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Supervised Representation Learning for Audio
Scene Classification

A. Rakotomamonjy

Abstract—This paper investigates the use of supervised
feature learning approaches for extracting relevant and
discriminative features from acoustic scene recordings.
Owing to the recent release of open datasets for acoustic
scene classification (ASC) problems, representation learning
techniques can now be envisioned for solving the problem
of feature extraction. This paper makes a step towards this
goal by first studying models based on convolutional neural
networks (ConvNet). Because the scale of the datasets avail-
able is still small compared to those available in computer
vision, we also introduce a technical contribution denoted
as supervised non-negative matrix factorization (SNMF).
Our goal through this SNMF is to induce the matrix
decomposition to carry out discriminative information in
addition to the usual generative ones. We achieve this
objective by augmenting the NMF optimization problem
with a novel loss function related to class labels of acoustic
scenes. Our experiments show that despite the small-scale
setting, supervised feature learning is favorably competitive
compared to the current state-of-the-art features. We also
point out that for smaller scale dataset, supervised NMF is
indeed slightly less prone to overfitting than convolutional
neural networks. While the performances of these learned
features are interesting per se, a deeper analysis of their
behavior in the acoustic scene problem context raises open
and difficult questions that we believe, need to be addressed
for further performance breakthroughs.

Index Terms—time-frequency representation; audio
scene classification; feature learning; non-negative matrix
factorization; convolutional neural networks.

I. INTRODUCTION

Audio scene classification (ASC) is a complex prob-
lem which aims at recognizing acoustic environments
solely based on an audio recording of the scene. These
acoustic scenes can be defined according to some geo-
graphical contexts (beach, park, road, etc...), some social
situations in indoor or outdoor locations (restaurant,
office, home, market, library, ..) or according to some
transportation ground (car, bus, tramway, ...). Being
able to accurately recognize such scenes is relevant for
applications in which context awareness is of primary
importance. Examples of relevant applications can be the

AR is with Normandie Université, Université de Rouen, LITIS EA
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monitoring of elderly patient routine in smart homes or
the analysis of human activity for surveillance or tracking
of traffic in an urban context.

While recognizing these contexts can also be ad-
dressed through computer vision techniques, audio anal-
ysis has several advantages with respect to vision. Be-
cause of it is omnidirectional property, its robustness to
occlusion and lighting condition, audio perception plays
a major role in machine intelligence provided that it
is coupled with a system capable of understanding an
audio input related to sounds. Making a step towards to
this goal is the objective of computational auditory scene
analysis.

In the last decade, advances in the state-of-the-art in
this domain were few but a steady increase in novel
methodologies with improved performances occurred in
the last few years. They have been essentially fueled
by the release of open and established datasets for
benchmarking. These datasets include the one used for
the challenge DCASE 2013 [1] and the LITIS Rouen
Audio scene dataset [2]. For the DCASE 2016 Challenge,
a novel dataset for audio scene classification [3] has also
been released for further fostering development of novel
methodologies. This strong correlation with the release of
open datasets and advances in the state of the art stresses
again the need for the community to team up for making
publicly available large and diverse datasets similar to
those proposed in the computer vision community [4].

Since these datasets have been released, most works
have focused on investigating discriminative represen-
tations for audio acoustic scenes. Most features that
have been investigated for describing acoustic scenes are
derived from related problems involving signal classifi-
cations. For instance, mel-frequency cepstral coefficients
(MFCC) have been a widely used tool [5], [6], [7].
Features extracted from time-frequency decompositions
based on matching pursuit have also been evaluated
[8], [9]. Among hand-crafted features that have shown
some successes in providing discriminative information
about audio scenes, we can also mention recurrence
quantitative analysis (RQA) [10] which aims at capturing
some recurring patterns in MFCC representations. Since,
in most cases, the first step when classifying acoustic
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scenes is to compute a 2D time-frequency representation,
some works have investigated features that are typically
used in computer vision such as histogram of gradient
(HOG) [2], [11], local binary pattern [12] or texture-
based features [13], [14].

Most the above described features have been engi-
neered based on on prior knowledge. One problem that
may arise from hand-crafted features is their lack of
adaptation to new datasets. In addition, they are usually
designed to specifically model some aspects of the sig-
nals. For instance, the HOG features purposely model
variation of energy in time-frequency representations.
An alternative to hand-crafting features is the use of a
feature learning strategy. In acoustic scene classification
task, few works have considered a representation learn-
ing strategy for extracting features and most of them
investigated unsupervised approaches. In this context,
matrix factorization techniques have play an important
role owing to theirs simplicity and effectiveness [6], [15],
[16], [17]. For instance, Nam et al. [18] have employed
an alternative approach based on Restricted Boltzmann
machines which goal was to estimate the probability
distribution of mel-frequency spectrogram.

One main rationale for discarding supervised learning
approaches such a convolutional neural networks for
acoustic scene classification is that these methods usually
need a large amount of training examples in order to
extract relevant features. They thus tend to overfit in a
small-scale context. However, the DCASE 2016 Chal-
lenge Task 1 dataset is 10-fold larger than the 2013 one.
Furthermore, we present in this paper a variant of the
LITIS Rouen dataset that corrects several its flaws and
that has about six thousands examples.

