dVsd | to avoid too many
subscripts. In a previous paper [16, thm. 1.3], we computed the asymptotic of the expected
Riemannian volume of Zd as d → +∞. Namely, we proved that:

E[Vol (Zd)] = d
r
2 Vol (M)

Vol (Sn−r)

Vol (Sn)
+O

(
d

r
2−1
)
, (1.1)

where Vol (M) is the volume of M for |dVM | and the volumes of spheres are Euclidean vol-
umes. Here and throughout this paper, E[·] denotes the expectation of the random variable
between the brackets, and Sm stands for the unit Euclidean sphere of dimension m.

Let φ ∈ C0(M), we denote by ‖φ‖∞ = maxx∈M |φ(x)| its norm sup. Besides, we denote
by 〈· , ·〉 the duality pairing between

(
C0(M), ‖·‖∞

)
and its topological dual. Then, (1.1) can

be restated as:

E[〈|dVd| ,1〉] = d
r
2 Vol (M)

Vol (Sn−r)

Vol (Sn)
+O

(
d

r
2−1
)
,

where 1 ∈ C0(M) stands for the unit constant function on M . The same proof gives similar
asymptotics for E[〈|dVd| , φ〉] for any continuous φ : M → R (see [16, section 5.3]).

Theorem 1.1. Let X be a complex projective manifold of positive dimension n defined over
the reals, we assume that its real locus M is non-empty. Let E → X be a rank r ∈ {1, . . . , n}
Hermitian vector bundle and let L → X be a positive Hermitian line bundle, both equipped
with compatible real structures. For every d ∈ N, let sd be a standard Gaussian vector in
RH0(X , E ⊗ Ld). Then the following holds as d → +∞:

∀φ ∈ C0(M), E[〈|dVd| , φ〉] = d
r
2

(∫

M

φ |dVM |
)

Vol (Sn−r)

Vol (Sn)
+ ‖φ‖∞ O

(
d

r
2−1
)
. (1.2)

Moreover the error term O
(
d

r
2−1
)

does not depend on φ.

In particular, we can define a sequence of Radon measures (E[|dVd|])d>d0
on M by: for

every d > d0 and every φ ∈ C0(M), 〈E[|dVd|] , φ〉 = E[〈|dVd| , φ〉]. Then Thm. 1.1 implies
that:

(
d−

r
2

)
E[|dVd|] −−−−−→

d→+∞

Vol (Sn−r)

Vol (Sn)
|dVM | , (1.3)

as continuous linear functionals on
(
C0(M), ‖·‖∞

)
.

Statement of the results. The main result of this paper is an asymptotic for the covari-
ances of the linear statistics

{
〈|dVd| , φ〉

∣∣ φ ∈ C0(M)
}
. Before we can state our theorem, we

need to introduce some additional notations.
As usual, we denote by Var(X) = E

[
(X − E[X ])

2
]

the variance of the real random

variable X , and by Cov(X,Y ) = E[(X − E[X ]) (Y − E[Y ])] the covariance of the real random
variables X and Y . We call variance of |dVd| and we denote by Var(|dVd|) the symmetric
bilinear form on C0(M) defined by:

∀φ1, φ2 ∈ C0(M), Var(|dVd|) (φ1, φ2) = Cov(〈|dVd| , φ1〉 , 〈|dVd| , φ2〉) . (1.4)

Definition 1.2. Let φ ∈ C0(M), we denote by ̟φ its continuity modulus, which is defined
by:

̟φ : (0,+∞) −→ [0,+∞)
ε 7−→ sup

{
|φ(x) − φ(y)|

∣∣ (x, y) ∈ M2, ρg(x, y) 6 ε
}
,

where ρg(·, ·) stands for the geodesic distance on (M, g).
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Since M is compact, ̟φ is well-defined for every φ ∈ C0(M). Moreover every φ ∈ C0(M)
is uniformly continuous and we have:

∀φ ∈ C0(M), ̟φ(ε) −−−→
ε→0

0.

Note that, if φ : M → R is Lipschitz continuous, then ̟φ(ε) = O(ε) as ε → 0.

Definition 1.3. Let L : V → V ′ be a linear map between two Euclidean spaces, we denote
by
∣∣det⊥ (L)

∣∣ the Jacobian of L:

∣∣det⊥ (L)
∣∣ =

√
det (LL∗),

where L∗ : V ′ → V is the adjoint operator of L.

See Section 4.1 for a quick discussion of the properties of this Jacobian. If A is an element
of Mrn(R), the space of matrices of size r×n with real coefficients, we denote by

∣∣det⊥ (A)
∣∣

the Jacobian of the linear map from Rn to Rr associated with A in the canonical bases of Rn

and Rr.

Definition 1.4. For every t > 0, we define (X(t), Y (t)) to be a centered Gaussian vector in
Mrn(R)×Mrn(R) with variance matrix:




1− te−t

1−e−t 0 · · · · · · 0 e−
t
2 − te−

t
2

1−e−t 0 · · · · · · 0

0 1
. . .

... 0 e−
t
2

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . . 1 0

...
. . . e−

t
2 0

0 · · · · · · 0 1 0 · · · · · · 0 e−
t
2

e−
t
2 − te−

t
2

1−e−t 0 · · · · · · 0 1− te−t

1−e−t 0 · · · · · · 0

0 e−
t
2

. . .
... 0 1

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . . e−

t
2 0

...
. . . 1 0

0 · · · · · · 0 e−
t
2 0 · · · · · · 0 1




⊗ Ir,

where Ir is the identity matrix of size r. That is, if we denote by Xij(t) (resp. Yij(t)) the
coefficients of X(t) (resp. Y (t)), the couples (Xij(t), Yij(t)) with 1 6 i 6 r and 1 6 j 6 n
are independent from one another and the variance matrix of (Xij(t), Yij(t)) is:


 1− te−t

1−e−t e−
t
2

(
1− t

1−e−t

)

e−
t
2

(
1− t

1−e−t

)
1− te−t

1−e−t



 if j = 1, and

(
1 e−

t
2

e−
t
2 1

)
otherwise.

Notation 1.5. We set α0 =
n− r

2(2r + 1)(2n+ 1)
.

We can now state our main result.

Theorem 1.6. Let X be a complex projective manifold of dimension n > 2 defined over the
reals, we assume that its real locus M is non-empty. Let E → X be a rank r ∈ {1, . . . , n− 1}
Hermitian vector bundle and let L → X be a positive Hermitian line bundle, both equipped
with compatible real structures. For every d ∈ N, let sd be a standard Gaussian vector in
RH0(X , E ⊗ Ld).
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Let β ∈ (0, 12 ), then there exists Cβ > 0 such that, for all α ∈ (0, α0), for all φ1 and
φ2 ∈ C0(M), the following holds as d → +∞:

Var(|dVd|) (φ1, φ2) = dr−
n
2

(∫

M

φ1φ2 |dVM |
)

Vol
(
Sn−1

)

(2π)r
In,r

+ ‖φ1‖∞ ‖φ2‖∞ O
(
dr−

n
2 −α

)
+ ‖φ1‖∞ ̟φ2

(
Cβd

−β
)
O
(
dr−

n
2

)
, (1.5)

where

In,r =
1

2

∫ +∞

0

(
E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣]

(1− e−t)
r
2

− (2π)r
(
Vol (Sn−r)

Vol (Sn)

)2
)
t
n−2
2 dt < +∞.

(1.6)
Moreover the error terms O

(
dr−

n
2 −α

)
and O

(
dr−

n
2

)
in (1.5) do not depend on (φ1, φ2).

We obtain the variance of the volume of Zd by applying Thm. 1.6 to φ1 = φ2 = 1. When
φ1 = φ2 = φ we get the following.

Corollary 1.7 (Variance of the linear statistics). In the same setting as Thm. 1.6, let
β ∈ (0, 1

2 ), then there exists Cβ > 0 such that, for all α ∈ (0, α0) and all φ ∈ C0(M), the
following holds as d → +∞:

Var(〈|dVd| , φ〉) = dr−
n
2

(∫

M

φ2 |dVM |
)

Vol
(
Sn−1

)

(2π)r
In,r

+ ‖φ‖2∞ O
(
dr−

n
2 −α

)
+ ‖φ‖∞ ̟φ

(
Cβd

−β
)
O
(
dr−

n
2

)
. (1.7)

Moreover, the error terms do not depend on φ.

Remarks 1.8. Some remarks are in order.

• The value of the constant α0 should not be taken too seriously. This constant appears
for technical reasons and it is probably far from optimal.

• If φ2 is Lipschitz continuous with Lipschitz constant K, then the error term in eq. (1.5)
can be replaced by:

‖φ1‖∞ (‖φ2‖∞ +K)O
(
dr−

n
2 −α

)

by fixing β > α0, which is possible since 1
2 > α0.

• Thm. 1.6 shows that Var(|dVd|) is a continuous bilinear form on
(
C0(M), ‖·‖∞

)
for d

large enough. Moreover, denoting by 〈· , ·〉M the L2-inner product on C0(M) defined

by 〈φ1 , φ2〉M =

∫

M

φ1φ2 |dVM |, we have:

d
n
2 −r Var(|dVd|) −−−−−→

d→+∞

Vol
(
Sn−1

)

(2π)r
In,r 〈· , ·〉M

in the weak sense. A priori, there is no such convergence as continuous bilinear forms
on
(
C0(M), ‖·‖∞

)
since the estimate (1.5) involves the continuity modulus of φ2.

• The fact that the constant In,r is finite is part of the statement and is proved below
(Lemma 4.25). This constant is necessarily non-negative. Numerical evidence suggests
that it is positive but we do not know how to prove it at this point.

• Thm. 1.6 does not apply in the case of maximal codimension (r = n). This case
presents an additional singularity which causes our proof to fail. However, we believe
a similar result to be true for r = n, at least in the case of the Kostlan–Shub–Smale
polynomials described below (compare [8, 34]).
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Corollary 1.9 (Concentration in probability). In the same setting as Thm. 1.6, let α > r
2−n

4
and let φ ∈ C0(M). Then, for every ε > 0, we have:

P

(∣∣∣〈|dVd| , φ〉 − E[〈|dVd| , φ〉]
∣∣∣ > dαε

)
=

1

ε2
O
(
dr−

n
2 −2α

)
,

where the error term is independent of ε, but depends on φ.

Corollary 1.10. In the same setting as Thm. 1.6, let U ⊂ M be an open subset, then as
d → +∞ we have:

P (Zd ∩ U = ∅) = O
(
d−

n
2

)
.

Our last corollary is concerned with the convergence of a random sequence of sections of
increasing degree. Let us denote by dνd the standard Gaussian measure on RH0(X , E ⊗Ld)
(see (2.4)). Let dν denote the product measure

⊗
d∈N

dνd on
∏

d∈N
RH0(X , E ⊗ Ld). Then

we have the following.

Corollary 1.11 (Almost sure convergence). In the same setting as Thm. 1.6, let us assume
that n > 3. Let (sd)d∈N ∈ ∏d∈N

RH0(X , E ⊗ Ld) be a random sequence of sections. Then,
dν-almost surely, we have:

∀φ ∈ C0(M), d−
r
2 〈|dVsd | , φ〉 −−−−−→

d→+∞

Vol (Sn−r)

Vol (Sn)

(∫

M

φ |dVM |
)
.

That is, dν-almost surely,

d−
r
2 |dVsd | −−−−−→

d→+∞

Vol (Sn−r)

Vol (Sn)
|dVM | ,

in the sense of the weak convergence of measures.

Remark 1.12. We expect this result to hold for n = 2 as well, but our proof fails in this case.

The Kostlan–Shub–Smale polynomials Let us consider the simplest example of our
framework. We choose X to be the complex projective space CPn, with the real structure
defined by the usual conjugation in Cn+1. Then M is the real projective space RPn. Let
L = O(1) be the hyperplane line bundle, equipped with its natural real structure and
the metric dual to the standard metric on the tautological line bundle over CPn. Then
the curvature form of L is the Fubini–Study form ωFS , normalized so that the induced
Riemannian metric is the quotient of the Euclidean metric on the unit sphere of Cn+1. Let
E = Cr × CPn → CPn be the rank r trivial bundle with the trivial real structure and the
trivial metric.

In this setting, the global holomorphic sections of Ld are the complex homogeneous
polynomials of degree d in n+1 variables and those of E⊗Ld are r-tuples of such polynomials,
since E is trivial. Finally, the real structures being just the usual conjugations, we have:

RH0(X , E ⊗ Ld) = R
d
hom

[X0, . . . , Xn]
r,

where Rd
hom

[X0, . . . , Xn] is the space of real homogeneous polynomials of degree d in n + 1
variables. The r copies of this space in RH0(X , E ⊗Ld) are pairwise orthogonal for the inner
product (2.1). Hence a standard Gaussian in RH0(X , E ⊗ Ld) is a r-tuple of independent
standard Gaussian in Rd

hom
[X0, . . . , Xn] = RH0

(
X ,Ld

)
.

It is well-known (cf. [3, 4, 13]) that the monomials are pairwise orthogonal for the L2-
inner product (2.1), but not orthonormal. Let α = (α0, . . . , αn) ∈ Nn+1, we denote its length
by |α| = α0 + · · ·+ αn. We also define Xα = Xα0

0 · · ·Xαn
n and α! = (α0!) · · · (αn!). Finally,
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if |α| = d, we denote by
(
d
α

)
the multinomial coefficient d!

α! . Then, an orthonormal basis of
Rd

hom
[X0, . . . , Xn] for the inner product (2.1) is given by the family:

(√
(d+ n)!

πnd!

√(
d

α

)
Xα

)

|α|=d

.

Thus a standard Gaussian vector in Rd
hom

[X0, . . . , Xn] is a random polynomial:

√
(d+ n)!

πnd!

∑

|α|=d

aα

√(
d

α

)
Xα,

where the coefficients (aα)|α|=d are independent real standard Gaussian variables. Since we
are only concerned with the zero set of this random polynomial, we can drop the factor√

(d+n)!
πnd! .
Finally, in this setting, |dVd| is the common zero set of r independent random polynomials

in Rd
hom

[X0, . . . , Xn] of the form:

∑

|α|=d

aα

√(
d

α

)
Xα, (1.8)

with independent coefficients (aα)|α|=d distributed according to the real standard Gaussian
distribution. Such polynomials are known as the Kostlan–Shub–Smale polynomials. They
were introduced in [13, 29] and were actively studied since (cf. [1, 5, 8, 23, 34]).

Related works. As we just said, zero sets of systems of independent random polynomials
distributed as (1.8) were studied by Kostlan [13] and Shub and Smale [29]. The expected
volume of these random algebraic manifolds was computed by Kostlan [13] and their expected
Euler characteristic was computed by Podkorytov [23] in codimension 1, and by Bürgisser
[5] in higher codimension. Both these results were extended to the setting of the present
paper in [16].

In [34], Wschebor obtained an asymptotic bound, as the dimension n goes to infinity,
for the variance of number of real roots of a system of n independent Kostlan–Shub–Smale
polynomials. Recently, Dalmao [8] computed an asymptotic of order

√
d for the variance of

the number of real roots of one Kostlan–Shub–Smale polynomial in dimension n = 1. His
result is very similar to (1.5), which leads us to think that such a result should hold for
r = n. He also proved a central limit theorem for this number of real roots, using Wiener
chaos methods.

In [14, thm. 3], Kratz and Leòn considered the level curves of a centered stationary Gaus-
sian field with unit variance on the plane R

2. More precisely, they considered the length of a
level curve intersected with some large square [−T, T ]× [−T, T ]. As T → +∞, they proved
asymptotics of order T 2 for both the expectation and the variance of this length. They also
proved that it satisfies a central limit theorem as T → +∞. In particular, their result applies

to the centered Gaussian field on R2 with correlation function (x, y) 7→ exp
(
− 1

2 ‖x− y‖2
)
.

This field can be seen as the scaling limit, in the sense of [21], of the centered Gaussian field
(sd(x))x∈M defined by our random sections, when n = 2 and r = 1.

The study of more general random algebraic submanifolds, obtained as the zero sets of
random sections, was pioneered by Shiffman and Zelditch [25, 26, 27]. They considered
the integration current over the common complex zero set Zd of r independent random
sections in H0(X ,Ld), distributed as standard complex Gaussians. In [25], they computed

6



the asymptotic, as d goes to infinity, of the expectation of the associated smooth statistics
when r = 1. They also provided an upper bound for the variance of these quantities and
proved the equivalent of Cor. 1.11 in this complex algebraic setting. In [26], they gave an
asymptotic of order d2r−n− 1

2 for the variance of the volume of Zd ∩ U , where U ⊂ X is
a domain satisfying some regularity conditions. In [27], they proved a similar asymptotic
for the variance of the smooth statistics associated with Zd. When r = 1, they deduced
a central limit theorem from these estimates and an asymptotic normality result of Sodin
and Tsirelson [31]. Finally, in [28, thm. 1.4], Shiffman, Zelditch and Zrebiec proved that the
probability that Zd ∩ U = ∅, where U is any open subset of X , decreases exponentially fast
as d goes to infinity.

Coming back to our real algebraic setting, one should be able to deduce from the general
result of Nazarov and Sodin [21, thm. 3] that, given an open set U ⊂ M , the probability
that Zd ∩ U = ∅ goes to 0 as d goes to infinity. Corollary 1.10 gives an upper bound for
the convergence rate. In particular, this bounds the probability for Zd to be empty. In
the same spirit, Gayet and Welschinger [10] proved the following result. Let Σ be a fixed
diffeomorphism type of codimension r submanifold of Rn, let x ∈ M and let Bd(x) denote
the geodesic ball of center x and radius 1√

d
. Then, the probability that Zd∩Bd(x) contains a

submanifold diffeomorphic to Σ is bounded from below. On the other hand, when n = 2 and
r = 1, the Harnack–Klein inequality shows that the number of connected components of Zd

is bounded by a polynomial in d. In [9], Gayet and Welschinger proved that the probability
for Zd to have the maximal number of connected components decreases exponentially fast
with d.

Another well-studied model of random submanifolds is that of Riemannian random waves,
i.e. zero sets of random eigenfunctions of the Laplacian associated with some eigenvalue λ.
In this setting, Rudnick and Wigman [24] computed an asymptotic bound, as λ → +∞, for
the variance of the volume of a random hypersurface on the flat n-dimensional torus Tn.
On T2, this result was improved by Krishnapur, Kurlberg and Wigman [15] who computed
the precise asymptotic of the variance of the length of a random curve. In [33], Wigman
computed the asymptotic variance of the linear statistics associated with a random curve on
the Euclidean sphere S2. His result holds for a large class of test-function that contains the
characteristic functions of open sets satisfying some regularity assumption. In relation with
Cor. 1.10, Nazarov and Sodin [20] proved that, on the Euclidean sphere S2, the number of
connected components of a random curve times 1

λ converges exponentially fast in probability
to a deterministic constant as λ → +∞.

About the proof. The idea of the proof is the following. The random section sd defines a
centered Gaussian field (sd(x))x∈X . The correlation kernel of this field equals the Bergman
kernel, that is the kernel of the orthogonal projection onto H0(X , E ⊗ Ld) for the inner
product (2.1) (compare [3, 16, 25, 26, 27]).

In order to compute the covariance of the smooth statistics 〈|dVs| , φ1〉 and 〈|dVs| , φ2〉,
we apply a Kac–Rice formula (cf. [2, 3, 8, 32, 33]). This allows us to write Var(|dVd|) (φ1, φ2)
as the integral over M×M of some function Dd(x, y), defined by (4.9). This density Dd(x, y)
is the difference of two terms, coming respectively from

E[〈|dVd| , φ1〉 〈|dVd| , φ2〉] and E[〈|dVd| , φ1〉]E[〈|dVd| , φ2〉] .

Since the Bergman kernel decreases exponentially fast outside of the diagonal ∆ in M2

(see Section 3.4), the values of sd(x) and sd(y) are almost uncorrelated for (x, y) far from ∆.
As a consequence, when the distance between x and y is much larger than 1√

d
, the above

two terms in the expression of Dd(x, y) are equal, up to a small error (see Sect. 4.3.2 for a
precise statement). Thus, Dd(x, y) is small far from ∆, and its integral over this domain
only contributes a remainder term to Var(|dVd|) (φ1, φ2).
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The main contribution to the value of Var(|dVd|) (φ1, φ2) comes from the integration of
Dd(x, y) over a neighborhood of ∆ of size about 1√

d
. We perform a change of variable in

order to express this term as an integral over a domain of fixed size. This rescaling by 1√
d

explains the factor d−
n
2 in (1.5). Besides, the order of growth of Dd(x, y) close to ∆ is dr,

that is the order of growth of the square of E[|dVd|] (see Thm. 1.1). Finally, we get an order
of growth of dr−

n
2 for Var(|dVd|) (φ1, φ2). The constant in (1.5) appears as the scaling limit

of the integral of Dd(x, y) over a neighborhood of ∆ of typical size 1√
d
.

The difficulty in making this sketch of proof rigorous comes from the combination of
two facts. First, we do not know exactly the value of the Bergman kernel (our correlation
function) and its derivatives, but only asymptotics. In addition, the conditioning in the
Kac–Rice formula is singular along ∆, and so is Dd. Because of this, we lose all uniformity
in the control of the error terms close to the diagonal. Nonetheless, by careful bookkeeping
of the error terms, we can make the above heuristic precise.

Outline of the paper. In Section 2 we describe precisely our framework and the con-
struction of the random measures |dVsd |. We also introduce the Bergman kernel and explain
how it is related to our random submanifolds.

In Section 3, we recall various estimates for the Bergman kernel that we use in the proof
of our main theorem. These estimates were established by Dai, Liu and Ma [7], and Ma and
Marinescu [17, 18, 19] in a complex setting. Our main contribution in this section consists
in checking that the preferred trivialization used by Ma and Marinescu to state their near-
diagonal estimates is well-behaved with respect to the real structures on X , E and L (see
Section 3.1).

Section 4 is concerned with the proof of Thm. 1.6. In Sect. 4.1, we prove a Kac–Rice
formula adapted to our problem, using Federer’s coarea formula and Kodaira’s embedding
theorem. In Sect. 4.2 we prove an integral formula for the variance, using the Kac–Rice
formula (Thm. 4.4). The core of the proof is contained in Sect. 4.3.

Finally, we prove Corollaries 1.9, 1.10 and 1.11 in Section 5.

Acknowledgments. I am thankful to Damien Gayet for his guidance in the course of this
work and for countless mathematical discussions, on this topic and others.
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2 Random real algebraic submanifolds

2.1 General setting

In this section, we introduce our framework. It is the same as the algebraic setting of [16],
see also [11, 10]. Classical references for the material of this section are [12, chap. 0] and [30,
chap. 1].

Let X be a smooth complex projective manifold of complex dimension n > 2. We assume
that X is defined over the reals, that is X is equipped with an anti-holomorphic involution
cX . The real locus of (X , cX ) is the set of fixed points of cX . In the sequel, we assume that
it is non-empty and we denote it by M . It is a classical fact that M is a smooth closed
(i.e. compact without boundary) submanifold of X of real dimension n (see [30, chap. 1]).

Let E → X be a holomorphic vector bundle of rank r ∈ {1, . . . , n− 1}. Let cE be a real
structure on E , compatible with cX in the sense that the projection πE : E → X satisfies
cX ◦ πE = πE ◦ cE and cE is fiberwise C-anti-linear. Let hE be a real Hermitian metric on E ,
that is c⋆E(hE) = hE .

Similarly, let L → X be an ample holomorphic line bundle equipped with a compatible
real structure cL and a real Hermitian metric hL. Moreover, we assume that the curvature
form ω of hL is a Kähler form. Recall that if ζ is any non-vanishing holomorphic section on
the open set Ω ⊂ X , then the restriction of ω to Ω is given by:

ω/Ω =
1

2i
∂∂̄ ln (hL(ζ, ζ)) .