By leveraging on these novel datasets, this paper inves-
tigates supervised feature learning strategies for acoustic
scene classification. The two methods we present are
based on learning features from time-frequency repre-
sentation of audio scene. The first one relies on matrix
factorization techniques and the second one on convolu-
tional neural networks (ConvNet)[19]. In this framework,
our main technical contribution is the proposal of a su-
pervised non-negative matrix factorization strategy. This
supervision is achieved by augmenting the optimization
problem in non-negative matrix factorization with a term
that induces the factorization to be discriminative in
some sense to be made clear latter. Several ways for
solving the resulting optimization problem are discussed.
Regarding ConvNet, the goal of our study is to evaluate
the effectiveness of these models for acoustic scene
classification and to investigate neural network archi-
tectures that are able to perform well despite the scale
of the datasets, which is small compared to computer

vision standard. Our experimental results show that the
supervised learning approaches we propose are favorably
competitive compared to hand-designed features

The paper is organized as follows. We present in Sec-
tion II our technical contribution, denoted as supervised
non-negative matrix factorization. Section III details our
machine learning pipeline for solving the acoustic scene
classification problem. In particular, we describe how the
supervised NMF and the ConvNet models are used in this
context. Experimental results are discussed in Section
IV. We also point out in that section important open
questions that arise from our results. Section V concludes
the paper and opens up to future work.

As we advocate result reproducibility, all the codes,
datasets and ConvNet models used for this work will be
made publicly available on the authors website.

II. SUPERVISED NON-NEGATIVE MATRIX
FACTORIZATION

This section describes in an abstract way our technical
contribution related to supervised non-negative matrix
factorization. We first start by introducing the model that
allows us to take advantage of labels in a NMF context
and then we discuss about algorithms that can be used
for solving the resulting optimization problem.

A. Model
Suppose we have a set of L signals gathered in a

matrix S = [s1, s2, · · · , sL], with S ∈ RN×L. In many
applications, one can suppose that these signals are
generated by linear combination of few vector elements
of RN . Based on this assumption, each signal si can be
represented as si =

∑K
j=1 djaj,i where {dj}Kj=1 are the

generative elements, denoted in the sequel as dictionary
elements or atoms, and {aj,i} the associated codes in
the linear combination. In a matricized notation, this
hypothesis translates into S ≈ DA where D and A are
respectively a matrix of the form RN×K and RK×L.

When the matrix S is essentially composed of non-
negative elements, a relevant assumption is to also con-
sider that matrices D and A have non-negative elements.
Finding these latter matrices based on the knowledge
of S is known as the non-negative matrix factorization
(NMF) problem. We refer the reader to relevant works
[20], [21], [22] for more details about NMF .

Basically, the goal of NMF is to find the factor
matrices D and A that solve the following optimization
problem.

min
D�0,A�0

D(S,DA) (1)

where D is a sum of element-wise divergence that mea-
sures discrepancy between each component of si and its
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approximation
∑
j djaj,i. Typical divergence measures

are the Euclidean, the Kullback-Leibler and the Itakura-
Saito ones [23].

NMF aims at finding matrix factors which products
represent at best the original matrix S. Since the signals
si to be decomposed are known to belong to some
classes, our objective is to go beyond the generative fac-
torization given by NMF, by inducing the code matrix A
to bring some information about class labels in addition
to reconstruction information.

First note that there has been several works on su-
pervised dictionary learning that is related to the one
we propose. Notably, Zhang et al [24] introduced an ap-
proach that jointly learns a representation and a classifier
from the representation. Jiang et al. [25] considered a dif-
ferent approach in which they enforce the learned codes
to carry discriminative information. Our work extends
their methodology to non-negative matrix factorization
providing rationale on why the resulting problem is still
an NMF.

For our supervised NMF approach, similarly to Jiang
et al. [25], we introduce a matrix C of size K × L,
K being the number of dictionary elements and L the
number of elements to decompose (the columns of S).
The objective of C is to drive the coefficients in the
matrix A to be aligned, in some sense to be defined, to
class labels. We achieve this goal by considering that a
given dictionary element should be preferrably used only
for approximating signals of a given class.

This matrix C is built according to the following way.
For a sake of clarity, suppose that K is a multiple of
the number m of class, and that the (c − 1)Km + 1 to
cKm dictionary elements are related to class c. For all
i ∈ [(c − 1)Km + 1, cKm ], we fix each entry ci,j of C so
that ci,j = 1 if the signal sj belongs to class c, meaning
that the i-th dictionary element is somewhat “assigned”
to that class. As an example, if we have a problem with
6 signals ordered in classes, 3 different classes and 3
dictionary elements to be learn, C writes

C =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


The first dictionary element (row 1) is devoted to signals
from the first class, whereas the second and thirdh
dictionary elements are related to the second and third
classes. Hence, C is a rank m matrix which bears
class information owing to the assignment of a given
dictionary element to a given class.