This Kähler form is associated with a Hermitian metric gC on X . The real part of gC defines
a Riemannian metric g = ω(·, i·) on X , compatible with the complex structure. Note that,
since hL is compatible with the real structures on X and L, we have c⋆L(hL) = hL and
c⋆Xω = −ω. Then we have c⋆X gC = gC, hence c⋆X g = g and cX is an isometry of (X , g).

Then g induces a Riemannian measure on every smooth submanifold of X . In the case of
X , this measure is given by the volume form dVX = ωn

n! . We denote by |dVM | the Riemannian
measure on (M, g).

Let d ∈ N, then the rank r holomorphic vector bundle E ⊗ Ld can be endowed with a
real structure cd = cE ⊗ cdL, compatible with cX , and a real Hermitian metric hd = hE ⊗ hd

L.
If x ∈ M , then cd induces a C-anti-linear involution of the fiber (E ⊗ Ld)x. We denote by
R(E ⊗ Ld)x the fixed points set of this involution, which is a dimension r real vector space.

Let Γ(E ⊗Ld) denote the space of smooth sections of E ⊗Ld. We can define a Hermitian
inner product on Γ(E ⊗ Ld) by:

∀s1, s2 ∈ Γ(E ⊗ Ld), 〈s1 , s2〉 =
∫

X
hd(s1(x), s2(x)) dVX . (2.1)
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We say that a section s ∈ Γ(E ⊗ Ld) is real if it is equivariant for the real structures, that
is: cd ◦ s = s ◦ cX . Let RΓ(E ⊗ Ld) denote the real vector space of real smooth sections of
E ⊗ Ld. The restriction of 〈· , ·〉 to RΓ(E ⊗ Ld) is a Euclidean inner product.

Notation 2.1. In this paper, 〈· , ·〉 will always denote either the inner product on the con-
cerned Euclidean (or Hermitian) space or the duality pairing between a space and its topo-
logical dual. Which one will be clear from the context.

Let H0(X , E ⊗Ld) denote the space of global holomorphic sections of E ⊗Ld. This space
has finite complex dimension Nd by Hodge’s theory (compare [17, thm. 1.4.1]). We denote
by RH0(X , E ⊗ Ld) the space of global real holomorphic sections of E ⊗ Ld:

RH0(X , E ⊗ Ld) =
{
s ∈ H0(X , E ⊗ Ld)

∣∣ cd ◦ s = s ◦ cX
}
. (2.2)

The restriction of the inner product (2.1) to RH0(X , E ⊗Ld) makes it into a Euclidean space
of real dimension Nd.

Remark 2.2. Note that, even when we consider real sections restricted to M , the inner
product is defined by integrating on the whole complex manifold X .

2.2 Random submanifolds

This section is concerned with the definition of the random submanifolds we consider and
the related random variables.

Let d ∈ N and s ∈ RH0(X , E ⊗Ld), we denote the real zero set of s by Zs = s−1(0)∩M .
If the restriction of s to M vanishes transversally, then Zs is a smooth submanifold of
codimension r of M . In this case, we denote by |dVs| the Riemannian measure on Zs

induced by g, seen as a Radon measure on M . Note that this includes the case where Zs is
empty.

Recall the following facts, that we already discussed in [16].

Definition 2.3 (see [22]). We say that RH0(X , E ⊗ Ld) is 0-ample if, for any x ∈ M , the
evaluation map

evdx : RH0(X , E ⊗ Ld) −→ R
(
E ⊗ Ld

)
x

s 7−→ s(x)
(2.3)

is surjective.

Lemma 2.4 (see [16], cor. 3.10). There exists d1 ∈ N, depending only on X , E and L, such
that for all d > d1, RH

0(X , E ⊗ Ld) is 0-ample.

Lemma 2.5 (see [16], section 2.6). If RH0(X , E ⊗ Ld) is 0-ample, then for almost every
section s ∈ RH0(X , E ⊗ Ld) (for the Lebesgue measure), the restriction of s to M vanishes
transversally.

From now on, we only consider the case d > d1, so that |dVs| is a well-defined measure
on M for almost every s ∈ RH0(X , E ⊗ Ld). Let sd be a standard Gaussian vector in
RH0(X , E ⊗ Ld), that is sd is a random vector whose distribution admits the density:

s 7→ 1
√
2π

Nd
exp

(
−1

2
‖s‖2

)
(2.4)

with respect to the normalized Lebesgue measure on RH0(X , E ⊗Ld). Here ‖·‖ is the norm
associated with the Euclidean inner product (2.1). Then Zsd is almost surely a submanifold
of codimension r of M and |dVsd | is almost surely a random positive Radon measure on M .
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To simplify notations, we set Zd = Zsd and |dVd| = |dVsd |. For more details concerning
Gaussian vectors, we refer to [16, appendix A] and the references therein.

Let φ ∈ C0(M), for every s ∈ RH0(X , E ⊗ Ld) vanishing transversally, we set

〈|dVs| , φ〉 =
∫

x∈Zs

φ(x) |dVs| . (2.5)

Such a φ will be referred to as a test-function. Following [27], we call linear statistic of degree
d associated with φ the real random variable 〈|dVd| , φ〉.

2.3 The correlation kernel

Let d ∈ N, then (sd(x))x∈X is a smooth centered Gaussian field on X . As such, it is
characterized by its correlation kernel. In this section, we recall that the correlation kernel
of sd equals the Bergman kernel of E ⊗Ld. This is now a well-known fact (see [3, 11, 25, 27])
and was already used by the author in [16].

Let us first recall some facts about random vectors (see for example [16, appendix A]). In
this paper, we only consider centered random vectors (that is their expectation vanishes), so
we give the following definitions in this restricted setting. Let X1 and X2 be centered random
vectors taking values in Euclidean (or Hermitian) vector spaces V1 and V2 respectively, then
we define their covariance operator as:

Cov(X1, X2) : v 7−→ E[X1 〈v ,X2〉] (2.6)

from V2 to V1. For every v ∈ V2, we set v∗ = 〈· , v〉 ∈ V ∗
2 . Then Cov(X1, X2) = E[X1 ⊗X∗

2 ]
is an element of V1 ⊗ V ∗

2 . The variance operator of a centered random vector X ∈ V is
defined as Var(X) = Cov(X,X) = E[X ⊗X∗] ∈ V ⊗ V ∗. We denote by X ∼ N (Λ) the fact
that X is a centered Gaussian vector with variance operator Λ. Finally, we say that X ∈ V
is a standard Gaussian vector if X ∼ N (Id), where Id is the identity operator on V . A
standard Gaussian vector admits the density (2.4) with respect to the normalized Lebesgue
measure on V .

Recall that (E ⊗Ld)⊠(E⊗Ld)∗ stands for the bundle P ⋆
1

(
E ⊗ Ld

)
⊗P ⋆

2

((
E ⊗ Ld

)∗)
over

X ×X , where P1 (resp. P2) denotes the projection from X ×X onto the first (resp. second)
factor. The covariance kernel of (sd(x))x∈X is the section of (E ⊗Ld)⊠ (E ⊗Ld)∗ defined by:

(x, y) 7→ Cov(sd(x), sd(y)) = E[sd(x) ⊗ sd(y)
∗] . (2.7)

The orthogonal projection from RΓ(E ⊗ Ld) onto RH0(X , E ⊗ Ld) admits a Schwartz
kernel (see [17, thm. B.2.7]). That is, there exists a unique section Ed of (E ⊗Ld)⊠ (E ⊗Ld)∗

such that, for any s ∈ RΓ(E ⊗ Ld), the projection of s onto RH0(X , E ⊗ Ld) is given by:

x 7−→
∫

y∈X
Ed(x, y) (s(y)) dVX . (2.8)

This section is called the Bergman kernel of E ⊗Ld. Note that Ed is also the Schwartz kernel
of the orthogonal projection from Γ(E ⊗ Ld) onto H0(X , E ⊗ Ld), for the Hermitian inner
product (2.1).

Proposition 2.6. Let d ∈ N and let sd be a standard Gaussian vector in RH0(X , E ⊗ Ld).
Then, for all x and y ∈ X , we have:

Cov(sd(x), sd(y)) = E[sd(x) ⊗ sd(y)
∗] = Ed(x, y). (2.9)
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Proof. We will prove that (x, y) 7→ E[sd(x)⊗ sd(y)
∗] is the kernel of the orthogonal projec-

tion onto RH0(X , E ⊗ Ld), i.e. satisfies (2.8). Let s ∈ RΓ(E ⊗ Ld), then
∫

y∈X
E[sd(x)⊗ sd(y)

∗] (s(y)) dVX = E

[
sd(x)

∫

y∈X
sd(y)

∗(s(y)) dVX

]
= E[sd(x) 〈s , sd〉] .

If s is orthogonal to RH0(X , E ⊗ Ld) this quantity equals 0. If s ∈ RH0(X , E ⊗ Ld) then

E[sd(x) 〈s , sd〉] = E
[
evdx(sd)s

∗
d(s)

]
= evdx (E[sd ⊗ s∗d] (s)) = evdx(Var(sd) s) = evdx(s) = s(x)

since Var(sd) = Id. Thus, for any s ∈ RΓ(E ⊗ Ld), E[sd(x) 〈s , sd〉] is the value at x of the
orthogonal projection of s on RH0(X , E ⊗Ld). Finally, the correlation kernel of (sd(x))x∈X
satisfies (2.8) and equals Ed.

Remark 2.7. If (s1,d, . . . , sNd,d) is any orthonormal basis of RH0(X , E ⊗ Ld), we have:

Ed : (x, y) 7−→
Nd∑

i=1

si,d(x)⊗ si,d(y)
∗. (2.10)

Remark 2.8. If E is the trivial bundle X × Cr → X then Ed splits as Ed = Id⊗ ed, where
Id is the identity of Cr and ed is the Bergman kernel of Ld. There is no such splitting in
general.

Remark 2.9. In a complex setting, Ed is also the covariance kernel of the centered Gaussian
field associated with a standard complex Gaussian vector in H0(X , E ⊗ Ld).

The Bergman kernel also describes the distribution of the derivatives of sd. Let ∇d denote
any connection on E ⊗ Ld → X . Then ∇d induces a connection (∇d)∗ on (E ⊗ Ld)∗ → X ,

which is defined for all η ∈ Γ
((

E ⊗ Ld
)∗)

by:

∀s ∈ Γ
(
E ⊗ Ld

)
, ∀x ∈ X , dx 〈s , η〉 =

〈
∇d

xs , η(x)
〉
+
〈
s(x) , (∇d)∗xη

〉
, (2.11)

where 〈· , ·〉 is the duality pairing. Let s ∈ Γ
(
E ⊗ Ld

)
, then s⋄ : x 7→ s(x)∗ = 〈· , s(x)〉 defines

a smooth section of
(
E ⊗ Ld

)∗
. Note that we use the notation s⋄ because s∗ already denotes

〈· , s〉 which is a linear form on Γ
(
E ⊗ Ld

)
. We want to understand the relation between

(∇d)∗xs
⋄ : TxX →

(
E ⊗ Ld

)∗
x

and
(
∇d

xs
)∗

. Recall that
(
∇d

xs
)∗

=
〈
· ,∇d

xs
〉
, where the inner

product is the one on
(
E ⊗ Ld

)
x
⊗T ∗

xX induced by hd and gC. That is,
(
∇d

xs
)∗

is the adjoint
operator of ∇d

xs : TxX →
(
E ⊗ Ld

)
x
. In order to get a nice relation, we have to assume that

∇d is a metric connection, i.e. that:

∀s, t ∈ Γ
(
E ⊗ Ld

)
, ∀x ∈ X , dx 〈s , t〉 =

〈
∇d

xs , t(x)
〉
+
〈
s(x) ,∇d

xt
〉
. (2.12)

Lemma 2.10. Let ∇d be a metric connection on E ⊗ Ld, let s ∈ Γ
(
E ⊗ Ld

)
and let x ∈ X .

Then for all v ∈ TxX ,

(∇d)∗xs
⋄ · v =

(
∇d

xs · v
)∗

= v∗ ◦
(
∇d

xs
)∗

. (2.13)

Proof. First, for all s, t ∈ Γ
(
E ⊗ Ld

)
and all x ∈ X ,

〈t(x) , s(x)〉 = 〈t(x) , s(x)∗〉 = 〈t(x) , s⋄(x)〉 . (2.14)

Then, by taking the derivative of (2.14), we get that for all s, t ∈ Γ
(
E ⊗ Ld

)
, for all x ∈ X

and v ∈ TxX :
〈
t(x) ,∇d

xs · v
〉
+
〈
∇d

xt · v , s(x)
〉
= dx (〈t , s〉) · v =

〈
t(x) , (∇d)∗xs

⋄ · v
〉
+
〈
∇d

xt · v , s⋄(x)
〉
.
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The first equality comes from the fact that ∇d is metric (see (2.12)) and the second from the
definition of the dual connection (2.11). Besides

〈
∇d

xt · v , s⋄(x)
〉
=
〈
∇d

xt · v , s(x)
〉
, hence for

all s ∈ Γ
(
E ⊗ Ld

)
and all x ∈ X we have:

∀v ∈ TxX , (∇d)∗xs
⋄ · v =

(
∇d

xs · v
)∗

.

Recall that
(
∇d

xs
)∗

is the adjoint of ∇d
xs. Hence for all v ∈ TxX and all ζ ∈

(
E ⊗ Ld

)
x
,

〈
ζ ,∇d

xs · v
〉
=
〈(

∇d
xs
)∗

ζ , v
〉
= v∗ ◦

(
∇d

xs
)∗

(ζ),

which proves the second equality in (2.13).

Remark 2.11. Conversely, one can show that a connection satisfying the first equality in
eq. (2.13) for every s, x and v is metric.

From now on, we assume that ∇d is metric. Then ∇d induces a natural connection ∇d
1

on P ⋆
1 (E ⊗Ld) → X ×X whose partial derivatives are: ∇d with respect to the first variable,

and the trivial connection with respect to the second. Similarly, (∇d)∗ induces a connection
∇d

2 on P ⋆
2

(
(E ⊗ Ld)∗

)
and ∇d

1 ⊗ Id+ Id⊗∇d
2 is a connection on (E ⊗ Ld) ⊠ (E ⊗ Ld)∗. We

denote by ∂x (resp. ∂y) its partial derivative with respect to the first (resp. second) variable.
By taking partial derivatives in (2.9), we get the following.

Corollary 2.12. Let d ∈ N, let ∇d be a metric connection on E⊗Ld and let sd be a standard
Gaussian vector in RH0(X , E ⊗Ld). Then, for all x and y ∈ X , for all (v, w) ∈ TxX ×TyX ,
we have:

Cov
(
∇d

xs · v, s(y)
)
= E

[(
∇d

xs · v
)
⊗ s(y)∗

]
= ∂xEd(x, y) · v, (2.15)

Cov
(
s(x),∇d

ys · w
)
= E

[
s(x) ⊗

(
∇d

ys · w
)∗]

= ∂yEd(x, y) · w, (2.16)

Cov
(
∇d

xs · v,∇d
ys · w

)
= E

[(
∇d

xs · v
)
⊗
(
∇d

ys · w
)∗]

= ∂x∂yEd(x, y) · (v, w). (2.17)

Proof. The first equality of each line is simply the definition of the covariance operator. By
applying ∂x to (2.9) we get:

E
[(
∇d

xs
)
⊗ s(y)∗

]
= ∂xEd(x, y),

which proves (2.15). We can rewrite (2.9) as: ∀x, y ∈ X , Ed(x, y) = E[s(x)⊗ s⋄(y)]. By
applying ∂y to this equality, we get:

E

[
s(x)⊗

(
∇d
)∗
y
s⋄
]
= ∂yEd(x, y).

Then we apply this operator to w ∈ TyX , and we obtain (2.16) by Lemma 2.10. The proof
of (2.17) is similar.

We would like to write that ∂yEd(x, y) is Cov
(
s(x),∇d

ys
)
= E

[
s(x) ⊗

(
∇d

ys
)∗]

. Unfortu-

nately, this can not be true since

∂yEd(x, y) ∈ T ∗
yX ⊗

(
E ⊗ Ld

)
x
⊗
(
E ⊗ Ld

)∗
y

while

E

[
s(x)⊗

(
∇d

ys
)∗] ∈ TyX ⊗

(
E ⊗ Ld

)
x
⊗
(
E ⊗ Ld

)∗
y
.
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Let ∂♯
yEd(x, y) ∈ TyX ⊗

(
E ⊗ Ld

)
x
⊗
(
E ⊗ Ld

)∗
y

be defined by:

∀w ∈ TyX , ∂♯
yEd(x, y) · w∗ = ∂yEd(x, y) · w. (2.18)

Similarly, let ∂x∂
♯
yEd(x, y) ∈ T ∗

xX ⊗ TyX ⊗
(
E ⊗ Ld

)
x
⊗
(
E ⊗ Ld

)∗
y

be defined by:

∀(v, w) ∈ TxX × TyX , ∂x∂
♯
yEd(x, y) · (v, w∗) = ∂x∂yEd(x, y) · (v, w). (2.19)

Then by Lemma 2.10 and Corollary 2.12, we have the following.

Corollary 2.13. Let d ∈ N, let ∇d be a metric connection on E⊗Ld and let sd be a standard
Gaussian vector in RH0(X , E ⊗ Ld). Then, for all x and y ∈ X , we have:

Cov
(
∇d

xs, s(y)
)
= E

[
∇d

xs⊗ s(y)∗
]
= ∂xEd(x, y), (2.20)

Cov
(
s(x),∇d

ys
)
= E

[
s(x)⊗

(
∇d

ys
)∗]

= ∂♯
yEd(x, y), (2.21)

Cov
(
∇d

xs,∇d
ys
)
= E

[
∇d

xs⊗
(
∇d

ys
)∗]

= ∂x∂
♯
yEd(x, y). (2.22)

3 Estimates for the Bergman kernel

The goal of this section is to recall the estimates we need for the Bergman kernel. Most of
what follows can be found in [17], with small additions from [18] and [19]. The first to use
this kind of estimates in a random geometry context were Shiffman and Zelditch [25]. They
used the estimates from [35] for the related Szegö kernel (see also [3, 26]). Catlin [6] proved
similar estimates for the Bergman kernel independently.

In order to state the near-diagonal estimates for the Bergman kernel, we first need to
choose preferred charts on X , E and L around any point in M . This is done in Section 3.1.
Unlike our main reference [17], we are only concerned with a neighborhood of the real locus
of X , but we need to check that these charts are well-behaved with respect to the real
structures. Sections 3.2, 3.3 and 3.4 state respectively near-diagonal, diagonal and far off-
diagonal estimates for Ed.

3.1 Real normal trivialization

In this section, we define preferred local trivializations for E and L around any point in M .
We also prove that these trivializations are compatible with the real and metric structures.

Let R > 0 be such that the injectivity radius of X is larger than 2R. Let x0 ∈ M ,
then the exponential map expx0

: Tx0X → X at x0 is a diffeomorphism from the ball
BTx0X (0, 2R) ⊂ Tx0X to the geodesic ball BX (x0, 2R) ⊂ X . Note that this diffeomorphism
is not biholomorphic in general.

Notation 3.1. Here and in the sequel, we always denote by BA(a,R) the open ball of center
a and radius R > 0 in the metric space A.

Since cX is an isometry (see Sect. 2.1), we have that cX ◦ expx0
= expx0

◦ dx0cX . Then
expx0

sends Tx0M = ker (dx0cX − Id) to M and agrees on Tx0M with the exponential map
at x0 in (M, g). By restriction, we get a diffeomorphism from BTx0M

(0, 2R) ⊂ Tx0M to the
geodesic ball BM (x0, 2R) ⊂ M . Moreover, on BTx0X (0, 2R) we have:

dx0cX = (expx0
)−1 ◦ cX ◦ expx0

. (3.1)

We say that expx0
defines a real normal chart about x0.

14



Since i · Tx0M = ker (dx0cX + Id), we have Tx0X = Tx0M ⊕ i · Tx0M . Note that Tx0M
and i · Tx0M are orthogonal for gx0 , since these are distinct eigenspaces of an isometric
involution. Moreover, we know from Sect. 2.1 that c⋆X gC = gC. This implies that (gC)x0

takes real values on Tx0M × Tx0M , i.e. the restrictions to Tx0M of (gC)x0 and gx0 are
equal. Thus, (gC)x0 is the sesquilinear extension of gx0 restricted to Tx0M . Let I be an
isometry from Tx0M to Rn with its standard Euclidean structure, I extends as a C-linear
isometry IC : Tx0X → Cn, such that IC ◦ dx0cX ◦ I−1

C
is the complex conjugation in Cn.

Thus, expx0
◦ I−1

C
: BCn(0, 2R) → BX (x0, 2R) defines normal coordinates that induce normal

coordinates BRn(0, 2R) → BM (x0, 2R) and such that IC ◦ (expx0
)−1 ◦ cX ◦ expx0

◦ I−1
C

is the
complex conjugation in Cn. Such coordinates are called real normal coordinates about x0.

We can now trivialize E over BX (x0, 2R). Let ∇E denote the Chern connection of E . We
identify the fiber at expx0

(z) ∈ BX (x0, 2R) with Ex0 , by parallel transport with respect to
∇E along the geodesic from x0 to expx0

(z), defined by t 7→ expx0
(tz) from [0, 1] to X (cf. [17,

sect. 1.6] and [18]). This defines a bundle map ϕx0 : BTx0X (0, 2R)× Ex0 → E/BX (x0,2R) that
covers expx0

. We say that ϕx0 is the real normal trivialization of E over BX (x0, 2R).
Since x0 ∈ M , cE(Ex0) = Ex0 and we denote by cE,x0 the restriction of cE to Ex0 . Then

(dx0cX , cE,x0) is a real structure on BTx0X (0, 2R)×Ex0 compatible with the real structure on
BTx0X (0, 2R). We want to check that ϕx0 is well-behaved with respect to the real structures,
i.e. that for all z ∈ BTx0X (0, 2R) and ζ0 ∈ Ex0 ,

cE(ϕx0(z, ζ
0)) = ϕx0

(
dx0cX · z, cE,x0(ζ

0)
)
. (3.2)

This will be a consequence of Lemma 3.4 below.

Definition 3.2. Let E → X be a holomorphic vector bundle equipped with compatible real
structures cE and cX and let ∇ be a connection on E , we say that ∇ is a real connection if
for every section s ∈ Γ(E) we have:

∀x ∈ X , ∇x (cE ◦ s ◦ cX ) = cE ◦ ∇cX (x)s ◦ dxcX .

Remark 3.3. Let x ∈ M , v ∈ TxM and s ∈ RΓ(E). If ∇ is a real connection on E , then
∇xs · v ∈ REx. Indeed,

∇xs · v = ∇cX (x)s ◦ dxcX · v = cE (∇x (cE ◦ s ◦ cX ) · v) = cE (∇xs · v) .

Lemma 3.4. Let E → X be a holomorphic vector bundle equipped with compatible real
structures cE and cX and a real Hermitian metric hE . Then, the Chern connection ∇E of E
is real.

Proof. Since cE and cX are involutions and (dxcX )−1 = dcX (x)cX , we need to check that

∀s ∈ Γ(E), ∀x ∈ X ∇E
xs = cE ◦ ∇E

cX (x) (cE ◦ s ◦ cX ) ◦ dxcX . (3.3)

Let ∇̃ be defined by ∇̃xs = cE ◦∇E
cX (x) (cE ◦ s ◦ cX )◦dxcX , for all s ∈ Γ(E) and x ∈ X . Then

∇̃ is a connection on E and it is enough to check that it is compatible with both the metric
and the complex structure. Indeed, in this case ∇̃ = ∇E by unicity of the Chern connection,
which proves (3.3).

Let us check that ∇̃ satisfies Leibniz’ rule. Let s ∈ Γ(E) and f : X → C. We have:

∇̃x(fs) = cE ◦ ∇E
cX (x)

(
(f ◦ cX )(cE ◦ s ◦ cX )

)
◦ dxcX

= cE ◦
(
f(x)∇E

cX (x) (cE ◦ s ◦ cX ) + dcX (x)(f ◦ cX )⊗ cE(s(x))
)
◦ dxcX

= f(x)∇̃xs+ dxf ⊗ s(x).
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Since ∇E is the Chern connection, its anti-holomorphic part is ∂
E
. Then, dxcX and cE being

anti-linear (resp. fiberwise), the anti-linear part of ∇̃xs equals cE ◦∂
E
cX (x) (cE ◦ s ◦ cX )◦dxcX .