Since our objective is to induce codes in matrix A to
bring both generative and discriminative information, the

supervised NMF problem we want to solve is now

min
D�0,A�0,X�0

D(S,DA) + λDd(C,XA) (2)

where X is a matrix of size K ×K and Dd is another
divergence measure. Note that the objective value of this
optimization problem balances two terms weighted by
λ ≥ 0. The first term aims at reconstructing each signal
as a positive combination of the dictionary elements. The
second term goal is to make coefficients in the matrix
A to be aligned with the label information brought by
matrix C.

Indeed, as described in the example above, we can
note that if K is equal to m then, we are in the situation
where a single dictionary element is “assigned” to one
class. Suppose now that Dd is the Euclidean divergence,
then the second term of Equation 2 can be written as
‖C − XA‖2F . If we focus only on this term (without
taking into account the generative aspect of NMF), we
are actually looking for a rank-m factorization of the
matrix C. Since the basis elements of the column space
of C are the canonical vectors of RK , the solution of
this rank-m factorization is the matrix X composed of
the canonical vectors in RK and A is exactly the matrix
C :

C =

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

X

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


︸ ︷︷ ︸

A

As such, A carries label informations of each signal si.
This clarifies the compromise imposed by the objective
function in Equation 2 between the alignment of A with
the supervision matrix C and the generative information
carried by DA.

B. Algorithms

There exists a flurry of algorithms for solving NMF
problems (λ = 0 in Equation 2). Depending on the
divergence D considered, one can apply a multiplica-
tive update strategy [26] which alternates between the
optimization of D and A. Lin [27] has also introduced
a general projected gradient algorithm that applies to the
Euclidean divergence. For more details about algorithmic
development for NMF, interested readers can refer to
[28].

Because the objective function in Equation (2) is not-
well defined for the Kullback-Leibler or the Itakura-Saito
divergences (for instance when si,j = 0 or (DA)i,j = 0),
we discuss in the sequel, about classical NMF algorithms
that can be extended to our supervised NMF setting,
when D and Dd are the Euclidean divergence.
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Since we are considering Euclidean divergence, the
objective function f(A,D,X) can be written as :

f(A,D,X) =
1

2
‖S−DA‖2F +

λ

2
‖C−XA‖2F

=
1

2
‖S̃− D̃A‖2F

where S̃ =

(
S√
λC

)
and D̃ =

(
D√
λX

)
. From this

reformulation of the objective function, we show that in
our case, our supervised NMF problem boils down to
be a classical NMF but with augmented matrices. One
simple way to solve (2) is to consider projected gradient
approaches as described by Lin [27]. When the number
of signals to be decomposed is very large, one possible
method for solving Equation 2 is to employ an online
matrix factorization algorithm such as the one proposed
by Mairal et al. [29]. This last algorithm is the one we
used in our experimental analysis for learning feature
from mel-frequency representations.

III. MACHINE LEARNING PIPELINE FOR ASC

We have introduced in the above section, a novel
methodology for learning features based on a supervised
non-negative matrix factorization. In what follows, we
describe our machine learning pipeline for audio scene
classification and show how the two supervised feature
learning methods based on supervised NMF and Con-
vNet are used for solving this task.

A. Time-frequency representation of acoustic scenes

For learning features, we have at our disposal record-
ings related to acoustic scenes. Each of these recordings
is associated to a class label describing the environment
where it has been acquired. The first transformations we
apply to each acoustic scene signal are the following
• the stereo signal is averaged over the two channels

and normalized to unit energy.
• a log mel-frequency representation is obtained from

this signal. The frequency span ranges from 0 to the
half of the sampling rate. The number of spectral
bands we considered is 70 and they are computed
over windows of size 25 ms with hops of 10 ms.
At this point, 15-s and 30-s length acoustic scenes
can be represented as a matrix of size respectively
70 × 1495 and 70 × 2998. In the sequel, we will
assume that we deal with matrix of size 70× 2998.

Examples of log mel-frequency representation of dif-
ferent acoustic scenes are depicted in Figure 1. We
can note that for these examples, classes are visually
distinguishable and that the different acquisition process

used for the two datasets have strong impacts on mel-
frequency amplitudes.

B. Supervised NMF-based feature learning

Our objective in this part is to learn discriminative
features from the time-frequency representation by lever-
aging on labeled examples. Suppose that we have n of
these training examples each represented as a 70× 2998
matrix. The idea behind supervised NMF, in this context,
is to learn a decomposition of each time-slice and of
course, the underlying weights of this decomposition
should carry both generative and discriminative informa-
tion.

1) Factorization: Hence, in our case, the matrix
S we want to learn a factorization of is the matrix
obtained from the concatenation of the mel-frequency
representations of all signals, leading to a matrix of
size 70 × (2998 × n), D is the matrix containing the
discriminative dictionary elements and A is the code
matrix allowing to reconstruct S from D. The number K
of dictionary elements is an hyperparameter which effect
will be investigated in the experimental study. Because
the number of vectors to decompose is of the order of 2.5
millions, we have used the online algorithm of Mairal et
al. [29] for solving the problem in Equation (2).