By computing in a local holomorphic frame, one can check that:

∀s ∈ Γ(E), ∀x ∈ X , cE ◦ ∂E
cX (x) (cE ◦ s ◦ cX ) ◦ dxcX = ∂

E
xs.

Thus, ∇̃ is compatible with the complex structure. Finally, we check the compatibility with
the metric structure. Let s, t ∈ Γ(E) and x ∈ X , since hE = c⋆E(hE) we have:

dx(hE(s, t)) = dx
(
hE(cE ◦ s, cE ◦ t)

)
= dcX (x)

(
hE(cE ◦ s ◦ cX , cE ◦ t ◦ cX )

)
◦ dxcX

= hE
(
∇E

cX (x)(cE ◦ s ◦ cX ), cE(t(x))
)
◦ dxcX

+hE
(
cE(s(x)),∇E

cX (x)(cE ◦ t ◦ cX )
)
◦ dxcX

= hE
(
cE ◦ ∇E

cX (x)(cE ◦ s ◦ cX ), t(x)
)
◦ dxcX

+hE
(
s(x), cE ◦ ∇E

cX (x)(cE ◦ s ◦ cX )
)
◦ dxcX

= hE
(
∇̃xs, t(x)

)
+ hE

(
s(x), ∇̃xt

)
.

Let us now prove (3.2). Let z ∈ BTx0X (0, 2R), let ζ0 ∈ Ex0 and let ζ : BX (x0, 2R) → E
be the section defined by ζ : x 7→ ϕx0

(
(expx0

)−1(x), ζ0
)
. We denote by γ : [0, 1] 7→ X the

geodesic t 7→ expx0
(tz). We have for all t ∈ [0, 1], ζ(γ(t)) = ϕx0(tz, ζ

0) and, by the definition
of ϕx0 , we have:

∀t ∈ [0, 1], ∇E
γ(t)ζ · γ′(t) = 0. (3.4)

Let us denote ζ̃ = cE ◦ ζ ◦ cX and γ = cX ◦ γ. Since ∇E is real, (3.4) implies that for all
t ∈ [0, 1],

∇E
γ(t)ζ̃ · γ′(t) = ∇E

cX (γ(t))ζ̃ ◦ dγ(t)(cX ) · γ′(t) = cE ◦ ∇E
γ(t)ζ · γ′(t) = 0. (3.5)

Since cX is an isometry, γ is a geodesic. More precisely, γ : t 7→ expx0
(tdx0cX · z). Besides,

ζ̃(x0) = cE(ζ(x0)) = cE,x0(ζ
0). Then by (3.5), for all t ∈ [0, 1],

ϕx0

(
tdx0cX · z, cE,x0(ζ

0)
)
= ϕx0

(
tdx0cX · z, ζ̃(x0)

)
= ζ̃(γ(t)).

Finally, we get (3.2) for t = 1:

ϕx0

(
dx0cX · z, cE,x0(ζ

0)
)
= ζ̃(γ(1)) = cE(ζ(γ(1))) = cE

(
ϕx0(z, ζ

0)
)
.

Recall that RE is the set of fixed points of cE . Then RE is naturally a rank r real vector
bundle over M , as a subbundle of E/M . Let ζ0 ∈ REx0 , and ζ : x 7→ ϕx0

(
(expx0

)−1(x), ζ0
)

then, for all x ∈ BX (x0, 2R),

cE ◦ ζ ◦ cX (x) = cE ◦ ϕx0

(
(expx0

)−1(cX (x)), ζ0
)

= cE ◦ ϕx0

(
dx0cX ◦ (expx0

)−1(x), ζ0
)

= ϕx0

(
(expx0

)−1(x), cE,x0(ζ
0)
)

= ζ(x).

Hence, ζ is a real local section of E and in particular, ∀x ∈ M , ζ(x) ∈ REx. This shows that
ϕx0 induces, by restriction, a bundle map BTx0M

(0, 2R)×REx0 → RE/BM (x0,2R) that covers
the restriction of expx0

to BTx0M
(0, 2R).

16



Let (ζ01 , . . . , ζ
0
r ) be an orthonormal basis of REx0 . Since REx0 = ker (cE,x0 − Id) and

cE,x0 is C-anti-linear, we have Ex0 = REx0 ⊕ i · REx0 . Moreover, since hE,x0 and cE,x0 are
compatible, (ζ01 , . . . , ζ

0
r ) is also an orthonormal basis of Ex0 . Let i ∈ {1, . . . , r}, we denote by

ζi : BX (x0, 2R) → E the real local section defined by:

ζi : x 7→ ϕx0

(
(expx0

)−1(x), ζ0i
)
.

Then, for every x ∈ BX (0, 2R), (ζ1(x), . . . , ζr(x)) is an orthonormal basis of Ex. Indeed, the
sections ζi are obtained by parallel transport for ∇E along geodesics starting at x0, and ∇E

is compatible with hE . Hence, for all i and j ∈ {1, . . . , r}, for all z ∈ BX (x0, 2R),

d

dt

(
hE(ζi(expx0

(tz)), ζj(expx0
(tz)))

)
= hE

(
∇E

expx0
(tz)ζi ◦ dtz expx0

·z, ζj(expx0
(tz)))

)

+ hE
(
ζi(expx0

(tz))),∇E
expx0

(tz)ζj ◦ dtz expx0
·z
)
= 0.

The function x 7→ hE(ζi(x), ζj(x)) is then constant along geodesics starting at x0, hence on
BX (x0, 2R). Since (hE(ζi(x), ζj(x)))16i,j6r is the identity matrix of size r at x0, (ζ1, . . . , ζr)
is a smooth unitary frame for E over BX (0, 2R). In particular, this shows that the real normal
trivialization ϕx0 is unitary. Since the ζi are real, (ζ1(x), . . . , ζr(x)) is an orthonormal basis
of REx for all x ∈ M . Hence (ζ1, . . . , ζr) is also a smooth orthogonal frame for RE over
BM (0, 2R). We say that (ζ1, . . . , ζr) is a local real unitary frame.

Similarly, let ϕ′
x0

denote the real normal trivialization of L over BX (x0, 2R). Then any
unit vector ζ00 ∈ RLx0 defines a local real unitary frame ζ0 for L:

ζ0 : x 7→ ϕ′
x0

(
(expx0

)−1(x), ζ00
)
.

Then, for any d ∈ N, ϕx0 and ϕ′
x0

induce a trivialization ϕx0 ⊗ (ϕ′
x0
)d of E ⊗ Ld. This

trivialization is the real normal trivialization of E ⊗ Ld over BX (x0, 2R), i.e. it is obtained
by parallel transport along geodesics starting at x0 for the Chern connection of E ⊗ Ld.
Moreover, a local real unitary frame for E ⊗ Ld is given by (ζ1 ⊗ ζd0 , . . . , ζr ⊗ ζd0 ).

3.2 Near-diagonal estimates

We can now state the near-diagonal estimates of Ma and Marinescu for the Bergman kernel.
In the sequel, we fix some R > 0 such that 2R is smaller than the injectivity radius of X .
Let x ∈ M , we have a natural real normal chart

expx× expx : BTxX (0, 2R)×BTxX (0, 2R) → BX (x, 2R)×BX (x, 2R).

Moreover, the real normal trivialization of E ⊗ Ld over BX (x, 2R) (see Section 3.1) induces
a trivialization

BTxX (0, 2R)×BTxX (0, 2R)× End
((
E ⊗ Ld

)
x

)
≃
(
E ⊗ Ld

)
⊠
(
E ⊗ Ld

)∗
/BX (x,2R)×BX (x,2R)

that covers expx× expx. This trivialization coincides with the real normal trivialization of(
E ⊗ Ld

)
⊠
(
E ⊗ Ld

)∗
over BX (x, 2R)×BX (x, 2R).

Recall that dVX denotes the Riemannian measure on X . When we read this measure in
the real normal chart expx, it admits a density κ : BTxX (0, 2R) → R+ with respect to the
normalized Lebesgue measure of (TxX , gx). More precisely, we have κ(z) =

√
det(gij(z))

where (gij(z)) is the matrix of ((expx)
⋆g)z, read in any real orthonormal basis of (TxX , gx).

Since we use normal coordinates and X is compact, we have

κ(z) = 1 +O
(
‖z‖2

)
(3.6)
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where ‖·‖ is induced by gx and the estimate O
(
‖z‖2

)
does not depend on x.

Similarly, on the real locus (M, g), |dVM | admits a density, in the real normal chart expx,
with respect to the normalized Lebesgue measure on (TxM, gx). This density is:

z 7−→ det
(
((exp⋆x g)z)/TxM

) 1
2

, (3.7)

from BTxM (0, 2R) to R+. As we already explained in Sect. 3.1, on the real locus, gC is the
sesquilinear extension of the restriction of g to TM . Hence, for all z ∈ BTxM (0, 2R) we have:

det
(
((exp⋆x g)z)/TxM

)2
= det ((exp⋆x g)z) ,

which means that the density of |dVM | in the chart expx is
√
κ : BTxM (0, 2R) → R+.

The following result gives the asymptotic of the Bergman kernel Ed (see Sect. 2.3) and
its derivatives, read in the real normal trivialization about x of

(
E ⊗ Ld

)
⊠
(
E ⊗ Ld

)∗
. It

was first established by Dai, Liu and Ma in [7, thm. 4.18’].

Theorem 3.5 (Dai–Liu–Ma). There exists C′ > 0 such that, for any p ∈ N, there exists Cp

such that ∀k ∈ {0, . . . , p}, ∀d ∈ N
∗, ∀z, w ∈ BTxX (0, R),

∥∥∥∥∥∥
Dk

(z,w)



Ed(z, w)−
(
d

π

)n exp
(
− d

2

(
‖z‖2 + ‖w‖2 − 2 〈z , w〉

))

√
κ(z)

√
κ(w)

Id(E⊗Ld)x





∥∥∥∥∥∥

6 Cpd
n+ p

2−1
(
1 +

√
d(‖z‖+ ‖w‖)

)2n+6+p

exp
(
−C′√d ‖z − w‖

)
+O

(
d−∞) ,

where:

• Dk
(z,w) is the k-th differential at (z, w) for a map TxX × TxX → End

((
E ⊗ Ld

)
x

)
,

• the Hermitian inner product 〈· , ·〉 comes from the Hermitian metric (gC)x,

• the norm ‖·‖ on TxX is induced by gx (or equivalently 〈· , ·〉),
• the norm ‖·‖ on (T ∗

xX )
⊗q ⊗ End

((
E ⊗ Ld

)
x

)
is induced by gx and (hd)x.

Moreover, the constants Cp and C′ do not depend on x. The notation O(d−∞) means that,
for any l ∈ N, this term is O

(
d−l
)

with a constant that does not depend on x, z, w or d.

Proof. This is a weak version of [17, thm. 4.2.1], with k = 1 and m′ = 0 in the notations
of [17]. We used the fact that F0 in [17] is given by:

F0(z, w) =
1

πn
exp

(
−1

2

(
‖z‖2 + ‖w‖2 − 2 〈z , w〉

))
Id(E⊗Ld)x ,

(compare (4.1.84), (4.1.85) and (4.1.92) pp. 191–192 and (5.1.18) p. 46 in [17]) and F1 = 0.
See [17, Rem. 1.4.26] and [18].

Remark 3.6. Note that our formula differs from the one in [17, 18] by a factor π in the
exponential. This comes from different normalizations of the Kähler form ω.

We are only interested in the behavior of Ed at points of the real locus, hence we restrict
our focus to points in M and derivatives in real directions. Similarly, for x, y ∈ M , Ed(x, y)
restricts to an element of R

(
E ⊗ Ld

)
x
⊗R

(
E ⊗ Ld

)∗
y
, still denoted by Ed(x, y). Note that we

can recover the original Ed(x, y) :
(
E ⊗ Ld

)
y
→
(
E ⊗ Ld

)
x

from its restriction by C-linear
extension.

First, we need to know the behavior of Ed and its derivatives up to order 1 in each
variable in a neighborhood of the diagonal in M ×M .
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Corollary 3.7. There exist C and C′ > 0, not depending on x, such that ∀k ∈ {0, 1, 2},
∀d ∈ N∗, ∀z, w ∈ BTxM (0, R),

∥∥∥∥∥∥
Dk

(z,w)


Ed(z, w)−

(
d

π

)n exp
(
− d

2 ‖z − w‖2
)

√
κ(z)

√
κ(w)

IdR(E⊗Ld)x




∥∥∥∥∥∥

6 Cdn+
k
2−1

(
1 +

√
d(‖z‖+ ‖w‖)

)2n+8

exp
(
−C′√d ‖z − w‖

)
+O

(
d−∞) ,

where Dk is the k-th differential for a map from TxM × TxM to End
(
R
(
E ⊗ Ld

)
x

)
, the

norm on TxM is induced by gx and the norm on (T ∗
xM)

⊗q ⊗End
((
E ⊗ Ld

)
x

)
is induced by

gx and (hd)x.

Proof. We apply Theorem. 3.5 for p = k ∈ {0, 1, 2} and set C = max(C0, C1, C2). Then we
restrict everything to the real locus.

3.3 Diagonal estimates

In this section, we deduce diagonal estimates for Ed and its derivatives from Thm. 3.5. Let
x ∈ M , then the usual differential for maps from TxX to (E ⊗ Ld)x defines a local trivial
connection ∇̃d on (E⊗Ld)/BX (0,2R), via the real normal trivialization. Since this trivialization

is well-behaved with respect to both the metric and the real structure (cf. Sect. 3.1), ∇̃d is
metric and real. By a partition of unity argument, there exists a real metric connection ∇d

on E ⊗ Ld such that ∇d agrees with ∇̃d on BX (0, R). In the remainder of this section, we
use this connection ∇d, and the induced connection on (E ⊗ Ld) ⊠ (E ⊗ Ld)∗, so that the
connection is trivial in the real normal trivialization about x.

Recall that ∂♯
yEd and ∂x∂

♯
yEd are defined by (2.18) and (2.19) respectively.

Corollary 3.8. Let x ∈ M , let ∇d be a real metric connection that is trivial over BTxX (0, R)
in the real normal trivialization about x. Let ∂♯

y and ∂x denote the associated partial deriva-

tives for sections of (E ⊗Ld)⊠ (E ⊗Ld)∗, then we have the following estimates as d → +∞.

Ed(x, x) =
dn

πn
IdR(E⊗Ld)x +O

(
dn−1

)
, (3.8)

∂xEd(x, x) = O
(
dn−

1
2

)
, (3.9)

∂♯
yEd(x, x) = O

(
dn−

1
2

)
, (3.10)

∂x∂
♯
yEd(x, x) =

dn+1

πn
IdR(E⊗Ld)x ⊗ IdT∗

xM +O(dn) . (3.11)

Moreover the error terms do not depend on x.

Proof. Let x ∈ M and let us choose an orthonormal basis of TxM . We denote the corre-
sponding coordinates on TxM × TxM by (z1, . . . , zn, w1, . . . , wn) and by ∂zi and ∂wj

the
associated partial derivatives. Let us compute the partial derivatives of Ed read in the real
normal trivialization of

(
E ⊗ Ld

)
⊠
(
E ⊗ Ld

)∗
about (x, x). By Cor. 3.7, we only need to

compute the partial derivatives at (0, 0) of

ξd : (z, w) 7→
exp

(
− d

2 ‖z − w‖2
)

√
κ(z)

√
κ(w)

(3.12)
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for any d ∈ N. For all i and j ∈ {1, . . . , n} and all (z, w) ∈ BTxM (0, R) we have:

∂ziξd(z, w) =

(
−d(zi − wi)−

1

2

∂ziκ(z)

κ(z)

) exp
(
− d

2 ‖z − w‖2
)

√
κ(z)

√
κ(w)

, (3.13)

∂wj
ξd(z, w) =

(
d(zj − wj)−

1

2

∂wj
κ(w)

κ(w)

) exp
(
− d

2 ‖z − w‖2
)

√
κ(z)

√
κ(w)

(3.14)

and

∂zi∂wj
ξd(z, w) =

exp
(
− d

2 ‖z − w‖2
)

√
κ(z)

√
κ(w)

×
(
dδij − d2(zi − wi)(zj − wj)−

d(zj − wj)

2

∂ziκ(z)

κ(z)
+

d(zi − wi)

2

∂wj
κ(w)

κ(w)

)
, (3.15)

where δij equals 1 if i = j and 0 otherwise. Recall that, by (3.6), κ(0) = 1 and the partial
derivatives of κ vanish at the origin. Then evaluating the above expressions at (0, 0) gives:

ξd(0, 0) = 1, ∂ziξd(0, 0) = 0 = ∂wj
ξd(0, 0) and ∂zi∂wj

ξd(0, 0) = δijd.

By Cor. 3.7, we have the following estimates for the partial derivatives of Ed read in the real
normal trivialization about x: for all i, j ∈ {1, . . . , n},

Ed(0, 0) =
dn

πn
IdR(E⊗Ld)x +O

(
dn−1

)
, ∂wj

Ed(0, 0) = O
(
dn−

1
2

)
,

∂zi∂wj
Ed(0, 0) = δij

dn+1

πn
IdR(E⊗Ld)x +O(dn) , ∂ziEd(0, 0) = O

(
dn−

1
2

)
.

(3.16)

Moreover these estimates are uniform in x ∈ M . Equations (3.8), (3.9), (3.10) and (3.11)
are coordinate-free versions of these statements.

3.4 Far off-diagonal estimates

Finally, we will use the fact that the Bergman kernel and its derivatives decrease fast enough
outside of the diagonal. In this section we recall the far off-diagonal estimates of [19, thm. 5],
see also [17, prop. 4.1.5].

Let d ∈ N and let S be a smooth section of R
(
E ⊗ Ld

)
⊠R

(
E ⊗ Ld

)∗
. Let x, y ∈ M , we

denote by ‖S(x, y)‖Ck the maximum of the norms of S and its derivatives of order at most k
at the point (x, y). The derivatives of S are computed with respect to the connection induced
by the Chern connection of E ⊗Ld and the Levi–Civita connection on M . The norms of the
derivatives are the ones induced by hd and g.

Theorem 3.9 (Ma–Marinescu). There exist C′ > 0 and d0 ∈ N∗ such that, for all k ∈ N,
there exists Ck > 0 such that ∀d > d0, ∀x, y ∈ M

‖Ed(x, y)‖Ck 6 Ckd
n+ k

2 exp
(
−C′√d ρg(x, y)

)
,

where ρg(·, ·) denotes the geodesic distance in (M, g).

Proof. This is the first part of [19, thm. 5], where we only considered the restriction of Ed

and its derivatives to M . Note that the Levi–Civita connection on M is the restriction of
the Levi–Civita connection on X . Hence the norm ‖·‖Ck , such as we defined it, is smaller
than the one used in [19].
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4 Proof of Theorem 1.6

In this section, we prove Theorem 1.6. Recall that X is a compact Kähler manifold of
dimension n > 2 defined over the reals and that M denotes its real locus, assumed to be
non-empty. Let E → X be a rank r ∈ {1, . . . , n − 1} real Hermitian vector bundle and
L → X be a real Hermitian line bundle whose curvature form is ω, the Kähler form of X .
We assume that E and L are endowed with compatible real structures. For all d ∈ N, Ed

denotes the Bergman kernel of E ⊗ Ld. Finally, sd denotes a standard Gaussian vector in
RH0(X , E ⊗Ld), whose real zero set is denoted by Zd, and |dVd| is the measure of integration
over Zd.

4.1 The Kac–Rice formula

The first step in our proof of Thm. 1.6 is to prove a version of the Kac–Rice formula adapted
to our problem. This is the goal of this section. First, we recall the Kac–Rice formula we
used in [16] to compute the expectation of Vol (Zd) (Thm. 4.1). Then we prove a Kac–Rice
formula adapted to the computation of the covariance (Thm. 4.4), compare [2, thm. 6.3] and
[32, chap. 11.5].

Let L : V → V ′ be a linear map between two Euclidean spaces, recall that we denote by∣∣det⊥ (L)
∣∣ its Jacobian (cf. Def. 1.3). Since LL∗ is a semi-positive symmetric endomorphism

of V ′, det(LL∗) > 0 and
∣∣det⊥ (L)

∣∣ is well-defined. The range of L∗ is ker(L)⊥, hence
ker(LL∗) = ker(L∗) = L(V )⊥. Thus

∣∣det⊥ (L)
∣∣ > 0 if and only if LL∗ is injective, that is if

and only if L is surjective. In fact, if L is surjective, let A be the matrix of the restriction of
L to ker(L)⊥ in any orthonormal basis of ker(L)⊥ and V ′, then we have:

∣∣det⊥ (L)
∣∣ =

√
det (AAt) = |det(A)| .

Theorem 4.1 (Kac–Rice formula). Let d > d1, where d1 is defined by Lem. 2.4 and let ∇d

be any real connection on E ⊗Ld. Let sd be a standard Gaussian vector in RH0(X , E ⊗Ld).
Then for any Borel measurable function φ : M → R we have:

E

[∫

x∈Zd

φ(x) |dVd|
]
= (2π)−

r
2

∫

x∈M

φ(x)

|det⊥ (evdx)|
E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
|dVM | (4.1)

whenever one of these integrals is well-defined.

The expectation on the right-hand side of (4.1) is to be understood as the conditional
expectation of

∣∣det⊥
(
∇d

xsd
)∣∣ given that sd(x) = 0. This result is a consequence of [16,

thm. 5.3]. See also Section 5.3 of [16], where we applied this result with φ = 1, in order to
compute the expected volume of Zd.

Let us denote by ∆ = {(x, y) ∈ M2 | x = y} the diagonal in M2. Let d ∈ N and let
(x, y) ∈ M2 \∆ we denote by evdx,y the evaluation map:

evdx,y : RH0(X , E ⊗ Ld) −→ R
(
E ⊗ Ld

)
x
⊕ R

(
E ⊗ Ld

)
y
.

s 7−→ (s(x), s(y))
(4.2)

The following proposition is the equivalent of Lemma 2.4 for two points (x, y) /∈ ∆. One
could prove this result using only the estimates of Section 3. We give instead a less technical
proof, using the Kodaira embedding theorem. See [17, sect. 5.1] for a discussion of the
relations between these approaches.

Proposition 4.2. There exists d2 ∈ N, depending only on X , E and L, such that for every
d > d2 and every (x, y) ∈ M2 \∆, the evaluation map evdx,y is surjective.
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Proof. Recall that there exists d1 ∈ N such that, for all d > d1, the map evdx defined by (2.3) is
surjective for any x ∈ M (see Lem. 2.4). Then, for all d > d1 and all x ∈ M , the complexified
map ẽvdx : H0(X , E ⊗ Ld) →

(
E ⊗ Ld

)
x

defined by ẽvdx(s) = s(x) is also surjective.
For any l ∈ N, we denote by Ψl : X → P

(
H0(X ,Ll)∗

)
the Kodaira map, defined

by Ψl(x) =
{
s ∈ H0(X ,Ll)

∣∣ s(x) = 0
}
. By the Kodaira embedding theorem (see [12,

chap. 1.4]), there exists l0 ∈ N such that Ψl0 is well-defined and is an embedding.
We set d2 = l0 + d1. Let d > d2 and let (x, y) ∈ M2 \ ∆. Since Ψl0(x) and Ψl0(y) are

distinct hyperplanes in H0(X ,Ll0), there exist σx and σy ∈ H0(X ,Ll0) such that:

{
σx(x) 6= 0,

σx(y) = 0
and

{
σy(x) = 0,

σy(y) 6= 0.