For feature extraction purposes, once the dictionary D
is learned, time-frequency representation of each acoustic
scene is decomposed on the non-negative dictionary
elements by proceeding slice per slice resulting in a
matrix A of size K × 2998 representing the acoustic
scene over the dictionary. Note that this step does not
require the label to be known and it is thus suitable for
decomposing signals at the testing phase.

2) Pooling: The pooling step aims at creating a sketch
of the matrix A by computing some statistics. These
statistics are afterwards used as feature vector for a
classifier. In our approach, these statistics are obtained
through an integration over the temporal context of the
acoustic scene. For instance, we have considered a sum
pooling leading thus to a feature vector fk of size K
with :

fk =

2998∑
j=1

ak,j ∀k ∈ 1, · · · ,K

We have also investigated a temporal maximum pooling

fk = max
j
ak,j ∀k ∈ 1, · · · ,K

as well as the concatenation of a max pooling with a
temporal average and standard deviation over A, leading
thus to a feature vector of size 3K.
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Fig. 1. Examples of mel-frequency representations of acoustic scenes. (left). From top to bottom, bus, billiard pool hall and train acoustic
scenes from the LITIS Rouen-15 dataset. (right) car, beach, and cafe acoustic scenes from the DCASE16 dataset.

3) Classifier: After unit-norm normalization, these
feature vectors extracted from the training examples
are fed to a Gaussian kernel SVM classifier for
learning a decision function. We used a one-vs-one
multi-class strategy based the LibSVM software [30].
The C parameter of the SVM is selected among
8 values logarithmically scaled between 0.01 and
1000 while the parameter σ of the Gaussian kernel
k(x,x′) = exp

(
−‖x−x

′‖22
2σ2

)
is chosen among the values

[0.5, 1, 5, 10, 20, 30, 50, 70, 100, 120]. Depending
on the dataset, model selection is performed according
to a validation set or according to a cross-validation
procedure.

C. ConvNet-based feature learning

The second approach we have investigated for su-
pervised feature learning is the acclaimed and award-
winning ConvNet model. In the next paragraphs, we
describe how we have trained this model and the archi-
tecture we have explored.

Our ConvNet model is trained end-to-end from the
mel-frequency representations to class posterior proba-
bilities. Similarly to the supervised NMF approach, we
fed to a ConvNet, a matrix of size 70 × 2998 as a
single example from which the mean matrix over all
training examples has been subtracted. We have inves-
tigated several ConvNet architectures using a trial-and-
error approach. Typically, the best performing ones have
two convolutional and one fully connected layers. We
can note that these models are not very deep which
can be explained by the fact that deeper models tend to
overfit in our small-scale setting. Because of this context,
we have also investigated the use of dropout [31] as a

regularizing term. More details about these architectures
will be provided in the experimental study.

Regarding the implementation details, the network
architectures have been trained using stochastic mini-
batch gradient descent based on back-propagation with
momentum. Mini-batch size has been set to 5, while
momentum to 0.9, the weight decay to 0.0005 and the
learning rate to 10−4. We have implemented these mod-
els using the Torch library [32]. The maximal number of
epochs that has been used is 150 for models with small
value of dropout and 300 for the other ones.

IV. EXPERIMENTAL RESULTS

This section presents the experimental study that we
have carried out for evaluating the different supervised
feature learning approaches we propose. We start by pre-
senting the datasets we have considered and by describ-
ing the experimental setup. After presenting the baseline
results obtained by state-of-the-art hand-crafted features,
we analyze in details the performance obtained by our
supervised non-negative matrix factorization method and
as well as those obtained by the ConvNet architectures
we have investigated.

A. Experimental settings

We describe in this subsection the datasets that have
been used for carrying out our analysis. Specific experi-
mental set-ups are also detailed

1) Datasets: Recently, Rakotomamonjy et al. [2] have
introduced a publicly available dataset for acoustic scene
classification. This dataset is one of the largest dataset
available both in terms of number of classes and in
terms of minutes of recordings. However, it presents an
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TABLE I
SUMMARY OF DATASETS. FOR EACH DATASET AND FOLD, WE

PROVIDE THE NUMBER OF EXAMPLES IN THE TRAINING,
VALIDATION AND TEST SETS. WE ALSO GIVE THE MINIMAL AND

MAXIMAL NUMBER OF EXAMPLES PER CLASS.

Rouen-15 : 19 classes
fold # examples learning validation test
1 total 4241 574 1297

min / class 36 4 9
max / class 392 59 151

2 total 4316 537 1259
min / class 35 3 11
max / class 387 53 122

3 total 4275 597 1240
min / class 38 6 5
max / class 396 59 116

4 total 4323 629 1160
min / class 35 4 10
max / class 392 72 155

5 total 4287 538 1287
min / class 36 3 10
max / class 378 64 157

DCASE16 : 15 classes
fold # examples learning validation test
1 total 880 290 0

min / class 56 18 0
max / class 60 22 0

2 total 880 290 0
min / class 55 18 0
max / class 60 23 0

3 total 872 298 0
min / class 55 18 0
max / class 60 23 0

4 total 878 292 0
min / class 56 18 0
max / class 60 22 0

TABLE II
ROUEN-15. COMPARING PERFORMANCE OF DIFFERENT BASELINE

FEATURES BASED ON A Average precision CRITERION.