Since d − l0 > d1, ẽv
d
x is onto and there exist σ1,x, . . . , σr,x ∈ H0(X , E ⊗ Ld−l0) such that

(σ1,x(x), . . . , σr,x(x)) is a basis of
(
E ⊗ Ld−l0

)
x
. Similarly there exist σ1,y , . . . , σr,y such that

(σ1,y(y), . . . , σr,y(y)) is a basis of
(
E ⊗ Ld−l0

)
y
. We define global holomorphic sections of

E ⊗ Ld by sk,x = σk,x ⊗ σx and sk,y = σk,y ⊗ σy for all k ∈ {1, . . . , r}. These sections are
such that (sk,x(x))16k6r is a basis of

(
E ⊗ Ld

)
x
, (sk,y(y))16k6r is a basis of

(
E ⊗ Ld

)
y

and
for all k ∈ {1, . . . , r}, sk,x(y) = 0 = sk,y(x). This proves that the map

ẽvdx,y : H0(X , E ⊗ Ld) −→
(
E ⊗ Ld

)
x
⊕
(
E ⊗ Ld

)
y
.

s 7−→ (s(x), s(y))

has rank at least 2r (as a C-linear map). Since ẽvdx,y is the complexified map of evdx,y, the
latter must have rank at least 2r (as a R-linear map), hence it is onto.

Remark 4.3. In Prop. 4.2, evdx,y is surjective if and only if
∣∣det⊥

(
evdx,y

)∣∣ > 0, that is if and

only if evdx,y
(
evdx,y

)∗
is non-singular. Since the latter is the variance operator of evdx,y(sd),

where sd ∼ N (Id) in RH0(X , E ⊗ Ld), we see that the surjectivity of evdx,y is equivalent to
the non-degeneracy of the distribution of (sd(x), sd(y)).

We can now deduce a Kac–Rice type formula from Prop. 4.2. For any d ∈ N, we define
Fd to be the following bundle map over M2:

Fd : RH0(X , E ⊗ Ld)×M2 −→ R
(
E ⊗ Ld

)
× R

(
E ⊗ Ld

)
.

(s, x, y) 7−→ (s(x), s(y))

Let ∇d be any real connection on E ⊗ Ld → X (see Def. 3.2). Then by Rem. 3.3, the
restriction of ∇d defines a connection on R(E ⊗ Ld) → M . Let ∇dFd denote the vertical
component of the differential of Fd. Then, for all (s0, x, y) ∈ RH0(X , E ⊗Ld)×M2, we have:

∇d
(s0,x,y)

Fd : RH0(X , E ⊗ Ld)× TxM × TyM −→ R
(
E ⊗ Ld

)
x
⊕ R

(
E ⊗ Ld

)
y
.

(s, v, w) 7−→
(
s(x) +∇d

xs0 · v, s(y) +∇d
ys0 · w

)

We denote by ∂d
1Fd the partial derivative of Fd with respect to the first variable (meaning s),

and by ∂d
2Fd its partial derivative with respect to the second variable (meaning (x, y)). Then

for all (s0, x, y) ∈ RH0(X , E ⊗ Ld)×M2 we have:

∂d
1Fd(s0, x, y) = evdx,y and ∂d

2Fd(s0, x, y) : (v, w) 7→
(
∇d

xs0 · v,∇d
ys0 · w

)
. (4.3)

From now on, we assume that d > d2, where d2 is given by Prop. 4.2. We define an incidence
manifold Σd by:

Σd = (Fd)
−1

(0) ∩
(
RH0(X , E ⊗ Ld)×

(
M2 \∆

))
.
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By Prop. 4.2 and eq. 4.3, for all (s, x, y) ∈ RH0(X , E ⊗ Ld) ×
(
M2 \∆

)
, ∂d

1Fd,p(s, x, y) is
surjective. Thus, the restriction of Fd to RH0(X , E ⊗ Ld) ×

(
M2 \∆

)
is a submersion and

Σd is a submanifold of RH0(X , E ⊗ Ld) × M2 of codimension 2r. Note that we are only
concerned with the zero set of Fd, hence none of this depends on the choice of ∇d. We can
now state the Kac–Rice formula in this context.

Theorem 4.4 (Kac–Rice formula). Let d > d2, where d2 is given by Prop. 4.2, and let ∇d

be any real connection on E ⊗Ld. Let sd be a standard Gaussian vector in RH0(X , E ⊗Ld).
Then for any Borel measurable function Φ : Σd → R we have:

E

[∫

(x,y)∈(Zd)2\∆
Φ(sd, x, y) |dVd|2

]
=

1

(2π)r

∫

(x,y)∈M2\∆

1∣∣det⊥
(
evdx,y

)∣∣×

E

[
Φ(sd, x, y)

∣∣det⊥
(
∇d

xsd
)∣∣ ∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣sd(x) = 0 = sd(y)

]
|dVM |2 (4.4)

whenever one of these integrals is well-defined. Here, |dVM |2 stands for the product measure

on M2 induced by |dVM |. Similarly, |dVd|2 is the product measure on (Zd)
2.

The expectation on the right-hand side of (4.4) is to be understood as the conditional
expectation of Φ(sd, x, y)

∣∣det⊥
(
∇d

xsd
)∣∣ ∣∣det⊥

(
∇d

ysd
)∣∣ given that sd(x) = 0 = sd(y).

Proof. The proof of Thm. 4.4 uses the double fibration trick, that is apply Federer’s coarea
formula twice. See for example [16, App. C] and the reference therein.

The Euclidean inner product on RH0(X , E⊗Ld) defined by eq. (2.1) and the Riemannian
metric g induce a Riemannian metric on RH0(X , E ⊗ Ld) ×M2, and on Σd by restriction.
Let π1 : Σd → RH0(X , E ⊗ Ld) and π2 : Σd → M2 \∆ denote the projections from Σd to
the first and second factors, respectively. For all s ∈ RH0(X , E ⊗Ld), π−1

1 (s) is isometric to
Zs and we identify these spaces. Similarly, for all (x, y) ∈ M2 \∆ we identify π−1

2 (x, y) with
the isometric space ker(evdx,y).

We denote by ds the Lebesgue measure on RH0(X , E ⊗ Ld) or any of its subspaces,
normalized so that a unit cube has volume 1. Let Φ : Σd → R be a Borel measurable
function. Then

E

[∫

(Zd)2\∆
Φ |dVd|2

]
=

∫

s∈RH0(X ,E⊗Ld)

(∫

(x,y)∈π−1
1 (s)

Φ(s, x, y)
e−

1
2 ‖s‖

2

(2π)
Nd
2

|dVd|2
)
ds,

where Nd is the dimension of RH0(X , E ⊗ Ld). Then, by the double fibration trick [16,
Prop. C.3] this quantity equals:

∫

(x,y)∈M2\∆

(∫

s∈ker(evd
x,y)

Φ(s, x, y)
e−

1
2‖s‖

2

(2π)
Nd
2

∣∣det⊥
(
∂d
2Fd(s, x, y)

)∣∣
∣∣det⊥

(
∂d
1Fd(s, x, y)

)∣∣ ds
)
|dVM |2 . (4.5)

Then eq. (4.3) shows that ∂d
2Fd,p(s, x, y) = ∇d

xs⊕∇d
ys. Moreover, by definition of the metrics,

TxM is orthogonal to TyM and R(E ⊗ Ld)x is orthogonal to R(E ⊗ Ld)y. Thus

∣∣det⊥
(
∂d
2Fd(s, x, y)

)∣∣ = det
(
∂d
2Fd(s, x, y)

(
∂d
2Fd(s, x, y)

)∗) 1
2

= det

((
∇d

xs 0
0 ∇d

ys

)(
(∇d

xs)
∗ 0

0 (∇d
ys)

∗

)) 1
2

= det

(
∇d

xs(∇d
xs)

∗ 0
0 ∇d

ys(∇d
ys)

∗

) 1
2

=
∣∣det⊥

(
∇d

xs
)∣∣ ∣∣det⊥

(
∇d

ys
)∣∣ .
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Besides, eq.(4.3) also shows that
∣∣det⊥

(
∂d
1Fd(s, x, y)

)∣∣ =
∣∣det⊥

(
evdx,y

)∣∣, which does not
depend on s, so that (4.5) equals:

∫

(x,y)∈M2\∆

1∣∣det⊥
(
evdx,y

)∣∣

(∫

s∈ker(evd
x,y)

Φ
∣∣det⊥

(
∇d

xs
)∣∣ ∣∣det⊥

(
∇d

ys
)∣∣ e

− 1
2‖s‖

2

(2π)
Nd
2

ds

)
|dVM |2 .

Finally, by Prop. 4.2, ker(evdx) is a subspace of codimension 2r of RH0(X , E⊗Ld). Hence, the
inner integral in (4.5) can be expressed as a conditional expectation given that evdx,y(sd) = 0,
up to a factor (2π)r. This concludes the proof of Thm. 4.4.

4.2 An integral formula for the variance

In this section, we fix some d > max(d0, d1, d2) where d0, d1 and d2 are defined by Thm. 3.9,
Lem. 2.4 and Prop. 4.2 respectively. We denote by ∇d a real connection on E ⊗ Ld. Let
φ1, φ2 ∈ C0(M), we want to compute:

Var(|dVd|) (φ1, φ2) = Cov(〈|dVd| , φ1〉 , 〈|dVd| , φ2〉)
= E[〈|dVd| , φ1〉 〈|dVd| , φ2〉]− E[〈|dVd| , φ1〉]E[〈|dVd| , φ2〉] .

(4.6)

First, by Thm. 4.1, we have:

E[〈|dVd| , φ1〉]E[〈|dVd| , φ2〉] =
1

(2π)r
×

∫

M2

φ1(x)φ2(y)
E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]

|det⊥ (evdx)|
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

∣∣det⊥
(
evdy
)∣∣ |dVM |2 . (4.7)

On the other hand,

E[〈|dVd| , φ1〉 〈|dVd| , φ2〉] = E

[(∫

x∈Zd

φ1(x) |dVd|
)(∫

y∈Zd

φ2(y) |dVd|
)]

= E

[∫

(x,y)∈(Zd)2\∆
φ1(x)φ2(y) |dVd|2

]
.

Indeed, Zd is almost surely of dimension n− r > 0, so that (Zd)
2 ∩∆ (that is the diagonal

in (Zd)
2) has measure 0 for |dVd|2. We compute this integral by Thm. 4.4:

E

[∫

(x,y)∈(Zd)2\∆
φ1(x)φ2(y) |dVd|2

]
=

1

(2π)r

∫

(x,y)∈M2\∆

φ1(x)φ2(y)∣∣det⊥
(
evdx,y

)∣∣×

E

[∣∣det⊥
(
∇d

xsd
)∣∣ ∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣sd(x) = 0 = sd(y)

]
|dVM |2 . (4.8)

Let Dd be the function defined by: ∀(x, y) ∈ M2 \∆,

Dd(x, y) =




E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

∣∣det⊥
(
evdx,y

)∣∣

−
E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

|det⊥ (evdx)|
∣∣det⊥

(
evdy
)∣∣


 (4.9)
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Since dimM = n > 0, ∆ has measure 0 in M2 for |dVM |2. Thus, by (4.6), (4.7), (4.8)
and (4.9), we have:

Var(|dVd|) (φ1, φ2) =
1

(2π)r

∫

M2

φ1(x)φ2(y)Dd(x, y) |dVM |2 . (4.10)

Remark 4.5. At this stage, it is worth noticing that the values of the conditional expectations
appearing in the definition of Dd (see eq. (4.9)) do not depend on the choice of ∇d. In fact,
the whole conditional distribution of ∇d

xsd given that sd(x) = 0 (resp. of ∇d
ysd given that

sd(y) = 0, resp. of (∇d
xsd,∇d

ysd) given that sd(x) = 0 = sd(y)) is independent of the choice
of ∇d. Indeed, if sd(x) = 0 then ∇d

xsd does not depend on ∇d, and we conditioned on the
vanishing of sd(x) (resp. sd(y), resp. sd(x) and sd(y)). Thus, in the sequel, we can use any
real connection we like, even one that depends on (x, y) ∈ M2 \∆.

4.3 Asymptotic for the variance

In this section we compute the asymptotic of the integral in eq. (4.10). The main point is to
write M2 as the disjoint union of a neighborhood of ∆, of size about ln d√

d
, and its complement.

In (4.10), the set of points that are far from the diagonal will contribute a term of smaller
order than the neighborhood of ∆. This is a consequence of the fast decrease of the Bergman
kernel outside of the diagonal. The values of sd at x and y are not correlated, up to some
small error, outside of a neighborhood of ∆.

We still assume that d > max(d0, d1, d2) and we denote by sd a standard Gaussian vector
in RH0(X , E ⊗ Ld).

4.3.1 Asymptotics for the uncorrelated terms

Let us first compute asymptotics for the terms in the expression of Dd (see eq. (4.9)) that
only depend on one point, say x ∈ M . For all x ∈ M , evdx is linear. Hence sd(x) = evdx(sd)
is a centered Gaussian vector in R

(
E ⊗ Ld

)
x

with variance operator:

evdx
(
evdx
)∗

= E
[
sd(x) ⊗ (sd(x))

∗]
= Ed(x, x), (4.11)

where Ed is the Bergman kernel of E ⊗ Ld and the last equality is given by Prop. 2.6.

Lemma 4.6. For every x ∈ M , we have:

(π
d

)nr
2 ∣∣det⊥

(
evdx
)∣∣ = 1 +O

(
d−1

)
,

where the error term O
(
d−1

)
does not depend on x.

Proof. Let x ∈ M , then
∣∣det⊥

(
evdx
)∣∣2 = detEd(x, x) by (4.11). By (3.8), we have:

(π
d

)nr ∣∣det⊥
(
evdx
)∣∣2 = det

(
IdR(E⊗Ld)x

+O
(
d−1

))
= 1 +O

(
d−1

)
.

The error term in (3.8) is independent of x, therefore the same is true here.

Let ∇d be a real connection on E ⊗ Ld. We assume that ∇d is a metric connection, so
that Lem. 2.10 and Cor. 2.12 are valid in this context. Recall that the Chern connection is
an example of real metric connection.

For all x ∈ M , let jdx : s 7→
(
s(x),∇d

xs
)

denote the evaluation of the 1-jet at x, from
RH0(X , E ⊗Ld) to R

(
E ⊗ Ld

)
x
⊗ (R⊕ T ∗

xM). Since jdx is linear,
(
sd(x),∇d

xsd
)

is a centered
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Gaussian vector with variance operator jdx
(
jdx
)∗

. This operator splits according to the direct
sum R

(
E ⊗ Ld

)
x
⊕ R

(
E ⊗ Ld

)
x
⊗ T ∗

xM :

jdx
(
jdx
)∗

= E

[
jdx(sd)⊗

(
jdx(sd)

)∗]

=

(
E[sd(x) ⊗ sd(x)

∗] E
[
sd(x) ⊗ (∇d

xsd)
∗]

E
[
∇d

xsd ⊗ sd(x)
∗] E

[
∇d

xsd ⊗ (∇d
xsd)

∗]
)

=

(
Ed(x, x) ∂♯

yEd(x, x)
∂xEd(x, x) ∂x∂

♯
yEd(x, x)

)
,

(4.12)

where the last equality comes from Cor. 2.13. We chose d > d1, so that evdx is surjective

(see Lem. 2.4), i.e. det
(
evdx

(
evdx
)∗)

> 0. Hence, the distribution of sd(x) is non-degenerate.

Then (see [2, prop. 1.2]), the distribution of ∇d
xsd given that sd(x) = 0 is a centered Gaussian

in R
(
E ⊗ Ld

)
x
⊗ T ∗

xM with variance operator:

∂x∂
♯
yEd(x, x) − ∂xEd(x, x) (Ed(x, x))

−1
∂♯
yEd(x, x). (4.13)

Lemma 4.7. For every x ∈ M , we have:

(
πn

dn+1

) r
2

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
= (2π)

r
2
Vol (Sn−r)

Vol (Sn)

(
1 +O

(
d−1

))
,

where the error term is independent of x.

Proof. Let x ∈ M , and let Ld(x) be a centered Gaussian vector in R
(
E ⊗ Ld

)
x
⊗ T ∗

xM with
variance operator:

Λd(x) =
πn

dn+1

(
∂x∂

♯
yEd(x, x)− ∂xEd(x, x) (Ed(x, x))

−1
∂♯
yEd(x, x)

)
. (4.14)

By (4.13) and the above discussion, the distribution of ∇d
xsd given that sd(x) = 0 equals

that of
(

dn+1

πn

) 1
2

Ld(x). Then,

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
= E

[∣∣∣∣∣det
⊥
((

dn+1

πn

)1
2

Ld(x)

)∣∣∣∣∣

]
=

(
dn+1

πn

)r
2

E
[∣∣det⊥ (Ld(x))

∣∣] .

(4.15)
Recall that the distribution of ∇d

xsd given that sd(x) = 0 does not depend on the choice
of ∇d (Rem. 4.5). Hence Λd(x) does not depend on the choice of ∇d. For the following
computation, we choose ∇d to be trivial over BTxM (0, R) in the real normal trivialization
about x. Then we can use the diagonal estimates of Cor. 3.8 for the Bergman kernel and
its derivatives. We have: Λd(x) = IdR(E⊗Ld)x ⊗ IdT∗

xM +O
(
d−1

)
, where the error does not

depend on x. Hence,

det (Λd(x)) = 1 +O
(
d−1

)
. (4.16)

Besides, there exists some K > 0 such that
∥∥Λd(x)

−1 − Id
∥∥ 6 Kd−1 for all d large enough.

Then, by the mean value inequality, for all L ∈ R(E ⊗ Ld)x ⊗ T ∗
xM

∣∣∣∣exp
(
−1

2

〈(
Λd(x)

−1 − Id
)
L ,L

〉)
− 1

∣∣∣∣ 6
K

2d
‖L‖2 exp

(
K

2d
‖L‖2

)
.
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Let L0
d(x) ∼ N (Id) in R(E ⊗ Ld)x ⊗ T ∗

xM and let dL denote the normalized Lebesgue
measure on R(E ⊗ Ld)x ⊗ T ∗

xM . Then we have:

(2π)
nr
2

∣∣∣det (Λd(x))
1
2 E
[∣∣det⊥ (Ld(x))

∣∣]− E
[∣∣det⊥

(
L0
d(x)

)∣∣]
∣∣∣

6

∫ ∣∣det⊥ (L)
∣∣ e− 1

2 ‖L‖2
∣∣∣∣exp

(
−1

2

〈(
Λd(x)

−1 − Id
)
L ,L

〉)
− 1

∣∣∣∣dL

6
K

2d

∫ ∣∣det⊥ (L)
∣∣ exp

(
−1

2

(
1− K

d

)
‖L‖2

)
dL.

The integral on the last line converges to some finite limit as d → +∞. Thus, by (4.16),

E
[∣∣det⊥ (Ld(x))

∣∣] = det (Λd(x))
− 1

2
(
E
[∣∣det⊥

(
L0
d(x)

)∣∣]+O
(
d−1

))

= E
[∣∣det⊥

(
L0
d(x)

)∣∣]+O
(
d−1

)
,

(4.17)

uniformly in x ∈ M . Lemma 4.7 follows from (4.15), (4.17) and the following equality, that
was proved in [16, lem. A.14]:

E
[∣∣det⊥

(
L0
d(x)

)∣∣] = (2π)
r
2
Vol (Sn−r)

Vol (Sn)
. (4.18)

4.3.2 Far off-diagonal asymptotics for the correlated terms

We can now focus on computing terms in the expression of Dd that depend on both x and y.
For all (x, y) ∈ M2\∆, evdx,y(sd) = (sd(x), sd(y)) is a centered Gaussian vector with variance
operator:

evdx,y(ev
d
x,y)

∗ = E
[
evdx,y(sd)⊗ evdx,y(sd)

∗]

=

(
E[sd(x)⊗ sd(x)

∗] E[sd(x) ⊗ sd(y)
∗]

E[sd(y)⊗ sd(x)
∗] E[sd(y)⊗ sd(y)

∗]

)

=

(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)
,

(4.19)

where we decomposed this operator according to the direct sum R
(
E ⊗ Ld

)
x
⊕R

(
E ⊗ Ld

)
y
.

Since we assumed d > d2,
∣∣det⊥

(
evdx,y

)∣∣ > 0 (see Prop. 4.2) and the distribution of
(sd(x), sd(y)) is non-degenerate.

We denote by jdx,y : s 7→
(
s(x), s(y),∇d

xs,∇d
ys
)

the evaluation of the 1-jet at (x, y). Then
jdx,y is a linear map from RH0(X , E ⊗ Ld) to

R
(
E ⊗ Ld

)
x
⊕ R

(
E ⊗ Ld

)
y
⊕
(
R
(
E ⊗ Ld

)
x
⊗ T ∗

xM
)
⊕
(
R
(
E ⊗ Ld

)
y
⊗ T ∗

yM
)
, (4.20)

and jdx,y(sd) is a centered Gaussian vector, with variance operator jdx,y
(
jdx,y

)∗
. We can split

this variance operator according to the direct sum (4.20). Then by Cor. 2.13, we have:

jdx,y
(
jdx,y
)∗

= E

[
jdx,y(sd)⊗

(
jdx,y(sd)

)∗]

=




E[sd(x)⊗ sd(x)
∗] E[sd(x)⊗ sd(y)

∗] E
[
sd(x)⊗ (∇d

xsd)
∗]

E
[
sd(x) ⊗ (∇d

ysd)
∗]

E[sd(y)⊗ sd(x)
∗] E[sd(y)⊗ sd(y)

∗] E
[
sd(y)⊗ (∇d

xsd)
∗] E

[
sd(y)⊗ (∇d

ysd)
∗]

E
[
∇d

xsd ⊗ sd(x)
∗] E

[
∇d

xsd ⊗ sd(y)
∗] E

[
∇d

xsd ⊗ (∇d
xsd)

∗] E
[
∇d

xsd ⊗ (∇d
ysd)

∗]

E
[
∇d

ysd ⊗ sd(x)
∗] E

[
∇d

ysd ⊗ sd(y)
∗] E

[
∇d

ysd ⊗ (∇d
xsd)

∗] E
[
∇d

ysd ⊗ (∇d
ysd)

∗]




=




Ed(x, x) Ed(x, y) ∂♯
yEd(x, x) ∂♯

yEd(x, y)
Ed(y, x) Ed(y, y) ∂♯

yEd(y, x) ∂♯
yEd(y, y)

∂xEd(x, x) ∂xEd(x, y) ∂x∂
♯
yEd(x, x) ∂x∂

♯
yEd(x, y)

∂xEd(y, x) ∂xEd(y, y) ∂x∂
♯
yEd(y, x) ∂x∂

♯
yEd(y, y)


 .

(4.21)
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Since the distribution of (sd(x), sd(y)) is non-degenerate, the distribution of
(
∇d

xs,∇d
ys
)

given that evx,y(sd) = 0 is a centered Gaussian with variance operator:

(
∂x∂

♯
yEd(x, x) ∂x∂

♯
yEd(x, y)

∂x∂
♯
yEd(y, x) ∂x∂

♯
yEd(y, y)

)
−

(
∂xEd(x, x) ∂xEd(x, y)
∂xEd(y, x) ∂xEd(y, y)

)(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)−1(
∂♯
yEd(x, x) ∂♯

yEd(x, y)
∂♯
yEd(y, x) ∂♯

yEd(y, y)

)
.

(4.22)

Definition 4.8. For every (x, y) ∈ M2 \∆ and every d large enough, we define Λd(x, y) to
be the operator such that dn+1

πn Λd(x, y) equals (4.22). That is, Λd(x, y) is the conditional

variance of
(

πn

dn+1

) 1
2
(
∇d

xs,∇d
ys
)

given that evx,y(sd) = 0.

Let C′ > 0 be the constant appearing in the exponential in Thm. 3.9. We denote

bn =
1

C′

(n
2
+ 1
)

(4.23)

and

∆d =

{
(x, y) ∈ M2

∣∣∣∣ ρg(x, y) < bn
ln d√
d

}
, (4.24)

where, as before, ρg is the geodesic distance in (M, g).

Lemma 4.9. For every (x, y) ∈ M2 \∆d, we have:

∣∣det⊥
(
evdx,y

)∣∣ =
∣∣det⊥

(
evdx
)∣∣ ∣∣det⊥

(
evdy
)∣∣ (1 +O

(
d−

n
2 −1

))
,

where the error term is uniform in (x, y) ∈ M2 \∆d

Proof. For all (x, y) ∈ M2 \∆d, we have ρg(x, y) > bn
ln d√

d
. Then, by Thm. 3.9,

‖Ed(x, y)‖ 6 C0d
n exp (−C′bn ln d) 6 C0d

n
2 −1.

Then, by (4.19) we have:

evdx,y
(
evdx,y

)∗
=

(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)

=

(
Ed(x, x) 0

0 Ed(y, y)

)
+O

(
d

n
2 −1

)
.

Besides, by (3.8),

(
Ed(x, x) 0

0 Ed(y, y)

)−1

=
(π
d

)n (
Id+O

(
d−1

))
= O

(
d−n

)
, (4.25)

so that (
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)
=

(
Ed(x, x) 0

0 Ed(y, y)

)(
Id+O

(
d−

n
2 −1

))
. (4.26)

We conclude the proof by taking the square root of the determinant of this last equality
(recall (4.11)).
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Lemma 4.10. For every (x, y) ∈ M2 \∆d, we have:

E

[∣∣det⊥
(
∇d

xsd
)∣∣ ∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
=

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

] (
1 +O

(
d−

n
2 −1
))

,

where the error term is uniform in (x, y) ∈ M2 \∆d

This lemma is a consequence of the following technical result.

Lemma 4.11. For every (x, y) ∈ M2 \∆d, we have:

Λd(x, y) =

(
Λd(x) 0
0 Λd(y)

)(
Id+O

(
d−

n
2 −1

))
,

uniformly in (x, y) ∈ M2 \∆d.

Proof of Lemma 4.10. Let (Ld(x), Ld(y)) and (L′
d(x), L

′
d(y)) be centered Gaussian vectors

in (
R
(
E ⊗ Ld

)
x
⊗ T ∗

xM
)
⊕
(
R
(
E ⊗ Ld

)
y
⊗ T ∗

yM
)

such that: the variance of (L′
d(x), L

′
d(y)) is Λd(x, y) (recall Def. 4.8), and Ld(x) and Ld(y) are

independent with variances Λd(x) and Λd(y) respectively (see (4.14)). Then, the distribution

of (Ld(x), Ld(y)) is a centered Gaussian with variance
(

Λd(x) 0
0 Λd(y)

)
. From the definitions

of Λd(x), Λd(y) and Λd(x, y), we have:

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
=

(
dn+1

πn

)r
2

E
[∣∣det⊥ (Ld(x))

∣∣] ,

E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]
=

(
dn+1

πn

)r
2

E
[∣∣det⊥ (Ld(y))

∣∣] ,

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
=

(
dn+1

πn

)r
E
[∣∣det⊥ (L′

d(x))
∣∣∣∣det⊥ (L′

d(y))
∣∣] .

Since Ld(x) and Ld(y) are independent, we only need to prove that:

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] = E

[∣∣det⊥ (Ld(x))
∣∣ ∣∣det⊥ (Ld(y))

∣∣] (1 +O
(
d−

n
2 −1

))
.

(4.27)
By Lemma 4.11,

det (Λd(x, y)) = det

((
Λd(x) 0
0 Λd(y)

)(
Id+O

(
d−

n
2 −1

)))

= det (Λd(x)) det (Λd(x))
(
1 +O

(
d−

n
2 −1

))
.

(4.28)

Besides Lem. 4.11 shows that:

Λd(x, y)
−1 =

(
Λd(x) 0
0 Λd(y)

)−1 (
Id+O

(
d−

n
2 −1

))
.

By Cor. 3.8 and eq. (4.14), we have:
(

Λd(x) 0
0 Λd(y)

)
= Id+O

(
d−1

)
. Hence,

(
Λd(x) 0
0 Λd(y)

)−1

= Id+O
(
d−1

)
(4.29)
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uniformly in (x, y), and

Λd(x, y)
−1 −

(
Λd(x) 0
0 Λd(y)

)−1

= O
(
d−

n
2 −1

)
.

Thus there exists K > 0 such that, for all d large enough,
∥∥∥∥∥Λd(x, y)

−1 −
(
Λd(x) 0
0 Λd(y)

)−1
∥∥∥∥∥ 6

K

d
n
2 +1

.

Then, for every L = (L1, L2) ∈
(
R
(
E ⊗ Ld

)
x
⊗ T ∗

xM
)
⊕
(
R
(
E ⊗ Ld

)
y
⊗ T ∗

yM
)
, we have:

∣∣∣∣exp
(
−1

2

〈(
Λd(x, y)

−1 −
(

Λd(x) 0
0 Λd(y)

)−1
)
L ,L

〉)
− 1

∣∣∣∣ 6
K ‖L‖2
2d

n
2 +1

exp

(
K ‖L‖2
2d

n
2 +1

)
.

Let dL denote the normalized Lebesgue measure on this vector space. We have:

(2π)nr
∣∣∣det (Λd(x, y))

1
2 E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣]

− det (Λd(x))
1
2 det (Λd(y))

1
2 E
[∣∣det⊥ (Ld(x))

∣∣ ∣∣det⊥ (Ld(y))
∣∣]
∣∣∣

6

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣ exp
(
−1

2

〈(
Λd(x) 0

0 Λd(y)

)−1

L ,L

〉)
×

∣∣∣∣exp
(
−1

2

〈(
Λd(x, y)

−1 −
(

Λd(x) 0
0 Λd(y)

)−1
)
L ,L

〉)
− 1

∣∣∣∣dL

6
K

2d
n
2 +1

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣ ‖L‖2 ×

exp

(
−1

2

〈((
Λd(x) 0

0 Λd(y)

)−1

− K

2d
n
2 +1

Id

)
L ,L

〉)
dL

= O
(
d−

n
2 −1

)
.

Let us prove the last equality. By eq. (4.29), for every d large enough (uniform in (x, y)),
∥∥∥∥∥

(
Λd(x) 0

0 Λd(y)

)−1

−
(
1 +

K

2d
n
2 +1

)
Id

∥∥∥∥∥ 6
1

2
,

so that:
∫ ∣∣det⊥ (L1)

∣∣ ∣∣det⊥ (L2)
∣∣ ‖L‖2 exp

(
−1

2

〈((
Λd(x) 0

0 Λd(y)

)−1

− K

2d
n
2 +1

Id

)
L ,L

〉)
dL

6

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣ ‖L‖2 exp
(
−1

4
‖L‖2

)
dL.

And the last integral is finite since
∣∣det⊥ (L1)

∣∣ ∣∣det⊥ (L2)
∣∣ ‖L‖2 is the norm of a polynomial

in L.
Eq. (4.16) and (4.28) show that det(Λd(x, y)) = 1 + O

(
d−1

)
. Then, by the previous

computations and eq. (4.28), we have:

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣]

=

(
det (Λd(x)) det (Λd(y))

det (Λd(x, y))

) 1
2

E
[∣∣det⊥ (Ld(x))

∣∣ ∣∣det⊥ (Ld(y))
∣∣]+O

(
d−

n
2 −1

)

= E
[∣∣det⊥ (Ld(x))

∣∣ ∣∣det⊥ (Ld(y))
∣∣] (1 +O

(
d−

n
2 −1

))
+O

(
d−

n
2 −1

)
.
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Equations (4.17) and (4.18) prove that

E
[∣∣det⊥ (Ld(x))

∣∣ ∣∣det⊥ (Ld(y))
∣∣] = E

[∣∣det⊥ (Ld(x))
∣∣]E

[∣∣det⊥ (Ld(y))
∣∣]

converges to some positive constant. This proves (4.27) and establishes Lemma 4.10.

Proof of Lemma 4.11. First, recall that Λd(x, y), Λd(x) and Λd(y) do not depend on the
choice of ∇d (see Rem. 4.5). In this proof, we use the Chern connection which is both real
and metric. Let (x, y) ∈ M2 \∆d, then ρg(x, y) > bn

ln d√
d
. By Thm. 3.9, we have:

‖∂xEd(x, y)‖ 6 C1d
n+ 1

2 exp (−C′bn ln d) 6 C1d
n
2 − 1

2 .

Similarly, ‖∂xEd(y, x)‖,
∥∥∂♯

yEd(x, y)
∥∥ and

∥∥∂♯
yEd(y, x)

∥∥ are smaller than C1d
n−1
2 . Then

(
∂xEd(x, x) ∂xEd(x, y)
∂xEd(y, x) ∂xEd(y, y)

)
=

(
∂xEd(x, x) 0

0 ∂xEd(y, y)

)
+O

(
d

n−1
2

)
(4.30)

(
∂♯
yEd(x, x) ∂♯

yEd(x, y)
∂♯
yEd(y, x) ∂♯

yEd(y, y)

)
=

(
∂♯
yEd(x, x) 0

0 ∂♯
yEd(y, y)

)
+O

(
d

n−1
2

)
(4.31)

and, by eq. (4.26),

(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)−1

=

(
Ed(x, x) 0

0 Ed(y, y)

)−1 (
Id+O

(
d−

n
2 −1

))
. (4.32)

Using eq. (3.9), (3.10) and (4.25), we get:

(
∂xEd(x, x) ∂xEd(x, y)
∂xEd(y, x) ∂xEd(y, y)

)(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)−1(
∂♯
yEd(x, x) ∂♯

yEd(x, y)
∂♯
yEd(y, x) ∂♯

yEd(y, y)

)

=

(
∂xEd(x, x) 0

0 ∂xEd(y, y)

)(
Ed(x, x) 0

0 Ed(y, y)

)−1(
∂♯
yEd(x, x) 0

0 ∂♯
yEd(y, y)

)

+O
(
d

n
2 −1

)
(4.33)

Using Thm. 3.9 once more, we know that
∥∥∂x∂♯

yEd(x, y)
∥∥ and

∥∥∂x∂♯
yEd(y, x)

∥∥ are smaller
than C2d

n
2 . Then we have:

(
∂x∂

♯
yEd(x, x) ∂x∂

♯
yEd(x, y)

∂x∂
♯
yEd(y, x) ∂x∂

♯
yEd(y, y)

)
=

(
∂x∂

♯
yEd(x, x) 0
0 ∂x∂

♯
yEd(y, y)

)
+O

(
d

n
2

)
. (4.34)

We substract eq. (4.33) to eq. (4.34) and divide by dn+1

πn . By definition of Λd(x, y), Λd(x)
and Λd(y) (see Def. 4.8 and eq. (4.14)),

Λd(x, y) =

(
Λd(x) 0

0 Λd(y)

)
+O

(
d−

n
2 −1
)
=

(
Λd(x) 0

0 Λd(y)

)(
Id+O

(
d−

n
2 −1
))

,

where we used the fact that Λd(x) = Id+O
(
d−1

)
= Λd(y) to obtain the last equality.

Proposition 4.12. Let φ1, φ2 ∈ C0(M), then we have the following as d → +∞:

∫

M2\∆d

φ1(x)φ2(y)Dd(x, y) |dVM |2 = ‖φ1‖∞ ‖φ2‖∞ O
(
dr−

n
2 −1
)
,

where the error term is independent of (φ1, φ2).
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Proof. We combine Lemmas 4.9 and 4.10, which gives:

E

[∣∣det⊥
(
∇d

xsd
)∣∣ ∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

∣∣det⊥
(
evdx,y

)∣∣ =

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

|det⊥ (evdx)|
∣∣det⊥

(
evdy
)∣∣

(
1 +O

(
d−

n
2 −1

))

for all (x, y) ∈ M2 \∆d. Besides, by Lemmas 4.6 and 4.7,

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]

|det⊥ (evdx)|
= O

(
d

r
2

)
=

E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

∣∣det⊥
(
evdy
)∣∣ .

Recalling the definition of Dd (eq. (4.9)), we obtain that:

∀(x, y) ∈ M2 \∆d, Dd(x, y) = O
(
dr−

n
2 −1

)
,

uniformly in (x, y) /∈ ∆d. Then, for any continuous φ1 and φ2 ∈ C0(M), we have:
∣∣∣∣∣

∫

M2\∆d

φ1(x)φ2(y)Dd(x, y) |dVM |2
∣∣∣∣∣ 6 ‖φ1‖∞ ‖φ2‖∞ Vol

(
M2
)
(

sup
M2\∆d

|Dd|
)

= ‖φ1‖∞ ‖φ2‖∞ O
(
dr−

n
2 −1
)
,

and the error term does not depend on (φ1, φ2).

4.3.3 Properties of the limit distribution

Before we tackle the computation of the dominant term in (4.10), that is the integral over ∆d,
we introduce the random variables that will turn out to be the scaling limits of

(
∇d

xsd,∇d
ysd
)

given that evdx,y(sd) = 0. We also establish some of their properties.

Notation 4.13. Let x ∈ M and z ∈ TxM , we denote by z∗ ⊗ z ∈ T ∗
xM ⊗ TxM the linear

map:
z∗ ⊗ z : T ∗

xM −→ T ∗
xM.

η 7−→ η(z)z∗

Let
(

∂
∂x1

, . . . , ∂
∂xn

)
be an orthonormal basis of TxM and let (dx1, . . . , dxn) denote its dual

basis. If z =
∑

zi
∂

∂xi
then z∗⊗z =

∑
zizjdxi⊗ ∂

∂xj
, i.e. the matrix of z∗⊗z in (dx1, . . . , dxn)

is (zizj)16i,j6n.

Definition 4.14. For all x ∈ M and z ∈ TxM \ {0}, we define

Λx(z) ∈ End
(
R
(
E ⊗ Ld

)
x
⊗ T ∗

xM ⊗ R
2
)

by:

Λx(z) =


 IdT∗

xM − e−‖z‖2

1−e−‖z‖2 z
∗ ⊗ z e−

1
2‖z‖

2
(
IdT∗

xM − z∗⊗z

1−e−‖z‖2

)

e−
1
2‖z‖

2
(
IdT∗

xM − z∗⊗z

1−e−‖z‖2

)
IdT∗

xM − e−‖z‖2

1−e−‖z‖2 z
∗ ⊗ z


⊗ IdR(E⊗Ld)x

.

We need information about Λx(z), especially concerning the vanishing of its eigenvalues.
This will be useful in the estimates involving Λx(z) below.
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Lemma 4.15. For all x ∈ M and z ∈ TxM \ {0}, the eigenvalues of Λx(z) are:

• 1− e−
1
2‖z‖

2

and 1 + e−
1
2‖z‖

2

, each with multiplicity (n− 1)r,

• 1− e−‖z‖2

+ ‖z‖2 e− 1
2‖z‖

2

1 + e−
1
2‖z‖

2 and
1− e−‖z‖2 − ‖z‖2 e− 1

2‖z‖
2

1− e−
1
2 ‖z‖

2 , each with multiplicity r.

Proof. Let x ∈ M and z ∈ BTxM (0, bn ln d) \ {0}. By definition of Λx(z), its eigenvalues are
the same as that of


 IdT∗

xM − e−‖z‖2

1−e−‖z‖2 z
∗ ⊗ z e−

1
2 ‖z‖

2
(
IdT∗

xM − z∗⊗z

1−e−‖z‖2

)

e−
1
2‖z‖

2
(
IdT∗

xM − z∗⊗z

1−e−‖z‖2

)
IdT∗

xM − e−‖z‖2

1−e−‖z‖2 z
∗ ⊗ z


 , (4.35)

with multiplicities multiplied by r. Hence, it is enough to compute the eigenvalues of the
operator (4.35).

Let us choose an orthonormal basis
(

∂
∂x1

, . . . , ∂
∂xn

)
of TxM such that z = ‖z‖ ∂

∂x1
, and

let us denote by (dx1, . . . , dxn) the dual basis. Then, z∗ ⊗ z = ‖z‖2 dx1 ⊗ ∂
∂x1

. Let (e1, e2)

denote the canonical basis of R2, then the matrix of the operator (4.35) in the orthonormal
basis (e1 ⊗ dx1, e2 ⊗ dx1, . . . , e1 ⊗ dxn, . . . , e2 ⊗ dxn) is:




1− ‖z‖2e−‖z‖2

1−e−‖z‖2 e−
1
2‖z‖

2
(
1− ‖z‖2

1−e−‖z‖2

)
0

e−
1
2‖z‖

2
(
1− ‖z‖2

1−e−‖z‖2

)
1− ‖z‖2e−‖z‖2

1−e−‖z‖2 0

0 0

(
1 e−

1
2‖z‖

2

e−
1
2 ‖z‖

2

1

)
⊗ In−1




,

(4.36)
where In−1 stands for the identity matrix of size n− 1.

The bottom-right block has eigenvalues 1−e−
1
2 ‖z‖

2

and 1+e−
1
2 ‖z‖

2

, each with multiplicity
n− 1. To conclude the proof of Lemma 4.15, we only need to observe that, for all t > 0, the
eigenvalues of 

 1− te−t

1−e−t e−
1
2 t
(
1− t

1−e−t

)

e−
1
2 t
(
1− t

1−e−t

)
1− te−t

1−e−t





are:

1− te−t

1− e−t
+ e−

1
2 t

(
1− t

1− e−t

)
=

1− e−t − te−
1
2 t

1− e−
1
2 t

and

1− te−t

1− e−t
− e−

1
2 t

(
1− t

1− e−t

)
=

1− e−t + te−
1
2 t

1 + e−
1
2
t

.

Note that the latter one is the largest.

Definition 4.16. We define the function f : (0,+∞) → R by:

∀t > 0, f(t) =
1− e−

1
2 t

1− e−t − te−
1
2 t
.
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Corollary 4.17. Let x ∈ M and z ∈ TxM \ {0}, then we have:

det (Λx(z)) =
(
1− e−‖z‖2

)r(n−2) (
1− e−‖z‖2

+ ‖z‖2 e− 1
2‖z‖

2
)r (

1− e−‖z‖2 − ‖z‖2 e− 1
2 ‖z‖

2
)r

> 0.

(4.37)

Moreover,

‖Λx(z)‖ < 2 and
∥∥Λx(z)

−1
∥∥ = f

(
‖z‖2

)
, (4.38)

where ‖·‖ denote the operator norm on End
(
R2 ⊗ R

(
E ⊗ Ld

)
x
⊗ T ∗

xM
)
.

Proof. First, the formula for det (Λx(z)) is a direct consequence of Lem. 4.15, and we only
need to check that the eigenvalues of Λx(z) are positive. Clearly, 1± e−

1
2 t > 0 when t > 0.

Then, for all positive t, we have:

1− e−t − te−
1
2 t

1− e−
1
2 t

=
e−

1
2 t

1− e−
1
2 t

(
e

1
2 t − e−

1
2 t − t

)
=

e−
1
2 t

1− e−
1
2 t

(
2 sinh

(
t

2

)
− t

)
,

and 2 sinh
(
t
2

)
> t. Besides,

1− e−t + te−
1
2 t

1 + e−
1
2 t

=
e−

1
2 t

1 + e−
1
2 t

(
2 sinh

(
t

2

)
+ t

)
> 0.

Recall that ‖Λx(z)‖ is the larger eigenvalue of Λx(z), and
∥∥Λx(z)

−1
∥∥ is the inverse of the

smallest eigenvalue of Λx(z). For all t > 0 we have

0 < 1− e−
t
2 < 1 + e−

t
2 < 2.

Besides,
1− e−t − te−

1
2 t

1− e−
1
2 t

+
1− e−t + te−

1
2 t

1 + e−
1
2 t

= 2

(
1− te−t

1− e−t

)
< 2,

and we just proved that both these terms are positive. Hence, each of them is smaller than 2.
Thus, all the eigenvalues of Λx(z) are smaller than 2 and ‖Λx(z)‖ < 2.

For all t > 0,

1− e−t − te−
1
2 t

1− e−
1
2 t

< 1− e−
t
2 ⇐⇒ 1− e−t − te−

1
2 t < 1− 2e−

t
2 + e−t ⇐⇒ 1− t

2
< e−

t
2 ,

and this is always true by convexity of the exponential. Thus, the smallest eigenvalue of

Λx(z) is
1− e−‖z‖2 − ‖z‖2 e− 1

2‖z‖
2

1− e−
1
2 ‖z‖2 =

1

f(‖z‖2)
, which proves our last claim.

Remark 4.18. To better understand the estimate (4.38), note that f is a decreasing function
on (0,+∞). Moreover,

f(t) −−−−→
t→+∞

1, and f(t) ∼ 12

t2

when t goes to 0.

Definition 4.19. For every x ∈ M , and z ∈ TxM \ {0}, let (Lx(0), Lx(z)) be a centered
Gaussian vector in R

2 ⊗ R
(
E ⊗ Ld

)
x
⊗ T ∗

xM with variance operator Λx(z).
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Recall that we defined the random vector (X(t), Y (t)) for all t > 0 in the introduction
(see Def. 1.4). Then (X(t), Y (t)) and (Lx(0), Lx(z)) are related as follows.

Lemma 4.20. Let x ∈ M and z ∈ TxM \ {0}, then there exists an orthonormal basis of
TxM such that, for every orthonormal basis of R

(
E ⊗ Ld

)
x
, the couple of r × n matrices

associated with (Lx(0), Lx(z)) in these bases is distributed as (X(‖z‖2), Y (‖z‖2)).

Proof. As in the proof of Lem. 4.15, let us choose an orthonormal basis
(

∂
∂x1

, . . . , ∂
∂xn

)
of

TxM such that z = ‖z‖ ∂
∂x1

. Let (dx1, . . . , dxn) denote its dual basis. Let (ζ1, . . . , ζr) be any

orthonormal basis of R
(
E ⊗ Ld

)
x
, and let (e1, e2) denote the canonical basis of R2.

Then z∗ ⊗ z = ‖z‖2 dx1 ⊗ ∂
∂x1

and the matrix of the operator (4.35) in the orthonormal
basis (e1 ⊗ dx1, . . . , e1 ⊗ dxn, e2 ⊗ dx1, . . . , e2 ⊗ dxn) is:




1− ‖z‖2e−‖z‖2

1−e−‖z‖2 0 e−
1
2 ‖z‖

2
(
1− ‖z‖2

1−e−‖z‖2

)
0

0 In−1 0 e−
1
2‖z‖

2

In−1

e−
1
2‖z‖

2
(
1− ‖z‖2

1−e−‖z‖2

)
0 1− ‖z‖2e−‖z‖2

1−e−‖z‖2 0

0 e−
1
2 ‖z‖

2

In−1 0 In−1




,

(4.39)
where In−1 stands for the identity matrix of size n − 1. Since Λx(z) equals this operator
tensored by IdR(E⊗Ld)x

, the matrix of Λx(z) in the orthonormal basis:

(e1 ⊗ dx1 ⊗ ζ1, . . . , e1 ⊗ dxn ⊗ ζ1, e2 ⊗ dx1 ⊗ ζ1, . . . , e2 ⊗ dxn ⊗ ζ1,

e1 ⊗ dx1 ⊗ ζ2, . . . , e2 ⊗ dxn ⊗ ζ2, . . . e1 ⊗ dx1 ⊗ ζr, . . . , e2 ⊗ dxn ⊗ ζr)

is exactly the variance matrix of (X(‖z‖2), Y (‖z‖2)) (cf. Def. 1.4).
Let us denote by Mx(0) and Mx(z) the matrices of Lx(0) and Lx(d) in the bases(

∂
∂x1

, . . . , ∂
∂xn

)
and (ζ1, . . . , ζr). Then (Mx(0),Mx(z)) is a centered Gaussian vector in

Mrn(R)
2. Moreover, we have just seen that the variance matrix of this random vector is the

same as that of (X(‖z‖2), Y (‖z‖2)). This concludes the proof.

Corollary 4.21. Let x ∈ M and z ∈ TxM \ {0}, then we have:

E
[∣∣det⊥ (Lx(0))

∣∣ ∣∣det⊥ (Lx(z))
∣∣] = E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]
.