fold RQA-MFCC PSD HOG HOG+PSD
1 64.43 69.34 75.19 78.90
2 67.71 64.52 71.85 76.13
3 64.70 69.22 77.54 76.18
4 69.97 69.62 78.30 80.28
5 71.56 62.11 73.61 74.72
mean 67.68 66.96 75.30 77.24

important flaw that turns the results over-optimistic. The
dataset suffers from the so-called “album effect” problem
in music retrieval. Indeed, when splitting the recorded
files into 30s examples, we did not pay attention that
cuts from the same recording may fall into the training
and test sets. This strong resemblance, at least due to
background sounds, of some train and test examples
make the classification problem easier to solve. This

TABLE III
DCASE16. COMPARING PERFORMANCE OF DIFFERENT BASELINE

FEATURES BASED ON A accuracy CRITERION.

fold RQA-MFCC PSD HOG HOG+PSD
1 63.79 64.48 76.21 78.62
2 64.83 55.17 73.10 72.07
3 71.81 65.10 76.17 77.52
4 67.81 58.22 74.66 74.66
mean 67.06 60.74 75.04 75.72

last point is corroborated by one result of Bisot et
al. [17] that show that a simple kernel PCA yields to
features that are extremely competitive. In addition to
this flaw, the current version of this dataset does not
provide any validation set. Consequently, most results
(including those we provide in [2]) are optimistic in
the sense that they have been selected according to the
best performing parameters on the test set. We use in
this paper a corrected version of this dataset that we
denoted as LITIS Rouen-15, which is based on examples
of 15s long. In total, we have 6112 examples that have
been separated into a training, validation and test sets.
These splits have been performed five times and for
each split, we were careful to have examples from same
recording into the same set. Figure 1 displays 3 examples
of acoustic scenes based on their time mel-frequency
representations. Details on the classes and acquisition
process can be found in [2].

The second dataset we have considered is the
DCASE16 Task 1 development set. This dataset is com-
posed of 1170 of 30s-length examples separated in a
training and validation set. More details on this dataset
can be found in [3]. Examples of time mel-frequency
representations of these signals are depicted in Figure 1.

A quantitative summary of these datasets is presented
in Table I. We present in there the repartition of the
examples over the sets as well as the balance of classes.
We can note that the DCASE16 is better balanced than
the Rouen-15 dataset in which the largest class is 10
times more represented than the smallest one.

2) Evaluation set-ups: We have considered two dif-
ferent ways, according to the dataset for evaluating
performance.

In the LITIS Rouen-15 dataset, since a validation set is
available, model selection and classifier hyperparameter
selection have to be selected based on this set. Hence, in
all results we present in the sequel, the performances on
the test set correspond to models which have performed
the best on the validation set.

For the DCASE16 Task 1 dataset, since we do not have
a validation set, model selection and hyperparameter
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selection have been done a posteriori through cross-
validation. This means that the results we present are
the best averaged over the fold ones among all models
and hyperparameters that have been evaluated.

Details on the different models of SNMF or ConvNet
that have been evaluated will be given in the sequel.
When features extracted from these models are fed to a
Gaussian kernel SVM classifier, they are normalized so
as to have zero mean and unit variance on the training
set. The test set has also been normalized accordingly. As
an evaluation criterion, because the number of examples
per class are different in the LITIS Rouen-15 dataset,
we have used the mean average precision as a crite-
rion whereas accuracy is considered for the DCASE16
dataset.

B. Baseline results

Our first results depict how baseline features perform
on the two dataset at hand. These features are recur-
rence quantitative analysis (RQA) extracted from MFCC,
power spectral density and HOG extracted from mel-
frequency representations. Results on LITIS Rouen-15
are shown in Table II. We note that MFCC coupled
with a recurrence quantitative analysis and power spectral
density [11] yield to similar performance of about 67% of
average precision. Using histogram of gradient, a richer
feature, improves performance up to 75%. Coupling
HOG and power spectral density further boosts the mean
average precision with a gain of 2%. This last point
clarifies how PSD and HOG complement each other, the
first one capturing how spectral energy is spread along
frequency while the second one captures variation of
spectral energy. This also confirms the results presented
in [11].

Results in Table III for the DCASE16 dataset back
up these findings. Although performance of PSD is far
worse than those of other features and the fusion of HOG
and PSD leads only to marginal gain in performance, we
note the same trend in performances.

C. Supervised NMF

In this part, we discuss the performances of our
supervised NMF approach. Note that in order to capture
larger temporal patterns in the time-frequency represen-
tation, we have used this supervised NMF on consecutive
frames. This is performed by simply concatenating these
frames into a single vector and by applying NMF on
these vectors. This operation is known as shingling [33].