Proof. With the same notations as in the proof of Lemma 4.20 above, we have:

E
[∣∣det⊥ (Mx(0))

∣∣ ∣∣det⊥ (Mx(z))
∣∣] = E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]
,

since (Mx(0),Mx(z)) and (X(‖z‖2), Y (‖z‖2)) have the same distribution. Besides,

∣∣det⊥ (Lx(0))
∣∣ =

∣∣det⊥ (Mx(0))
∣∣ and

∣∣det⊥ (Lx(z))
∣∣ =

∣∣det⊥ (Mx(0))
∣∣ .

Let us now establish some facts about the distribution of (X(t), Y (t)) for t > 0.

Lemma 4.22. For all t > 0, we have:

E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣] 6 nr.

35



Proof. First, by the Cauchy–Schwarz inequality, we have:

E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣] 6 E

[∣∣det⊥ (X(t))
∣∣2
] 1

2

E

[∣∣det⊥ (Y (t))
∣∣2
] 1

2

.

Then, the definition of (X(t), Y (t)) (Def. 1.4) shows that both X(t) and Y (t) are centered
Gaussian vectors in Mrn(R) with variance matrix:

(
1− te−t

1−e−t 0

0 In−1

)
⊗ Ir. (4.40)

in the canonical bases of Rn and Rr. Here Ir and In−1 stand for the identity matrices of size
r and n− 1 respectively. Hence,

E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣] 6 E

[∣∣det⊥ (X(t))
∣∣2
]
= E

[
det
(
X(t)X(t)t

)]
.

We denote by X1(t), . . . , Xr(t) the rows of X(t). Then

X(t)X(t)t = (〈Xi(t) , Xj(t)〉)16i,j6r ,

where we see Xi(t) as an element of Rn and 〈· , ·〉 is the usual inner product on Rn. Hence,
det (X(t)X(t)t) is the Gram determinant of the family (X1(t), . . . , Xr(t)), which is known
to be the square of the r-dimensional volume of the parallelepiped spanned by these vectors.
In particular,

det
(
X(t)X(t)t

)
6 ‖X1(t)‖2 · · · ‖Xr(t)‖2 .

By (4.40), the Xi(t) are independent identically distributed centered Gaussian vectors with
variance matrix: (

1− te−t

1−e−t 0

0 In−1

)
,

so that:

det
(
X(t)X(t)t

)
6 E

[
‖X1(t)‖2 · · · ‖Xr(t)‖2

]
6 E

[
‖X1(t)‖2

]r
=

(
n− te−t

1− e−t

)r

6 nr.

Lemma 4.23. We have the following estimate as t → +∞:

E
[∣∣det⊥ (X (t))

∣∣ ∣∣det⊥ (Y (t))
∣∣] = (2π)r

(
Vol (Sn−r)

Vol (Sn)

)2

+O
(
te−

t
2

)
.

Proof. Let (X(∞), Y (∞)) be a standard Gaussian vector in Mrn(R)
2 ≃ R2nr, i.e. X(∞)

and Y (∞) are independent standard Gaussian vectors in Mrn(R). Then,

E
[∣∣det⊥ (X(∞))

∣∣ ∣∣det⊥ (Y (∞))
∣∣] = E

[∣∣det⊥ (X(∞))
∣∣]E

[∣∣det⊥ (Y (∞))
∣∣]

= E
[∣∣det⊥ (X(∞))

∣∣]2

= (2π)r
(
Vol (Sn−r)

Vol (Sn)

)2

,

where we used (4.18) to get the last equality.
Then the proof is basically the same as that of Lemma 4.7. From Definition 1.4, we see

that the variance operator Λ(t) of (X(t), Y (t)) equals Id+O
(
te−

t
2

)
as t → +∞. Hence:

det (Λ(t)) = 1 +O
(
te−

t
2

)
and Λ(t)−1 =Id+O

(
te−

t
2

)
.
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Let C > 0 be such that
∥∥Λ(t)−1 − Id

∥∥ 6 Cte−
t
2 . We denote by L = (L1, L2) a generic

element of Mrn(R)
2 and by dL the normalized Lebesgue measure on this space. Then,

(2π)rn
∣∣∣det (Λ(t))

1
2 E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣]− E

[∣∣det⊥ (X(∞))
∣∣ ∣∣det⊥ (Y (∞))

∣∣]
∣∣∣

6

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣
∣∣∣∣exp

(
−1

2

〈(
Λ(t)−1 − Id

)
L ,L

〉)
− 1

∣∣∣∣ e
− 1

2‖L‖2 dL

6
C

2
te−

t
2

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣ ‖L‖2 exp
(
−1

2

(
1− C

2
te−

t
2

)
‖L‖2

)
dL

= O
(
te−

t
2

)
.

Thus

E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣]

= det (Λ(t))
− 1

2

(
E
[∣∣det⊥ (X(∞))

∣∣ ∣∣det⊥ (Y (∞))
∣∣]+O

(
te−

t
2

))

= (2π)r
(
Vol (Sn−r)

Vol (Sn)

)2

+O
(
te−

t
2

)
.

Definition 4.24. Let Dn,r : (0,+∞) → R be the function defined by:

∀t ∈ (0,+∞), Dn,r(t) =
E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣]

(1− e−t)
r
2

− (2π)r
(
Vol (Sn−r)

Vol (Sn)

)2

.

Lemma 4.25. We have:
∫ +∞

0

|Dn,r(t)| t
n−2
2 dt < +∞.

Proof. We first check the integrability of |Dn,r(t)| t
n−2
2 at t = 0. By Lemma 4.22, about

t = 0 we have:

|Dn,r(t)| t
n−2
2 6 t

n−2
2

E
[∣∣det⊥ (X(t))

∣∣ ∣∣det⊥ (Y (t))
∣∣]

(1− e−t)
r
2

+ t
n−2
2 (2π)r

(
Vol (Sn−r)

Vol (Sn)

)2

6 t
n−2
2

nr

(1− e−t)
r
2

+O(t
n−2
2 ) = O

(
t
n−2−r

2

)
.

And this is integrable at t = 0 since n− r > 1.

Then, by Lemma 4.23, we have: |Dn,r(t)| t
n−2
2 = O

(
t
n
2 e−

t
2

)
when t goes to infinity. This

proves the integrability at infinity.

4.3.4 Near-diagonal asymptotics for the correlated terms

The next step of the proof is to compute the contribution of the integral (4.10) on ∆d. Let
R > 0 be such that 2R is smaller than the injectivity radius of X , as in Section 3. Let d3 ∈ N

be such that ∀d > d3, bn ln d√
d
6 R. In the sequel we consider d > max(d0, d1, d2, d3).

Since we chose d large enough that bn
ln d√

d
6 R we can compute everything in the expo-
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nential chart about x. Let φ1, φ2 ∈ C0(M), we have:

∫

∆d

φ1(x)φ2(y)Dd(x, y) |dVM |2

=

∫

x∈M

(∫

y∈BM

(

x,bn
ln d√

d

)

φ1(x)φ2(y)Dd(x, y) |dVM |
)
|dVM |

=

∫

x∈M

(∫

z∈BTxM

(

0,bn
ln d√

d

)

φ1(x)φ2(expx(z))Dd(x, expx(z))
√
κ(z) dz

)
|dVM | ,

(4.41)

where
√
κ is the density of (expx)

⋆ |dVM | with respect to the normalized Lebesgue measure
on TxM (see Sect. 3.2). Let x ∈ M , for all z ∈ BTxM (0, bn ln d) we define

Dd(x, z) = Dd

(
x, expx

(
z√
d

))
, (4.42)

where Dd is defined by (4.9). Then, by a change of variable in (4.41),

∫

∆d

φ1(x)φ2(y)Dd(x, y) |dVM |2 =

d−
n
2

∫

x∈M

(∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dd(x, z)

(
κ

(
z√
d

)) 1
2

dz

)
|dVM | ,

(4.43)

and we need to compute the asymptotic of Dd(x, z) as d goes to infinity. We start by
computing

∣∣det⊥
(
evdx,y

)∣∣ when (x, y) ∈ ∆d.

Proposition 4.26. Let α ∈
(
0, 1

2r+1

)
, let x ∈ M and z ∈ BTxM (0, bn ln d). We denote

y = expx

(
z√
d

)
. Then we have:

(π
d

)2nr
det
(
evdx,y

(
evdx,y

)∗)
=
(
1− e−‖z‖2

)r (
1 +O

(
d−α

))
, (4.44)

where the error term does not depend on (x, z).

We will deduce Proposition 4.26 from the following two lemmas.

Lemma 4.27. Let β ∈ (0, 1) and d > d3, then for every x ∈ M and z ∈ BTxM (0, bn ln d),
we have: (π

d

)2nr
det
(
evdx,y

(
evdx,y

))
=
(
1− e−‖z‖2

)r
+O

(
dβ−1

)
,

where y stands for expx

(
z√
d

)
. Moreover the error term depends on β but not on (x, z).

Lemma 4.28. There exists C̃ > 0 such that, for all β ∈ [0, 1), there exists dβ ∈ N such
that: ∀d > dβ, ∀x ∈ M , ∀z ∈ BTxM

(
0, dβ−1

)
\ {0},

∣∣∣∣
(π
d

)2nr
det
(
evdx,y

(
evdx,y

)∗)(
1− e−‖z‖2

)−r

− 1

∣∣∣∣ 6 C̃dβ−1,

where y stands for expx

(
z√
d

)
.
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Let us assume Lemmas 4.27 and 4.28 for now, and prove Prop. 4.26.

Proof of Proposition 4.26. First, note that if (4.44) holds for z ∈ BTxM (0, bn ln d)\{0}, then
the same estimate holds for z ∈ BTxM (0, bn ln d) since both sides of the equality vanish when
z = 0. In the sequel we assume that z 6= 0.

Let α ∈
(
0, 1

2r+1

)
, let d > d3 and let x ∈ M . Then for any z ∈ TxM such that ‖z‖ > d−α,

we have: (
1− e−‖z‖2

)−r

6
(
1− exp

(
−d−2α

))−r
. (4.45)

Since 1− e−t = t
(
1− t

2 +O(t2)
)

as t → 0, there exists C̃0 such that for all t ∈ (0, 1),
∣∣∣
(
1− e−t

)−r − t−r
∣∣∣ 6 C̃0t

1−r. (4.46)

Hence, by (4.45), for any d > d3, for any x ∈ M and any z ∈ TxM such that ‖z‖ > d−α, we
have: (

1− e−‖z‖2
)−r

6

(
d2rα + C̃0d

(2r−2)α
)
6 d2rα

(
1 + C̃0

)
. (4.47)

Let β = 1 − (2r + 1)α and β′ = 1 − α, then β and β′ ∈ (0, 1). By Lemma 4.27, there
exists K̃β > 0 such that: for all d > d3, ∀x ∈ M , ∀z ∈ BTxM (0, bn ln d),

∣∣∣∣
(π
d

)2nr
det
(
evdx,y

(
evdx,y

))
−
(
1− e−‖z‖2

)r∣∣∣∣ 6 K̃βd
β−1 = K̃βd

−(2r+1)α,

where y = expx

(
z√
d

)
. Then, by (4.47), we have: ∀d > d3, ∀x ∈ M , ∀z ∈ BTxM (0, bn ln d)

such that ‖z‖ > d−α = dβ
′−1,

∣∣∣∣
(π
d

)2nr
det
(
evdx,y

(
evdx,y

)) (
1− e−‖z‖2

)−r

− 1

∣∣∣∣ 6 K̃βd
−α
(
1 + C̃0

)
,

Besides, let d > dβ′ and x ∈ M , then for all z ∈ BTxM (0, d−α) \ {0} we have:
∣∣∣∣
(π
d

)2nr
det
(
evdx,y

(
evdx,y

))(
1− e−‖z‖2

)−r

− 1

∣∣∣∣ 6 C̃d−α,

by Lemma 4.28. Finally, for all d > max(dβ′ , d3), ∀x ∈ M , ∀z ∈ BTxM (0, bn ln d) \ {0}, we
have: ∣∣∣∣

(π
d

)2nr
det
(
evdx,y

(
evdx,y

)) (
1− e−‖z‖2

)−r

− 1

∣∣∣∣ 6 d−α max
(
C̃, 2K̃β

(
1 + C̃0

))
.

Proof of Lemma 4.27. Let d > d3, let x ∈ M and let z ∈ BTxM (0, bn ln d). We denote

y = expx

(
z√
d

)
. Since ‖z‖√

d
< R, let us write eq. (4.19) in the real normal trivialization of

E ⊗ Ld about x (see Sect. 3.1). We have:

(π
d

)n
evdx,y

(
evdx,y

)∗
=
(π
d

)n


 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



 .

Then, by the near-diagonal estimates of Cor. 3.7, we have:

(π
d

)n

 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)

 =




Id(E⊗Ld)x e−
1
2‖z‖

2
(
κ
(

z√
d

))− 1
2

Id(E⊗Ld)x

e−
1
2‖z‖

2
(
κ
(

z√
d

))− 1
2

Id(E⊗Ld)x

(
κ
(

z√
d

))−1

Id(E⊗Ld)x


+O

(
(ln d)2n+8

d

)
,

39



where the error term does not depend on (x, z). Recall that κ satisfies (3.6). Hence for all
z ∈ B(0, bn ln d),

κ

(
z√
d

)
= 1 +O

(
(ln d)2

d

)
,

uniformly in x and z. Let β ∈ (0, 1), then we have:

(π
d

)n
evdx,y

(
evdx,y

)∗
=

(
1 e−

1
2‖z‖

2

e−
1
2‖z‖

2

1

)
⊗ Id(E⊗Ld)x +O

(
dβ−1

)
, (4.48)

and the constant in the term O
(
dβ−1

)
does not depend on (x, z). Since the dominant term

on the right-hand side of (4.48) has bounded coefficients, we get the result by taking the
determinant of (4.48).

Proof of Lemma 4.28. Let d > max(d0, d3) and let x ∈ M . Recall that Dk
(z,w) denotes the

k-th differential at (z, w) of a map from TxX × TxX to End
((
E ⊗ Ld

)
x

)
.

The Chern connection reads D + µd
x in the real normal trivialization about x, where

µd
x is a 1-form on BTxX (0, 2R). By definition of the real normal trivialization, µd

x(0) = 0.
Besides µd

x(z) is a smooth function of (x, z) and grows at most linearly in d. By compactness

of M , there exist A and B > 0 such that
∥∥∥µd

x

(
z√
d

)∥∥∥ 6 A + B
√
d for all x ∈ M and all

z ∈ BTxX (0, R). Hence, there exists K1 > 0 independent of x such that, for any smooth
section S of R

(
E ⊗ Ld

)
⊠ R

(
E ⊗ Ld

)∗
over BTxM (0, R)×BTxM (0, R), we have:

∥∥∥∥D(z,w)

(
S

(
z√
d
,
w√
d

))∥∥∥∥ 6 K1

∥∥∥∥S
(
expx

(
z√
d

)
, expx

(
w√
d

))∥∥∥∥
C1

,

where ‖·‖C1 was defined in Section 3.4. Since we use the exponential chart, we can argue
similarly for the Levi–Civita connection. This gives a similar result for the higher derivatives
of S. For all k ∈ N, there exists Kk > 0 independent of x such that, for any smooth section
S of R

(
E ⊗ Ld

)
⊠ R

(
E ⊗ Ld

)∗
over BTxM (0, R)×BTxM (0, R), we have:

∥∥∥∥D
k
(z,w)

(
S

(
z√
d
,
w√
d

))∥∥∥∥ 6 Kk

∥∥∥∥S
(
expx

(
z√
d

)
, expx

(
w√
d

))∥∥∥∥
Ck

. (4.49)

Since d > d0, by eq. (4.49) and Thm. 3.9 we have: ∀z, w ∈ BTxM (0, R),

∥∥∥∥D
2
(z,w)

(
Ed

(
z√
d
,
w√
d

))∥∥∥∥ 6 K2

∥∥∥∥Ed

(
expx

(
z√
d

)
, expx

(
w√
d

))∥∥∥∥
C2

6 C2K2d
n+1.

(4.50)

Let x ∈ M and z ∈ BTxM (0, bn ln d) \ {0}. We denote y = expx

(
z√
d

)
. Let us write

eq. (4.19), in the real normal trivialization of E ⊗ Ld about x, as in the proof of Lem. 4.27.
We have:

evdx,y
(
evdx,y

)∗
=



 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



 .
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Then, by elementary operations on rows and columns,

1

‖z‖2r
det
(
evdx,y

(
evdx,y

)∗)
=

1

‖z‖2r
det


 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



= det




Ed(0, 0)
1

‖z‖

(
Ed

(
0, z√

d

)
− Ed(0, 0)

)

1
‖z‖

(
Ed

(
z√
d
, 0
)
− Ed(0, 0)

)
1

‖z‖2



Ed

(
z√
d
,
z√
d

)
− Ed

(
z√
d
, 0

)

−Ed

(
0,

z√
d

)
+ Ed(0, 0)







.

(4.51)

By Taylor’s formula, for all z ∈ BTxM (0, bn ln d) \ {0} we have:
∥∥∥∥Ed

(
0,

z√
d

)
− Ed(0, 0)−D(0,0)Ed ·

(
0,

z√
d

)∥∥∥∥ 6

‖z‖2
2d

(
sup

w∈[0,z]

∥∥∥∥D
2
(0,w)Ed

(
expx

( ·√
d

)
, expx

( ·√
d

))∥∥∥∥

)
. (4.52)

Then, by (4.50), we have:
(π
d

)n 1

‖z‖

∥∥∥∥Ed

(
0,

z√
d

)
− Ed(0, 0)−D(0,0)Ed ·

(
0,

z√
d

)∥∥∥∥ 6 ‖z‖C2K2π
n. (4.53)

Similarly, for all z ∈ BTxM (0, bn ln d) \ {0} we have:
(π
d

)n 1

‖z‖

∥∥∥∥Ed

(
z√
d
, 0

)
− Ed(0, 0)−D(0,0)Ed ·

(
z√
d
, 0

)∥∥∥∥ 6 ‖z‖C2K2π
n. (4.54)

A second order Taylor’s formula gives:
∥∥∥∥
(
Ed(

z√
d
,
z√
d
)− Ed(

z√
d
, 0)− Ed(0,

z√
d
) + Ed(0, 0)

)
−D2

(0,0)Ed

(
(0,

z√
d
), (

z√
d
, 0)

)∥∥∥∥

6

(‖z‖√
d

)3
(

sup
w∈[0,z]

∥∥∥∥D
3
(0,w)Ed

(
expx

( ·√
d

)
, expx

( ·√
d

))∥∥∥∥

)
,

and since d > d0, by Thm. 3.9 and eq. (4.49) we have:

(π
d

)n 1

‖z‖2
∥∥∥∥
(
Ed

(
z√
d
,
z√
d

)
− Ed

(
z√
d
, 0

)
− Ed

(
0,

z√
d

)
+ Ed(0, 0)

)
−

D2
(0,0)Ed

((
0,

z√
d

)(
z√
d
, 0

))∥∥∥∥ 6 ‖z‖C3K3π
n. (4.55)

Finally, by Equations (4.53), (4.54) and (4.55),

(π
d

)n




Ed(0, 0)
1

‖z‖

(
Ed

(
0, z√

d

)
− Ed(0, 0)

)

1
‖z‖

(
Ed

(
z√
d
, 0
)
− Ed(0, 0)

)
1

‖z‖2



Ed

(
z√
d
,
z√
d

)
− Ed

(
z√
d
, 0

)

−Ed

(
0,

z√
d

)
+ Ed(0, 0)







=
(π
d

)n


 Ed(0, 0)
1

‖z‖D(0,0)Ed ·
(
0, z√

d

)

1
‖z‖D(0,0)Ed ·

(
z√
d
, 0
)

1
‖z‖2D2

(0,0)Ed

((
0, z√

d

)(
z√
d
, 0
))



+O(‖z‖) ,

(4.56)
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where the error term is uniform in x and d.
On the other hand, for every x ∈ M and every z ∈ TxM \ {0}, the diagonal estimates of

Sect. 3.3 give (see (3.16)):

(π
d

)n 1

‖z‖2
D2

(0,0)Ed

((
0,

z√
d

)(
z√
d
, 0

))
=

πn

dn+1
D2

(0,0)Ed

((
0,

z

‖z‖

)(
z

‖z‖ , 0
))

= IdR(E⊗Ld)x +O(d−1),

where the error term is independent of x and z. Similarly,

(π
d

)n 1

‖z‖D(0,0)Ed ·
(
0,

z√
d

)
=
(π
d

)n 1√
d
D(0,0)Ed ·

(
0,

z

‖z‖

)
= O(d−1),

(π
d

)n 1

‖z‖D(0,0)Ed ·
(

z√
d
, 0

)
=
(π
d

)n 1√
d
D(0,0)Ed ·

(
z

‖z‖ , 0
)

= O(d−1),

and

(π
d

)n
Ed(0, 0) = IdR(E⊗Ld)x +O(d−1).

Thus

(π
d

)n

 Ed(0, 0)

1
‖z‖D(0,0)Ed ·

(
0, z√

d

)

1
‖z‖D(0,0)Ed ·

(
z√
d
, 0
)

1
‖z‖2D2

(0,0)Ed

((
0, z√

d

)(
z√
d
, 0
))

 = Id+O(d−1), (4.57)

where the error term is uniform in (x, z). By (4.56) and (4.57), there exist C̃1 and C̃2 > 0
such that we have: ∀d > max(d0, d3), ∀x ∈ M , ∀z ∈ BTxM (0, bn ln d) \ {0},
∥∥∥∥∥∥∥∥∥∥∥

(π
d

)n




Ed(0, 0)
1

‖z‖

(
Ed

(
0, z√

d

)
− Ed(0, 0)

)

1
‖z‖

(
Ed

(
z√
d
, 0
)
− Ed(0, 0)

)
1
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
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Ed

(
z√
d
,
z√
d

)
− Ed

(
z√
d
, 0

)

−Ed

(
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z√
d

)
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





− Id

∥∥∥∥∥∥∥∥∥∥∥

6 C̃1 ‖z‖+ C̃2
1

d
. (4.58)

Let β ∈ [0, 1), then for all d > max(d0, d3), for all x ∈ M and all z ∈ BTxM

(
0, dβ−1

)
, we

have: C̃1 ‖z‖+ C̃2d
−1 6 dβ−1

(
C̃1 + C̃2

)
. Let dβ ∈ N be such that (dβ)

β−1
(
C̃1 + C̃2

)
6 1

2 .

Since the determinant is a smooth function, there exists C̃3 > 0 such that, for every operator
Λ, if ‖Λ‖ 6 1

2 , then |det (Id+Λ)− 1| 6 C̃3 ‖Λ‖. Hence, by eq. (4.51) and (4.58), we have:
for all d > dβ , for all x ∈ M , for all z ∈ BTxM

(
0, dβ−1

)
\ {0},

∣∣∣∣∣
1

‖z‖2r
(π
d

)2rn
det
(
evdx,y

(
evdx,y

)∗)− 1

∣∣∣∣∣ 6
(
C̃1 + C̃2

)
C̃3d

β−1. (4.59)

Recall that C̃0 was defined in the proof of Prop. 4.26 (see eq. (4.46)) and that, for all
x ∈ M , for all z ∈ BTxM (0, 1) \ {0}, we have:

∣∣∣∣∣
‖z‖2r(

1− e−‖z‖2)r − 1

∣∣∣∣∣ 6 C̃0 ‖z‖2 .
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Then we have: ∀d > dβ , ∀x ∈ M , ∀z ∈ BTxM

(
0, dβ−1

)
\ {0},

∣∣∣∣
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)2nr
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6

(
1 + C̃0d

2β−2
)(
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)
C̃3d

β−1 + C̃0d
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6 dβ−1
((

C̃1 + C̃2

)
C̃3

(
1 + C̃0

)
+ C̃0

)
= dβ−1C̃,

where we define C̃ > 0 by the equality on the last line.

We now want to compute the limit of the conditional distribution of πn

dn+1

(
∇d

xsd,∇d
ysd
)

given that sd(x) = 0 = sd(y) for (x, y) ∈ ∆d. It is enough to compute the limit of Λd(x, y)
as d → +∞. Recall that Λd is defined by Def. 4.8. Since we work near the diagonal, we can
write everything in the real normal trivialization centered at x (see Sect. 3.1).

Lemma 4.29. Let x ∈ M and let ∇d be a real metric connection which is trivial over
BTxM (0, R) in the real normal trivialization about x. Let β ∈ (0, 1), then, in the real normal
trivialization about x, we have: ∀z ∈ BTxM (0, bn ln d),

πn

dn+1



 ∂x∂
♯
yEd(0, 0) ∂x∂

♯
yEd

(
0, z√

d

)

∂x∂
♯
yEd

(
z√
d
, 0
)

∂x∂
♯
yEd

(
z√
d
, z√

d

)



 =

(
IdT∗

xM e−
1
2 ‖z‖

2 (
IdT∗

xM −z∗ ⊗ z
)

e−
1
2‖z‖

2 (
IdT∗

xM −z∗ ⊗ z
)

IdT∗
xM

)
⊗ IdR(E⊗Ld)x

+O
(
dβ−1

)
,

where the error term does not depend on (x, z).

Proof. Let x ∈ M and let us choose an orthonormal basis
(

∂
∂x1

, . . . , ∂
∂xn

)
of TxM . We

denote the corresponding coordinates on TxM × TxM by (z1, . . . , zn, w1, . . . , wn) and by
∂zi and ∂wj

the associated partial derivatives. Let (dx1, . . . , dxn) denote the dual basis of(
∂

∂x1
, . . . , ∂

∂xn

)
. By definition of ∇d and ∂x∂

♯
yEd (see eq. (2.19)), for all z, w ∈ BTxM (0, R),

the matrix of ∂x∂♯
yEd(z, w) in the orthonormal basis (dx1, . . . , dxn) is:

(
∂zi∂wj

Ed(z, w)
)
16i,j6n

.

Note that this is a matrix with values in End
(
R
(
E ⊗ Ld

)
x

)
. Recall that we defined the

function ξd by (3.12). Then, by Cor. 3.7, for all z, w ∈ BTxM (0, bn ln d), we have:

∂zi∂wj
Ed

(
z√
d
,
w√
d

)
=

(
d

π

)n

∂zi∂wj
ξd

(
z√
d
,
w√
d

)
IdR(E⊗Ld)x

+O
(
(ln d)2n+8

)
.

43



Then, eq. (3.15) shows that:

∂zi∂wj
ξd

(
z√
d
,
w√
d

)
= exp

(
−1

2
‖z − w‖2

)
κ

(
z√
d

)− 1
2

κ

(
w√
d

)− 1
2

×


dδij − d(zi − wi)(zj − wj)−
√
d(zj − wj)∂ziκ

(
z√
d

)

2κ
(

z√
d

) +

√
d(zi − wi)∂wj

κ
(

w√
d

)

2κ
(

w√
d

)





= d exp

(
−1

2
‖z − w‖2

)
(δij − (zi − wi)(zj − wj)) + O

(
(ln d)4

)
,

where we used the fact that, uniformly in z ∈ BTxM (0, bn ln d), we have:

κ

(
z√
d

)
= 1 +O

(
(ln d)2

d

)

and ∀i ∈ {1, . . . , n}, ∂ziκ

(
z√
d

)
= O

(
ln d√
d

)
.

Hence, for all z, w ∈ BTxM (0, bn ln d), we have:

πn

dn+1
∂zi∂wj

Ed

(
z√
d
,
w√
d

)
=

exp

(
−1

2
‖z − w‖2

)
(δij − (zi − wi)(zj − wj)) IdR(E⊗Ld)x

+O

(
(ln d)2n+8

d

)
,

where the error term is independent of x, z and w. Furthermore, for any β ∈ (0, 1), the term

O
(

(ln d)2n+8

d

)
can be replaced by O

(
dβ−1

)
. Finally, for all z, w ∈ BTxM (0, bn ln d), we have:

πn

dn+1
∂x∂

♯
yEd(z, w) =

exp

(
−1

2
‖z − w‖2

)(
IdT∗

xM −(z − w)∗ ⊗ (z − w)
)
⊗ IdR(E⊗Ld)x

+O
(
dβ−1

)
,

which yields the result.

A similar proof, using Cor. 3.7 and the expressions (3.13) and (3.14) for the partial
derivatives of ξd yields the following.

Lemma 4.30. Let x ∈ M and let ∇d be a real metric connection which is trivial over
BTxM (0, R) in the real normal trivialization about x. Let β ∈ (0, 1), then, in the real normal
trivialization about x, we have: ∀z ∈ BTxM (0, bn ln d),

πn

dn+
1
2


 ∂xEd(0, 0) ∂xEd

(
0, z√

d

)

∂xEd

(
z√
d
, 0
)

∂xEd

(
z√
d
, z√

d

)

 = e−

1
2‖z‖

2

(
0 z∗

−z∗ 0

)
⊗ IdR(E⊗Ld)x

+O
(
dβ−1

)

πn

dn+
1
2


 ∂♯

yEd(0, 0) ∂♯
yEd

(
0, z√

d

)

∂♯
yEd

(
z√
d
, 0
)

∂♯
yEd

(
z√
d
, z√

d

)

 = e−

1
2‖z‖

2

(
0 −z
z 0

)
⊗ IdR(E⊗Ld)x

+O
(
dβ−1

)
,

where z∗ ∈ T ∗
xM is to be understood as the constant map t 7→ z∗ from R to T ∗

xM and
z ∈ TxM is to be understood as the evaluation on z from T ∗

xM to R. Moreover, the error
terms do not depend on (x, z).
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We would like to get a similar asymptotic for the last term in the conditional variance
operator (4.22), namely: 

 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)




−1

.

Unfortunately, this term is singular on ∆, and this kills all hope to get a uniform estimate on
BTxM (0, bn ln d)\{0}. Instead, we obtain a uniform estimate on BTxM (0, bn ln d)\BTxM (0, ρ)
for some ρ > 0. We need to carefully check how this estimate depends on ρ.

Lemma 4.31. Let β ∈ (0, 1) and ρ ∈ (0, 1). Let x ∈ M and z ∈ BTxM (0, bn ln d) such that
‖z‖ > ρ. Then, in the real normal trivialization about x, we have:

(
d

π

)n

 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



−1

=

1

1− e−‖z‖2

(
1 −e−

1
2‖z‖

2

−e−
1
2‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

(
Id+O

(
dβ−1

1− e−
1
2ρ

2

))
.

Here, the notation O

(
dβ−1

1−e−
1
2
ρ2

)
means a quantity such that there exists C > 0 and ε > 0,

independent of x, z, d and ρ, such that whenever dβ−1

1−e−
1
2
ρ2

6 ε, the norm of this quantity is

smaller than C dβ−1

1−e−
1
2
ρ2

.

Proof. By eq. (4.19) and (4.48), we have:

(π
d

)n


 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



 =

(
1 e−

1
2‖z‖

2

e−
1
2 ‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

+O
(
dβ−1

)
,

where the error term is independent of (x, z). Besides,

((
1 e−

1
2‖z‖

2

e−
1
2 ‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

)−1

=

1

1− e−‖z‖2

(
1 −e−

1
2‖z‖

2

−e−
1
2‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

,

(4.60)

and the eigenvalues of (
1 e−

1
2‖z‖

2

e−
1
2 ‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

are 1− e−
1
2‖z‖

2

and 1 + e−
1
2‖z‖

2

, which shows that:
∥∥∥∥∥∥

((
1 e−

1
2‖z‖

2

e−
1
2‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

)−1
∥∥∥∥∥∥
6

1

1− e−
1
2‖z‖2 ,

where ‖·‖ is the operator norm on End
(
R

2 ⊗ R
(
E ⊗ Ld

)
x

)
. Then, if ‖z‖ > ρ, we have:

1

1− e−
1
2‖z‖2 6

1

1− e−
1
2ρ

2
.
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Thus,

(π
d

)n

 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



=

(
1 e−

1
2‖z‖

2

e−
1
2‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

(
Id+O

(
dβ−1

1− e−
1
2 ρ

2

))
. (4.61)

Taking the inverse of eq. (4.61), we get:

(
d

π

)n

 Ed(0, 0) Ed

(
0, z√

d

)

Ed

(
z√
d
, 0
)

Ed

(
z√
d
, z√

d

)



−1

=

((
1 e−

1
2 ‖z‖

2

e−
1
2‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

)−1(
Id+O

(
dβ−1

1− e−
1
2ρ

2

))
,

where we used the mean value inequality and the fact that the differential of Λ 7→ Λ−1 is
bounded from above on the closed ball of center Id and radius 1

2 . Finally, eq. (4.60) gives
the result.

Recall that Λx(z) is defined for x ∈ M and z ∈ TxM \ {0} by Def. 4.14. Recall also that
Λd (x, y) is defined by Def. 4.8.

Lemma 4.32. Let β ∈ (0, 1) and ρ ∈ (0, 1). Let x ∈ M and z ∈ BTxM (0, bn ln d) such that

‖z‖ > ρ. We denote y = expx

(
z√
d

)
. Let ∇d be any real metric connection. Then, in the

real normal trivialization about x, we have:

Λd (x, y) = Λx(z) + O

(
dβ−1

(1− e−
1
2ρ

2
)2

)
,

where the constant in the error term does not depend on (x, z), d or ρ.

Proof. We know that Λd(x, y) does not depend on the choice of ∇d (see Rem.4.5). Hence,
we can compute Λd (x, y) with ∇d trivial over BTxM (0, R) in the real normal trivialization
of E ⊗ Ld about x.

Let β ∈ (0, 1) and ρ ∈ (0, 1), we apply Lemmas 4.30 and 4.31 for β
2 . Then, in the real

normal trivialization about x, we have:

πn

dn+1

(
∂xEd(x, x) ∂xEd(x, y)
∂xEd(y, x) ∂xEd(y, y)

)(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)−1(
∂♯
yEd(x, x) ∂♯

yEd(x, y)
∂♯
yEd(y, x) ∂♯

yEd(y, y)

)

=

((
0 z∗

−z∗ 0

)
⊗ IdR(E⊗Ld)x

+O
(
d

β
2 −1
))((

1 e−
1
2‖z‖

2

e−
1
2‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

)−1

×
(
Id+O

(
d

β
2 −1

1− e−
1
2 ρ

2

))((
0 −z
z 0

)
⊗ IdR(E⊗Ld)x

+O
(
d

β
2 −1
))

. (4.62)

Since, ρ 6 |z| < bn ln d, the norm of

((
1 e−

1
2‖z‖

2

e−
1
2 ‖z‖

2

1

)
⊗ IdR(E⊗Ld)x

)−1
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is smaller than
(
1− e−

1
2‖z‖

2
)−1

6

(
1− e−

1
2 ρ

2
)−1

, and the norms of the other matrices

appearing in (4.62) are O(ln d). Hence, the expression (4.62) equals:

e−‖z‖2

1− e−‖z‖2

(
0 z∗

−z∗ 0

)(
1 −e−

1
2‖z‖

2

−e−
1
2‖z‖

2

1

)(
0 −z
z 0

)
⊗ IdR(E⊗Ld)x

+O

(
dβ−1

(1− e−
1
2ρ

2
)2

)

=
e−‖z‖2

1− e−‖z‖2

(
z∗ ⊗ z e−

1
2‖z‖

2

z∗ ⊗ z

e−
1
2 ‖z‖

2

z∗ ⊗ z z∗ ⊗ z

)
⊗ IdR(E⊗Ld)x

+O

(
dβ−1

(1− e−
1
2ρ

2
)2

)
,

(4.63)
where the error term is independent of (x, z). Finally, eq. (4.63) and Lemma 4.29 yield the
result.

Lemma 4.33. Let β ∈ (0, 1) and ρ ∈ (0, 1). Let x ∈ M and z ∈ BTxM (0, bn ln d) such that

‖z‖ > ρ. We denote y = expx

(
z√
d

)
. Let ∇d be any real metric connection. Then,

(
πn

dn+1

)r

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
=

E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]
+O

(
f(ρ2)

r(n+1)
2 +4dβ−1

)
,

where the constant in the error term does not depend on (x, z), d or ρ.

Proof. Let x ∈ M and z ∈ BTxM (0, bn ln d) \ {0}, let y = expx

(
z√
d

)
then we have:

(
πn

dn+1

)r

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

= E

[∣∣∣∣∣det
⊥
((

πn

dn+1

) 1
2

∇d
xsd

)∣∣∣∣∣

∣∣∣∣∣det
⊥
((

πn

dn+1

) 1
2

∇d
ysd

)∣∣∣∣∣

∣∣∣∣∣ev
d
x,y(sd) = 0

]

= E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] ,

where (L′
d(x), L

′
d(y)) is a centered Gaussian vector in

R
(
E ⊗ Ld

)
x
⊗ T ∗

xM ⊕ R
(
E ⊗ Ld

)
y
⊗ T ∗

yM

with variance operator Λd(x, y). We can consider (L′
d(x), L

′
d(y)) as a random vector in

R2 ⊗R
(
E ⊗ Ld

)
x
⊗T ∗

xM , via the real normal trivialization about x. From now on, we work
in this trivialization. Let ρ ∈ (0, 1) and β ∈ (0, 1), we assume that ρ 6 ‖z‖ < bn ln d. Then,
by Lemma 4.32, we have:

Λd (x, y) = Λx(z) +O

(
dβ−1

(1− e−
1
2 ρ

2
)2

)
.

Moreover, by Cor. 4.17 and Rem. 4.18,
∥∥Λx(z)

−1
∥∥ 6 f

(
‖z‖2

)
6 f(ρ2). Hence, we have:

Λd (x, y) = Λx(z)

(
Id+O

(
f(ρ2)

dβ−1

(1 − e−
1
2ρ

2
)2

))
= Λx(z)

(
Id+O

(
f(ρ2)3dβ−1

))
,

where we used the fact that 1

1−e−
1
2
ρ2

6 f(ρ2) (see the proof of Cor. 4.17). Then, we get:

det (Λd (x, y)) = det (Λx(z))
(
1 +O

(
f(ρ2)3dβ−1

))
(4.64)
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and
Λd (x, y)

−1
= Λx(z)

−1
(
Id+O

(
f(ρ2)3dβ−1

))
= Λx(z)

−1 +O
(
f(ρ2)4dβ−1

)
.

Thus there exists K > 0 and ε > 0 such that, whenever f(ρ2)4dβ−1 6 ε,
∥∥Λd(x, y)

−1 − Λx(z)
−1
∥∥ 6 Kf(ρ2)4dβ−1.

By the mean value inequality, for every L = (L1, L2) ∈ R2⊗T ∗
xM ⊗R

(
E ⊗ Ld

)
x

we have:

∣∣∣∣exp
(
−1

2

〈(
Λd(x, y)

−1 − Λx(z)
−1
)
L ,L

〉)
− 1

∣∣∣∣

6
K

2
‖L‖2 f(ρ2)4dβ−1 exp

(
K

2
‖L‖2 f(ρ2)4dβ−1

)
,

whenever f(ρ2)4dβ−1 6 ε. Let dL denote the normalized Lebesgue measure on this vector
space, and recall that we defined (Lx(0), Lx(z)) above (Def. 4.19). Then, we have:

(2π)nr
∣∣∣det (Λd(x, y))

1
2 E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣]

− det (Λx(z))
1
2 E
[∣∣det⊥ (Lx(0))

∣∣ ∣∣det⊥ (Lx(z))
∣∣]
∣∣∣

6

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣ exp
(
−1

2

〈
Λx(z)

−1L ,L
〉)

×
∣∣∣∣exp

(
−1

2

〈(
Λd(x, y)

−1 − Λx(z)
−1
)
L ,L

〉)
− 1

∣∣∣∣ dL

6
K

2
f(ρ2)4dβ−1

∫ ∣∣det⊥ (L1)
∣∣ ∣∣det⊥ (L2)

∣∣ ‖L‖2 ×

exp

(
−1

2

〈(
Λx(z)

−1 − K

2
f(ρ2)4dβ−1 Id

)
L ,L

〉)
dL,

whenever f(ρ2)4dβ−1 6 ε. Since ‖Λx(d)‖ < 2 by Cor. 4.17, the smallest eigenvalue of
Λx(z)

−1 is larger than 1
2 . Thus, if f(ρ2)4dβ−1 6 1

2K , for every L we have:

〈(
Λx(z)

−1 − K

2
f(ρ2)4dβ−1 Id

)
L ,L

〉
>

1

4
‖L‖2 .

Hence, the last integral above is bounded by:
∫ ∣∣det⊥ (L1)

∣∣ ∣∣det⊥ (L2)
∣∣ ‖L‖2 exp

(
−1

8
‖L‖2

)
dL < +∞.

Then, we have:

det (Λd(x, y))
1
2 E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] =

det (Λx(z))
1
2 E
[∣∣det⊥ (Lx(0))

∣∣ ∣∣det⊥ (Lx(z))
∣∣]+O

(
f(ρ2)4dβ−1

)
,

and by (4.64), we obtain:

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] =

E
[∣∣det⊥ (Lx(0))

∣∣ ∣∣det⊥ (Lx(z))
∣∣] (1 +O

(
f(ρ2)3dβ−1

))

+ det (Λx(z))
− 1

2 O
(
f(ρ2)4dβ−1

) (
1 +O

(
f(ρ2)3dβ−1

))
.
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Since, for all t > 0 we have (see Lem. 4.15):

1

1 + e−
1
2 t

6 1,
1

1− e−
1
2 t

6 f(t) and
1 + e−

1
2 t

1− e−t + te−
1
2 t

6 f(t),

by Cor. 4.17 we have: det (Λx(z))
− 1

2 6 f(ρ2)
r(n+1)

2 . Besides, by Cor. 4.21, we have:

E
[∣∣det⊥ (Lx(0))

∣∣ ∣∣det⊥ (Lx(z))
∣∣] = E

[∣∣∣det⊥
(
X(‖z‖2

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2

)∣∣∣
]
,

and by Lemma 4.22 this quantity is bounded from above by nr. Finally, we have:

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] =E

[∣∣∣det⊥
(
X(‖z‖2

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2

)∣∣∣
]

+O
(
f(ρ2)4+

r(n+1)
2 dβ−1

)
.

The following corollary is not necessary to the proof of Thm. 1.6 but is worth mentioning.

Corollary 4.34. Let β ∈ (0, 1). Let x ∈ M and z ∈ BTxM (0, bn ln d) \ {0}. We denote

y = expx

(
z√
d

)
. Let ∇d be any real metric connection. Then, we have:

(
πn

dn+1

)r

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
=

E

[∣∣∣det⊥
(
X(‖z‖2

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2

)∣∣∣
]
+O

(
dβ−1

)
,

where the error term depends on z but not on x.

Proof. Let us fix, β, x and z, then we set ρ = ‖z‖ and we apply Lemma 4.33.

Before we can conclude the proof of Thm. 1.6, we need one last lemma.

Lemma 4.35. Let x ∈ M and z ∈ BTxM (0, bn ln d) \ {0}. We denote y = expx

(
z√
d

)
. Let

β ∈ (0, 1) and let ∇d be any real metric connection. Then, we have:

(
πn

dn+1

)r

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
6

(2r)!

r!
nr +O

(
dβ−1

)
,

where the error term is independent of (x, z).

Proof. Let x ∈ M , let z ∈ BTxM (0, bn ln d) \ {0} and let y = expx

(
z√
d

)
. As in the proof

of Lem. 4.33, let (L′
d(x), L

′
d(y)) be a centered Gaussian vector in R2 ⊗ R

(
E ⊗ Ld

)
x
⊗ T ∗

xM
whose variance operator is Λd(x, y), read in the real normal trivialization about x. In the
sequel, we work in this trivialization. We have:

(
πn

dn+1

)r

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
=

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] .

The proof follows the same lines as that of Lem. 4.22, the main difference being that
the variance operator is not explicit. An additional difficulty comes from the fact that the
estimate for Λd(x, y) given by Lemma 4.32 is not uniform in z ∈ BTxM (0, bn ln d)\{0}, hence
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it is useless here. Fortunately, we only need to bound its trace, which is bounded from above
by that of the unconditional variance operator:

πn

dn+1



 ∂x∂
♯
yEd(0, 0) ∂x∂

♯
yEd

(
0, z√

d

)

∂x∂
♯
yEd

(
z√
d
, 0
)

∂x∂
♯
yEd

(
z√
d
, z√

d

)



 ,

and Lemma 4.29 allows us to bound the latter.
By the Cauchy-Schwarz inequality,

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] 6 E

[∣∣det⊥ (L′
d(x))

∣∣2
] 1

2

E

[∣∣det⊥ (L′
d(y))

∣∣2
] 1

2

. (4.65)

Let Λd,1(x, y) and Λd,2(x, y) denote the variance operators of L′
d(x) and L′

d(y) respectively,
so that:

Λd(x, y) =

(
Λd,1(x, y) ∗

∗ Λd,2(x, y)

)
. (4.66)

Let us choose orthonormal bases of TxM and R
(
E ⊗ Ld

)
x
. We denote by (L′

d(x)ij)16i6r
16j6n

the coefficients of the matrix of L′
d(x) in these bases, and by (L′

d(x)i)16i6r its rows. As in
the proof of Lem. 4.22, we have:

∣∣det⊥ (L′
d(x))

∣∣2 = det
(
L′
d(x) (L

′
d(x))

∗)
= det (〈L′

d(x)i , L
′
d(x)j〉)

6 ‖L′
d(x)1‖

2 · · · ‖L′
d(x)r‖

2
.

(4.67)

Then, we have:

E

[
‖L′

d(x)1‖
2 · · · ‖L′

d(x)r‖
2
]
= E




r∏

i=1




n∑

j=1

(L′
d(x)ij)

2









=
∑

16j1,...,jr6n

E

[
r∏

i=1

(
L′
d(x)i(ji)

)2
]
.

(4.68)

Let j1, . . . , jr ∈ {1, . . . , r}, we denote Xi = L′
d(x)i(ji). Then, by Wick’s formula (see [32,

lem. 11.6.1]), we have:

E

[
r∏

i=1

(
L′
d(x)i(ji)

)2
]
= E

[
r∏

i=1

(Xi)
2

]
=

∑

({ai,bi})

r∏

i=1

E

[
X⌊ ai

2 ⌋X⌊ bi
2 ⌋

]
,

where we sum over all the partitions into pairs ({ai, bi})16i6r of {1, . . . , 2r}. Hence, by
Cauchy-Schwarz inequality again, we get:

E

[
r∏

i=1

(
L′
d(x)i(ji)

)2
]
6

∑

({ai,bi})

r∏

i=1

E

[(
X⌊ai

2 ⌋

)2] 1
2

E

[(
X⌊ bi

2 ⌋

)2] 1
2

6
∑

({ai,bi})

2r∏

k=1

E

[(
X⌊ k

2 ⌋

)2] 1
2

6
∑

({ai,bi})

r∏

l=1

E

[
(Xl)

2
]

6
(2r)!

2rr!

r∏

i=1

E

[(
L′
d(x)i(ji)

)2]
.
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Thus, we have:

∑

16j1,...,jr6n

E

[
r∏

i=1

(
L′
d(x)i(ji)

)2
]
6

(2r)!

2rr!

∑

16j1,...,jr6n

r∏

i=1

E

[(
L′
d(x)i(ji)

)2]

6
(2r)!

2rr!

r∏

i=1




n∑

j=1

E

[
(L′

d(x)ij)
2
]



6
(2r)!

2rr!




r∑

i=1

n∑

j=1

E

[
(L′

d(x)ij)
2
]



r

6
(2r)!

2rr!
Tr (Λd,1(x, y))

r ,

(4.69)

where Tr stands for the trace operator. Finally, by (4.67), (4.68) and (4.69), we have:

E

[∣∣det⊥ (L′
d(x))

∣∣2
]
6

(2r)!