Before discussing quantitative results, we present in
Figure 2 a representation of the features that have been
extracted from the validation set and obtained owing

TABLE IV
ROUEN-15. SUPERVISED NMF RESULTS WITH MODEL SELECTION

PERFORMED ON POOLING, NUMBER OF DICTIONARY, SHINGLE SIZE
AND CLASSIFIER PARAMETERS.

fold pooling #atoms shingle val test
1 maxave 200 0 76.93 75.83
2 sum 400 1 77.18 72.09
3 sum 200 0 82.72 81.97
4 sum 400 0 84.06 81.14
5 sum 200 0 76.86 75.81

mean 79.55 77.37

TABLE V
DCASE16. SUPERVISED NMF: RESULTS WITH MODEL SELECTION

ON CLASSIFIER PARAMETERS. (TOP) SHINGLE = 0 (BOTTOM)
SHINGLE = 1.

dico sum max maxave
50 62.27 39.25 63.79
100 60.77 30.74 59.22
200 72.98 69.24 76.89
300 76.20 75.55 79.74
400 71.11 62.75 71.88

dico sum max maxave
50 68.45 50.44 71.45
100 57.42 32.48 57.85
200 65.05 22.29 64.52
300 75.38 54.18 73.77
400 76.93 65.63 77.26

to the dictionary learned by SNMF as well as the best
number of dictionary. In this figure, we present for both
datasets, a 2D multidimensional scaling representation
[34], denoted as t-sne, of the obtained features. As
detailed above, the considered features are obtained by
pooling using the best pooling function, the codes yielded
by approximation of all the frames. The low-dimensional
representation we achieve for the Rouen-15 dataset show
that the features bring some discriminative information.
Indeed, despite the fact that 900-dimensional feature
vectors (best pooling is the concatenation of max, av-
erage and standard deviation and dictionary size 300)
are projected into a 2-dimensional space, some cluster
of classes are well-preserved. We can for instance note
that examples from the kid game hall and train classes
are well-clustered. At the contrary some other classes,
like restaurant and metro-paris are spread. The feature
vector projection for the DCASE16 dataset consolidates
finding that some classes are well-clustered (car, office)
while some are spread (library and metro station).

One interesting thing can also be noted from these
plots : examples of some classes follow a multi-modal
representation in this 2D projection (see for instance the
car and high-speed train classes for Rouen-15 and the
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Fig. 2. Example of projection of features resulting from supervised NMF left) Rouen-15 dataset. right) DCASE16. For both datasets, the
examples come from the validation set of the third fold.

forest path and park classes for DCASE16). This may
suggest a certain inability of the learned features to be
robust to strong variabilities present in recording of some
classes.

Numerical results for the Rouen-15 dataset are pre-
sented in Table IV where for each fold, we present
the best performing model, according to the validation
set, with respects to the number of dictionary atoms,
pooling, and shingling. We have made this last parameter,
denoting the number of frames appended to the current
one, varying from 0 to 2. The overall performance we
achieve using these features is just slightly better than
the one obtained with HOG+PSD. We remark that for
some folds, improvements are significant while for some
other (fold 2), the model clearly overfits.

Table V shows results for the DCASE16 dataset. For
this problem, supervised NMF performs far better than
HOG+PSD with an overall gain of 4%. Interestingly,
we note that for both problems taking into account
consecutive frames through shingling does not help in
learning better features. One point that also needs to
be highlighted is the important impact of the number
of atoms in the dictionary and the pooling type on the
performance. Indeed, details of the obtained results for
Rouen-15 depicted in Table VI also support the evidence
of strong variances in the results with performances
ranging from 11% using max pooling to 81.9% using
sum pooling.

D. ConvNet-based feature learning

We now present the results we obtain using convolu-
tional neural networks for supervised feature learning.

As we have already stated, we have explored a large
amount of models with varying number of convolutional

layers, number of filters in these layers, size of kernels
for the filters, type and size of pooling and type of
non-linearity. For each fold, we have trained each of
these models for 5 times with different initialization
of the ConvNet weights. Our typical best performing
architecture for both datasets are presented in Table VII.
These architectures are of course not necessarily optimal
and it is highly probable that models performing better
according to the validation set can be found.

At first, we visualize how features learned by Con-
vNets carry discriminative information. Again, we have
used the t-sne multi-dimensional scaling algorithm for
projecting ConvNet features onto a 2D-dimensional
space. These features have been obtained by removing
the last fully-connected layer of one of the best perform-
ing architecture. Figure 3 depicts these 2D projection
for the Rouen-15 and the DCASE16 dataset. For the
Rouen-15 dataset, for some classes like the car or
high-speed train, we can clearly note the benefits of
ConvNets compared to supervised NMF. Their features
are clearly better clustered. For the DCASE16 dataset,
we remark that examples from same classes are well
gathered together although some classes like office or
home still present multi-modality aspects.