2rr!
Tr (Λd,1(x, y))

r ,

and similarly,

E

[∣∣det⊥ (L′
d(y))

∣∣2
]
6

(2r)!

2rr!
Tr (Λd,2(x, y))

r
.

Thus, by (4.65), we get:

E
[∣∣det⊥ (L′

d(x))
∣∣ ∣∣det⊥ (L′

d(y))
∣∣] 6 (2r)!

2rr!
Tr (Λd,1(x, y))

r
2 Tr (Λd,2(x, y))

r
2

6
(2r)!

2rr!
Tr (Λd(x, y))

r
.

(4.70)

Let β ∈ (0, 1), by eq. (4.70), we only need to prove that Tr (Λd(x, y)) 6 2n+O
(
dβ−1

)
to

complete the proof. By eq. (4.19),
(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)

is a variance operator. Hence it is a positive symmetric operator and so is its inverse. Besides,
by (4.21), we know that:

(
∂♯
yEd(x, x) ∂♯

yEd(x, y)
∂♯
yEd(y, x) ∂♯

yEd(y, y)

)
=

(
∂xEd(x, x) ∂xEd(x, y)
∂xEd(y, x) ∂xEd(y, y)

)∗
.

Then, the diagonal coefficients of:
(
∂xEd(x, x) ∂xEd(x, y)
∂xEd(y, x) ∂xEd(y, y)

)(
Ed(x, x) Ed(x, y)
Ed(y, x) Ed(y, y)

)−1(
∂♯
yEd(x, x) ∂♯

yEd(x, y)
∂♯
yEd(y, x) ∂♯

yEd(y, y)

)

are non-negative, and so is its trace. Finally, by the definition of Λd(x, y) (Def. 4.8), we have:

Tr (Λd(x, y)) 6
πn

dn+1
Tr

(
∂x∂

♯
yEd(x, x) ∂x∂

♯
yEd(x, y)

∂x∂
♯
yEd(y, x) ∂x∂

♯
yEd(y, y)

)
. (4.71)

Note that what we have done so far works for any choice of connection since Λd(x, y)
is independent of this choice. However, the right-hand side of eq. (4.71) depends on the
choice ∇d. We use a real metric connection that is trivial on BTxM (0, R) in the real normal
trivialization about x. Then, by Lemma 4.29, we have:

Tr (Λd(x, y)) 6 2n+O
(
dβ−1

)
.
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4.3.5 Conclusion of the proof

We can now prove Theorem 1.6.

Lemma 4.36. Let α > 0, let φ ∈ C0(M) and let x ∈ M , then we have:

∣∣∣∣∣

∫

BTxM (0,d−α)

φ

(
expx

(
z√
d

))
κ

(
z√
d

) 1
2
(

1

dr
Dd(x, z)−Dn,r(‖z‖2)

)
dz

∣∣∣∣∣

= ‖φ‖∞ O
(
d(r−n)α

)
,

where the error term does not depend on x or φ.

Proof. We have:
∣∣∣∣∣

∫

BTxM (0,d−α)

φ

(
expx

(
z√
d

))
κ

(
z√
d

) 1
2
(

1

dr
Dd(x, z)−Dn,r(‖z‖2)

)
dz

∣∣∣∣∣

6 ‖φ‖∞


 sup

BTxM

(

0,bn
ln d√

d

)

|κ| 12


∫

BTxM (0,d−α)

(
1

dr
|Dd(x, z)|+

∣∣∣Dn,r(‖z‖2)
∣∣∣
)
dz.

Since κ(z) = 1 +O
(
‖z‖2

)
uniformly in x (see (3.6)), we have:

sup
BTxM

(

0,bn
ln d√

d

)

|κ| 12 = 1 +O

(
(ln d)2

d

)
,

and this term is bounded. Thus, we only need to consider the integrals of 1
dr |Dd(x, z)| and∣∣∣Dn,r(‖z‖2)

∣∣∣. By Lemma 4.22, we have:

∫

B(0,d−α)

∣∣∣Dn,r(‖z‖2)
∣∣∣ dz 6Vol

(
S
n−1
) ∫ d−α

ρ=0

E
[∣∣det⊥

(
X(ρ2)

)∣∣ ∣∣det⊥
(
Y (ρ2

)∣∣]
(
1− e−ρ2

) r
2

ρn−1 dρ

+ (2π)r
(
Vol (Sn−r)

Vol (Sn)

)2

Vol
(
BTxM

(
0, d−α

))

6
nr

2
Vol

(
S
n−1
) ∫ d−2α

t=0

t
n−2
2

(1− e−t)
r
2
dt+O

(
d−nα

)
.

(4.72)
Then, since there exists C > 0 such that t

1−e−t 6 C for all t ∈ (0, 1], we get:

∫ d−2α

t=0

t
n−2
2

(1− e−t)
r
2
dt 6 C

∫ d−2α

t=0

t
n−2−r

2 dt = O
(
d(r−n)α

)
. (4.73)

Hence,
∫

B(0,d−α)

∣∣∣Dn,r(‖z‖2)
∣∣∣dz = O

(
d(r−n)α

)
. Let us denote y = expx

(
z√
d

)
. By the

definition of Dd(x, z) (cf. (4.42)), we have:

1

dr
|Dd(x, z)| 6

1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

∣∣det⊥
(
evdx,y

)∣∣

+
1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]

|det⊥ (evdx)|
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

∣∣det⊥
(
evdy
)∣∣ .
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Then, let β ∈ (0, 1) and β′ ∈
(
0, 1

2r+1

)
, by Prop. 4.26 and Lem. 4.35 we have:

1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

∣∣det⊥
(
evdx,y

)∣∣ 6

(2r)!
r! nr +O

(
dβ−1

)
(
1− e−‖z‖2) r

2

(
1 +O

(
d−β′

))

6 C

(
1

1− e−‖z‖2

) r
2

,

for some large C. By a polar change of coordinates similar to (4.72) and (4.73), we show that
the integral of this term over BTxM (0, d−α) is a O

(
d(r−n)α

)
. Finally, by Lem. 4.6 and 4.7

we have:

1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]

|det⊥ (evdx)|
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

∣∣det⊥
(
evdy
)∣∣ = O(1) .

Hence the integral of this term over BTxM (0, d−α) is a O(d−nα).

Recall that we defined α0 =
n− r

2(2r + 1)(2n+ 1)
(see Ntn. 1.5). Let us denote α1 =

α0

n− r
.

Lemma 4.37. Let α ∈ (0, α1), let φ ∈ C0(M) and x ∈ M , then we have:

∣∣∣∣∣

∫

d−α6‖z‖<bn ln d

φ

(
expx

(
z√
d

))
κ

(
z√
d

) 1
2
(

1

dr
Dd(x, z)−Dn,r(‖z‖2)

)
dz

∣∣∣∣∣

= ‖φ‖∞ O
(
d(r−n)α

)
,

where the error term does not depend on x or φ.

Proof. As in the proof of Lemma 4.36, since κ
1
2 is bounded on BTxM

(
0, bn

ln d√
d

)
uniformly

in x ∈ M , we only need to prove that:
∣∣∣∣
1

dr
Dd(x, z)−Dn,r(‖z‖2)

∣∣∣∣ = O
(
d(r−n)α−α′

)

for some α′ > 0. Then, since Vol (BTxM (0, bn ln d)) = O((ln d)n) = O
(
dα

′
)
, we get the

result by integrating over BTxM (0, bn ln d) \BTxM (0, d−α).

Since α ∈ (0, α1), we have 0 < nα < 1
2r+1 and we can choose a positive β ∈

(
nα, 1

2r+1

)
.

Let β′ ∈ (0, 1) be such that:

1− 2α(8 + r(n+ 1))− β < β′ < 1− 2α(8 + r(n+ 1))− nα < 1. (4.74)

We already know that −β < −nα, so we only need to check that 0 < 1−α(16+2rn+2r+n)
to ensure the existence of such a β′. This goes as follows:

1− α(16 + 2rn+ 2r + n) > 1− 2α1(8 + rn+ n+ r) =
3rn+ n+ r − 7

(2r + 1)(2n+ 1)
> 0.

By Lemma 4.33, for every x ∈ M and z ∈ BTxM (0, bn ln d) such that ‖z‖ > d−α we have:

(
πn

dn+1

)r

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]
=

E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]
+ O

(
f(d−2α)

r(n+1)
2 +4dβ

′−1
)
, (4.75)
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where, as usual, y stands for expx

(
z√
d

)
. Recall that we have: f(t) ∼ 12

t2 as t → 0

(cf. Rem. 4.18). Then, we get:

f(d−2α)
r(n+1)

2 +4 = O
(
d2α(8+r(n+1))

)
.

We set α′ = 1−2α (8 + r(n+ 1))−β′−nα, so that the error term in (4.75) is a O
(
d−nα−α′

)
.

By (4.74), we have α′ > 0.
By Prop. 4.26, applied for β, and eq. (4.75) we have:

1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

∣∣det⊥
(
evdx,y

)∣∣ =

E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]
+O

(
d−nα−α′

)

(
1− e−‖z‖2) r

2

(
1 +O

(
d−β

))
, (4.76)

for all x ∈ M and z ∈ TxM such that d−α 6 ‖z‖ < bn ln d. Since

(
1− e−d−2α

)− r
2

= O(drα) ,

and the numerator of (4.76) is bounded (cf. Lemma 4.22), the right-hand side of equa-
tion (4.76) equals:

E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]

(
1− e−‖z‖2) r

2
+O

(
d(r−n)α−α′

)
+O

(
drα−β

)
.

Moreover, nα+ α′ = 1− 2α (8 + r(n+ 1))− β′ < β (see eq. (4.74)), so that we have:

1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣∣∣det⊥

(
∇d

ysd
)∣∣
∣∣∣evdx,y(sd) = 0

]

∣∣det⊥
(
evdx,y

)∣∣ =

E

[∣∣∣det⊥
(
X(‖z‖2)

)∣∣∣
∣∣∣det⊥

(
Y (‖z‖2)

)∣∣∣
]

(
1− e−‖z‖2) r

2
+O

(
d(r−n)α−α′

)
.

On the other hand, by Lemmas 4.6 and 4.7, we have:

1

dr

E

[∣∣det⊥
(
∇d

xsd
)∣∣
∣∣∣sd(x) = 0

]

|det⊥ (evdx)|
E

[∣∣det⊥
(
∇d

ysd
)∣∣
∣∣∣sd(y) = 0

]

∣∣det⊥
(
evdy
)∣∣ =

(2π)r
(
Vol (Sn−r)

Vol (Sn)

)2

+O
(
d−1

)
.

Once again, eq. (4.74) shows that nα+ α′ < β < 1. A fortiori (n− r)α + α′ < 1. Thus, for
all x ∈ M and z ∈ TxM such that d−α 6 ‖z‖ < bn ln d, we have:

∣∣∣∣
1

dr
Dd(x, z)−Dn,r(‖z‖2)

∣∣∣∣ = O
(
d(r−n)α−α′

)
,

where α′ > 0 and the error term is independent of (x, z).
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Proposition 4.38. Let α ∈ (0, α0), let φ1 and φ2 ∈ C0(M), we have the following asymptotic
as d → +∞:

1

dr

∫

x∈M

(∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dd(x, z)κ

(
z√
d

) 1
2

dz

)
|dVM |

=

∫

x∈M

(∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2) dz

)
|dVM |

+ ‖φ1‖∞ ‖φ2‖∞ O
(
d−α

)
,

where the error term does not depend on (φ1, φ2).

Proof. Let α ∈ (0, α0), we set α′ = α
n−r ∈ (0, α1). Let φ1, φ2 ∈ C0(M) and let x ∈ M , we

apply Lemmas 4.36 and 4.37 for α′ and φ2. Then, we have:

1

dr

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dd(x, z)κ

(
z√
d

) 1
2

dz

=

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2)κ

(
z√
d

) 1
2

dz

+ |φ1(x)| ‖φ2‖∞ O
(
d(r−n)α′

)
, (4.77)

and the error term can be rewritten as O(d−α).

Since κ(z)
1
2 = 1+O

(
‖z‖2

)
(cf. (3.6)), there exists C > 0 independent of x such that for

all z ∈ BTxM (0, R),
∣∣∣κ(z) 1

2 − 1
∣∣∣ 6 C ‖z‖2. Then, we get:

∣∣∣∣∣

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2)

(
κ

(
z√
d

) 1
2

− 1

)
dz

∣∣∣∣∣

6 |φ1(x)| ‖φ2‖∞ C
(bn ln d)

2

d

∫

z∈B(0,bn ln d)

∣∣∣Dn,r(‖z‖2)
∣∣∣ dz

6 |φ1(x)| ‖φ2‖∞
C

2

(bn ln d)
2

d
Vol

(
S
n−1
) ∫ (bn ln d)2

t=0

|Dn,r(t)| t
n−2
2 dt.

Since |Dn,r(t)| t
n−2
2 is integrable on (0,+∞) (Lem. 4.25) and α < 1, we have:

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2)κ

(
z√
d

) 1
2

dz =

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2) dz + |φ1(x)| ‖φ2‖∞ O

(
d−α

)
, (4.78)

where the error term in independent of x. By (4.77) and (4.78), we have:

1

dr

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dd(x, z)κ

(
z√
d

) 1
2

dz =

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2) dz + |φ1(x)| ‖φ2‖∞ O

(
d−α

)
,

uniformly in x ∈ M . Integrating this relation over M yields the result.
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Now, let α ∈ (0, α0), let φ1 and φ2 ∈ C0(M), then by eq. (4.10), Prop. 4.12, eq. (4.43)
and Prop. 4.38 we have:

Var(|dVd|) (φ1, φ2) =

dr−
n
2

(2π)r

∫

x∈M

(∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2) dz

)
|dVM |

+ ‖φ1‖∞ ‖φ2‖∞ O
(
dr−

n
2 −α

)
, (4.79)

where the error term is independent of (φ1, φ2). Then, we have:

∣∣∣∣∣

∫

z∈BTxM (0,bn ln d)

(
φ1(x)φ2

(
expx

(
z√
d

))
− φ1(x)φ2(x)

)
Dn,r(‖z‖2) dz

∣∣∣∣∣

6 ‖φ1‖∞ ̟φ2

(
bn ln d√

d

)∫

z∈B(0,bn ln d)

∣∣∣Dn,r(‖z‖2)
∣∣∣dz,

where ̟φ2 is the continuity modulus of φ2 (see Def. 1.2). Besides, by a polar change of
coordinates, we have:

∫

z∈B(0,bn ln d)

∣∣∣Dn,r(‖z‖2)
∣∣∣dz =

1

2
Vol

(
S
n−1
) ∫ (bn ln d)2

t=0

|Dn,r(t)| t
n−2
2 dt, (4.80)

and this quantity is bounded, by Lemma 4.25. Then,

∫

z∈BTxM (0,bn ln d)

φ1(x)φ2

(
expx

(
z√
d

))
Dn,r(‖z‖2) dz =

φ1(x)φ2(x)

∫

z∈BTxM (0,bn ln d)

Dn,r(‖z‖2) dz + ‖φ1‖∞ ̟φ2

(
bn ln d√

d

)
O(1), (4.81)

where the error term is independent of (φ1, φ2).
Let β ∈

(
0, 1

2

)
, then there exists Cβ > 0 such that for all d ∈ N∗, bn ln d√

d
6 Cβd

−β. Since

̟φ2 is a non-decreasing function, we have ̟φ2

(
bn

ln d√
d

)
6 ̟φ2

(
Cβd

−β
)
. By (4.79), (4.80)

and (4.81), we obtain:

Var(|dVd|) (φ1, φ2) =

dr−
n
2
Vol

(
S
n−1
)

(2π)r

(∫

M

φ1φ2 |dVM |
)(

1

2

∫ (bn ln d)2

t=0

Dn,r(t)t
n−2
2 dt

)

+ ‖φ1‖∞ ‖φ2‖∞ O
(
dr−

n
2 −α

)
+ ‖φ1‖∞ ̟φ2

(
Cβd

−β
)
O
(
dr−

n
2

)
. (4.82)

By Lemma 4.23, we have: |Dn,r(t)| = O
(
te−

t
2

)
. Then there exists some C > 0 such

that, for all t large enough,
|Dn,r(t)| t

n−2
2 6 Ce−

t
4 .

Then, for d large enough we have:
∣∣∣∣∣

∫ +∞

t=(bn ln d)2
Dn,r(t)t

n−2
2 dt

∣∣∣∣∣ 6 C

∫ +∞

t=(bn ln d)2
e−

t
4 dt 6 4C exp

(
−1

4
b2n(ln d)

2

)
= O

(
d−1

)
.

(4.83)
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By equations (4.82) and (4.83), we get:

Var(|dVd|) (φ1, φ2) = dr−
n
2

(∫

M

φ1φ2 |dVM |
)

Vol
(
Sn−1

)

(2π)r

(
1

2

∫ +∞

0

|Dn,r(t)| t
n−2
2 dt

)

+ ‖φ1‖∞ ‖φ2‖∞ O
(
dr−

n
2 −α

)
+ ‖φ1‖∞ ̟φ2

(
Cβd

−β
)
O
(
dr−

n
2

)
. (4.84)

Finally, recall that we defined In,r by eq. (1.6) and Dn,r by Def. 4.24. Hence, we have:

In,r =
1

2

∫ +∞

0

|Dn,r(t)| t
n−2
2 dt,

and this quantity is finite by Lemma 4.25. This concludes the proof of Theorem 1.6.

5 Proofs of the corollaries

5.1 Proof of Corollary 1.9

Corollary 1.9 is a direct consequence of Thm. 1.6 and the Markov inequality. Let φ ∈ C0(M),
then, by (1.7) we have:

Var(〈|dVd| , φ〉) = O
(
dr−

n
2

)
,

where the error term depends on φ. Now, let α > r
2 − n

4 and ε > 0. We have:

P

(∣∣∣〈|dVd| , φ〉 − E[〈|dVd| , φ〉]
∣∣∣ > dαε

)
= P

(
d−α |〈|dVd| , φ〉 − E[〈|dVd| , φ〉]| > ε

)

6
1

ε2
Var
(
d−α 〈|dVd| , φ〉

)

6
1

ε2
d−2α Var(〈|dVd| , φ〉) .

5.2 Proof of Corollary 1.10

We obtain Cor. 1.10 as a consequence of Cor. 1.9. Let U ⊂ M be an open subset. We
denote by φU ∈ C0(M) the function such that φU (x) is the geodesic distance from x to the
complement of U in (M, g). Then we have:

U = {x ∈ M | φU (x) > 0} ,

and φU is non-negative. Hence, Zd ∩ U = ∅ if and only if 〈|dVd| , φU 〉 = 0. Let ε > 0 such
that:

ε <
1

2

(∫

M

φU |dVM |
)

Vol (Sn−r)

Vol (Sn)
.

Then, by Thm. 1.1, for d large enough we have:

d−
r
2E[〈|dVd| , φU 〉]− ε >

1

2

(∫

M

φU |dVM |
)

Vol (Sn−r)

Vol (Sn)
> 0.

Thus, for d large enough, we have:

P (Zd ∩ U = ∅) = P (〈|dVd| , φU 〉 = 0)

6 P
(
〈|dVd| , φU 〉 < E[〈|dVd| , φU 〉]− d

r
2 ε
)

6 P

(∣∣∣〈|dVd| , φU 〉 − E[〈|dVd| , φU 〉]
∣∣∣ > d

r
2 ε
)
.

And by Cor. 1.9, this is a O
(
d−

n
2

)
.
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5.3 Proof of Corollary 1.11

In this section we assume that n > 3. We consider a random sequence (sd)d∈N of sections
of increasing degree, distributed according to the probability measure dν =

⊗
d∈N

dνd on∏
d∈N

RH0(X , E ⊗ Ld). Strictly speaking, |dVsd | is not defined for small d. However, dν-
almost surely, |dVsd | is well-defined for all d > d1, so the statement of Cor. 1.11 makes
sense.

Our proof follows the lines of the proof of Shiffman and Zelditch [25, sect. 3.3] in the
complex case. First, we prove that for every fixed φ ∈ C0(M) we have:

d−
r
2 〈|dVsd | , φ〉 −−−−−→

d→+∞

Vol (Sn−r)

Vol (Sn)

(∫

M

φ |dVM |
)
. (5.1)

Then we use a separability argument to get the result. In the complex algebraic setting
of [25], the scaled volume of s−1

d (0) ⊂ X is a deterministic constant, independent of d. In
our real algebraic setting this is not the case.

Let φ ∈ C0(M), then we have:

E

[
∑

d∈N

(
d−

r
2

(
〈|dVsd | , φ〉 − E[〈|dVd| , φ〉]

))2
]
=
∑

d∈N

d−r Var(〈|dVd| , φ〉) < +∞,

since d−r Var(〈|dVd| , φ〉) = O
(
d−

n
2

)
by Cor. 1.7. Hence, dν-almost surely, we have:

∑

d∈N

(
d−

r
2

(
〈|dVsd | , φ〉 − E[〈|dVd| , φ〉]

))2
< +∞,

and (
d−

r
2 〈|dVsd | , φ〉 − d−

r
2E[〈|dVd| , φ〉]

)
−−−−−→
d→+∞

0.

Then, by Thm. 1.1, 〈|dVsd | , φ〉 satisfies (5.1) dν-almost surely.
Let (φk)k∈N

be a dense sequence in the separable space
(
C0(M), ‖·‖∞

)
. Without loss of

generality, we can assume that φ0 = 1, the unit constant function on M . Then, dν-almost
surely, we have:

∀k ∈ N, d−
r
2 〈|dVsd | , φk〉 −−−−−→

d→+∞

Vol (Sn−r)

Vol (Sn)

(∫

M

φk |dVM |
)
. (5.2)

Let s = (sd)d∈N
∈ ∏d∈N

RH0(X , E ⊗ Ld) be a fixed sequence such that (5.2) holds. For
every φ ∈ C0(M) and k ∈ N we have:

∣∣∣∣d
− r

2 〈|dVsd | , φ〉 −
Vol (Sn−r)

Vol (Sn)

(∫

M

φ |dVM |
)∣∣∣∣

6
∣∣d− r

2 〈|dVsd | , φ〉 − d−
r
2 〈|dVsd | , φk〉

∣∣

+
Vol (Sn−r)

Vol (Sn)

∣∣∣∣
∫

M

φk |dVM | −
∫

M

φ |dVM |
∣∣∣∣

+

∣∣∣∣d
− r

2 〈|dVsd | , φk〉 −
Vol (Sn−r)

Vol (Sn)

(∫

M

φk |dVM |
)∣∣∣∣

6 ‖φ− φk‖∞
(
d−

r
2 〈|dVsd | ,1〉+

Vol (Sn−r)

Vol (Sn)
Vol (M)

)

+

∣∣∣∣d
− r

2 〈|dVsd | , φk〉 −
Vol (Sn−r)

Vol (Sn)

(∫

M

φk |dVM |
)∣∣∣∣ .
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Recall that φ0 = 1. Then, by (5.2), the sequence (d−
r
2 〈|dVsd | ,1〉)d∈N converges. Hence

it is bounded by some positive constant Ks. Let φ ∈ C0(M) and let ε > 0. Let k ∈ N be
such that:

‖φ− φk‖∞ 6 ε

(
Ks +

Vol (Sn−r)

Vol (Sn)
Vol (M)

)−1

.

Then, for every d large enough we have:
∣∣∣∣d

− r
2 〈|dVsd | , φk〉 −

Vol (Sn−r)

Vol (Sn)

(∫

M

φk |dVM |
)∣∣∣∣ 6 ε,

and ∣∣∣∣d
− r

2 〈|dVsd | , φ〉 −
Vol (Sn−r)

Vol (Sn)

(∫

M

φ |dVM |
)∣∣∣∣ 6 2ε.

Thus, φ satisfies (5.1).
Finally, whenever (5.2) is satisfied we have: for every φ ∈ C0(M), φ satisfies (5.1). Since

the condition (5.2) is satisfied dν-almost surely, this proves Cor. 1.11.
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