The model described in Table VII achieves a perfor-
mance without dropout of about 77% which is similar to
the performance of supervised NMF. We report in Table
VIII, for each fold the best performing model according
to the best initialization weights and the best value of
p ∈ [0.25, 0.375, 0.5, 0.6, 0.7, 0.8]. Model selection is
based on the average precision achieved on the validation
set. We note in these results that the best performing
model are those with larger probability of dropping
out the weights. Owing to this regularization technique,
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TABLE VI
ROUEN-15. SUPERVISED NMF RESULTS WITH MODEL SELECTION ON CLASSIFIER PARAMETERS. EACH TABLE CORRESPONDS TO A SINGLE
TYPE OF POOLING AND DEPICTS TEST PERFORMANCE FOR DIFFERENT DICTIONARY SIZES AND DIFFERENT SIZE OF SHINGLE. RESULTS ARE

FOR FOLD 3.

maxave
Shringle

#atoms 0 1 2
50 68.54 71.00 74.51
100 64.81 59.09 68.14
200 77.80 64.21 47.28
400 73.50 75.54 69.48

max
Shringle

#atoms 0 1 2
50 27.47 43.28 43.86
100 20.59 20.55 30.07
200 65.98 11.96 12.16
400 57.78 57.35 32.43

sum
Shringle

#atoms 0 1 2
50 68.12 71.46 72.45

100 64.13 60.35 67.57
200 81.97 61.64 36.66
400 67.12 77.24 73.42
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Fig. 3. Example of projection of features resulting from convolutional neural networks. left) Rouen-15 dataset. right) DCASE16. For both
datasets, the examples come from the validation set of the third fold.

TABLE VII
TYPICAL ARCHITECTURE FOR OUR CONVNETS FOR BOTH

DATASETS. THE PARAMETER p OF THE DROPOUT IS ADJUSTED
ACCORDING TO A MODEL SELECTION PROCEDURE. FOR

CONVOLUTIONAL LAYERS, THE FIRST NUMBER DEPICTS THE
NUMBER OF FILTERS. PRODUCTS BETWEEN PARENTHESES

DESCRIBES SIZE OF CONVOLUTIONAL KERNELS OR SIZE OF
POOLING.

Type Rouen-15 DCASE16
Input 70× 1495 70× 2998
Conv 256 - (5× 21) 256 - (5× 15)
ReLU
MaxPool (1× 21) (1× 21)
Conv 512 - (3× 11) (3× 7)
ReLU
MaxPool (1× 21)
FC 512× 34× 4 512× 34× 4
Dropout p p
FC 200 200
FC 19 15

Output softmax softmax

the average performance of the ConvNets now rise up
to 79.5%, with smallest and largest performances over
the fold reaching respectively 73% and 83%. In Table
IX, we have depicted for each fold, the averaged-over-

initialization, performance of the model that yields the
best performance. We can note that for these models,
variation of performances does not exceed 1.7%. It seems
thus that ConvNets are more sensitive to variation due to
folds that due to weight initializations.

Exploration of ConvNet architectures has also been
carried out for the DCASE16 dataset. Performances of
some of these models are reported in Table X. The
models numbered from 1 to 8 are all models that do not
use dropout. The best performing one, the sixth, is the
one described in Table VII. The others are variants of this
one. For instance, the first one uses larger convolutional
kernels similar to those used for the Rouen-15 dataset,
the second ones use 3 convolutional layers, etc... We can
note that most of these models overfit as they reach their
best performances on the validation set quite rapidly with
respects to the maximal number (150) of epochs. Models
numbered 9 to 11 correspond to model 6 for which we
have applied dropout on the first fully-connected layer
(models 9 to 11). Models 12 to 15 are variants of model
6 with dropout on the last convolutional layer and the
first fully-connected layer (model 12 to 15). We can
note the strong regularization effect of dropout yielding
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TABLE VIII
ROUEN-15. CONVNET RESULTS. FOR EACH FOLD, WE REPORT THE
RESULTS OF THE MODEL DESCRIBED IN TABLE VII THAT ACHIEVES
THE BEST average precision ON THE VALIDATION SET, ACCORDING

TO THE DROPOUT PARAMETER p. PERFORMANCE IS EVALUATED
BASED ON AN Average Precision CRITERION.

Fold Dropout p init validation set test set
1 0.5 2 80.75 80.49
2 0.7 1 81.39 80.25
3 0.8 5 81.98 80.83
4 0.8 5 86.73 83.10
5 0.8 5 76.08 72.97

mean 81.39 79.53

TABLE IX
ROUEN-15. LOOKING AT THE VARIATION OF PERFORMANCE

ACROSS INITIALIZATIONS.

Fold Dropout p validation set test set
1 0.5 78.95 79.44 ± 1.50
2 0.7 80.80 78.90 ± 1.44
3 0.8 80.43 80.05 ± 1.69
4 0.8 85.67 81.43 ± 1.56
5 0.8 74.40 72.48 ± 1.00

mean 80.11 78.46

to a boost of performances. Dropout on the FC layer
increase performance of 4%. With further dropout on
the convolution layer, we achieve a global performance
of 79.65%.

When comparing performances of the two supervised
feature learning approaches, a slight advantage goes to
ConvNets. Indeed, they perform about 2% better than
supervised NMF on the Rouen-15 dataset while they are
nearly on par on DCASE16.

E. Enriching learned features

Supervised matrix factorization followed by pooling
or a convolutional neural networks are optimized to
detect specific patterns in time-frequency representations
of acoustic scenes. As such, they may lack in uncover-
ing discriminative patterns that are not related to time-
frequency structures.

Based on this rationale, we have considered enriching
features extracted from supervised matrix factorization
and ConvNets with other ones that have been recently
deployed for acoustic scene classification problems. In a
very basic way, we have computed histogram of gradient
features on the time-frequency representations, power
spectral density and recurrence quantitative analysis fea-
tures and concatenated them to the supervised matrix fac-
torization features or to the ConvNet features obtained by
suppressing the last FC layer and the softmax. We have

TABLE X
DCASE16. PERFORMANCE OF DIFFERENT CONVNET MODELS IN

TERM OF ACCURACY. WE ALSO REPORT THE NUMBER OF
ITERATIONS NEEDED FOR YIELDING THE BEST ACCURACY ON EACH

FOLD’S VALIDATION SET. THE MOST-RIGHT NUMBER IN THE
DROPOUT COLUMN DEPICTS THE PROBABILITY p OF DROPOUT FOR

THE FC LAYER WHILE THE MOST-LEFT ONE IS THE ONE FOR
CONVOLUTIONAL LAYER.

Model Dropout Accuracy best models
1 - 73.85 19-39-39-51
2 - 68.72 73-64-46-45
3 - 69.41 67-47-40-77
4 - 68.27 83-78-86-75
5 - 74.27 29-21-27-17
6 - 74.61 36-33-58-33
7 - 73.16 42-23-24-32
8 - 73.00 27-47-50-55
9 0.7 76.65 83-63-52-47

10 0.3 77.68 49-52-152-177
11 0.9 78.78 164-156-152-150
12 0.5/0.7 78.45 62-119-88-96
13 0.5/0.8 79.65 138-171-277-202
14 0.5/0.9 78.29 159-237-244-175
15 0.8/0.8 77.61 156-199-143-177

TABLE XI
ENRICHING CONVNETS AND SNMF FEATURES WITH SOME

HAND-CRAFTED ONES.

Rouen15 DCASE 16
Average Precision Accuracy

Features val. set test set cross-val
cnn 80.73 80.98 78.46
cnn+rqa 81.94 81.79 78.96
cnn+psd 79.00 78.00 73.05
cnn+hog 81.08 80.19 80.93
nmf 79.26 78.17 79.74
nmf+rqa 80.24 78.99 80.08
nmf+psd 73.57 72.56 75.72
nmf+hog 79.24 78.03 81.19
cnn+nmf 79.26 78.17 78.37
cnn+nmf+hog 79.24 78.03 80.93

fed them to a classifier that has been trained following
the same protocol that has been used for SNMF.

Results for both datasets are presented in Table XI.
We can note that some hand-crafted features are indeed
good complement to SNMF and ConvNet features. For
the Rouen-15 dataset, ConvNet models yield to a per-
formance of 79.53%. Using them as features fed to an
SVMs rises performance to almost 81%. This means that
in some situations, these features benefit from a large-
margin classifier instead of a softmax logistic regression.
We can note that combination with RQA features further
enhance performance with a maximum of 81.79% aver-
age precision on the test set. However, for this dataset,
any combination with supervised NMF features does
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not have any positive impact on performances. At the
contrary, for the DCASE16 dataset, the combination of
HOG and SNMF achieves performance of 81.19% which
is our overall best, while combination of HOG and CNN
reaches 80.98%. Interestingly, combining ConvNets and
SNMF features yield to no gain for both datasets. As they
both aim at capturing relevant discriminative patterns in
a mel-frequency representation, it can be understood that
they carry redundant information.

F. Open questions

The results we presented above show that supervised
feature learning is highly competitive when it comes to
unearth discriminative information in acoustic scenes.
Proving this fact in a small-scale setting context is an
important contribution of this work. While proposing
novel feature is interesting per se, we believe that some
of our results raise questions that need to be addressed
for further improving audio scene classification methods.

1) Feature combination: According to the results we
obtained by concatenating hand-crafted features to the
learned ones, the question we want to ask is the follow-
ing : does the need for combining features intrinsic to
the ASC problem or it is relevant in this work due to
lack of training data?

Indeed, on one hand, one may think that with a larger
training set, most variabilities in the acoustic scenes will
be well represented in training examples and thus can
be captured by the learned features without the need
for feature combination. On the other hand, it is also
plausible that the patterns learned by the ConvNets or
SNMF capture some specific characteristics of audio
scenes but miss to highlight features related to recurrence
pattern, low-energy but discriminative events etc...

To answer this question, we advocate again the release
of larger and larger datasets by combining efforts of
different groups while keeping developing features that
complement those learned by ConvNets.

2) Mismatch between probability distributions: Re-
sults in Table VIII and IX for the Rouen-15 dataset
suggest that variabilities in performances come more
from distribution of the examples in the fold than from
the random initialization associated to the ConvNet mod-
els. For the DCASE16 dataset, Figure 3 suggests that
ConvNets are capable of learning discriminative features
of acoustic scenes as most classes are well clustered.
However, this visual inspection of the features does not
translate in performance better than 80% of accuracy.
These observations on both datasets support the conjec-
ture that there exists a problem in the acoustic scene
classification problem that goes beyond the question
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Fig. 4. Illustrating mismatch between validation set and test set
probability distributions on the DCASE16 dataset. We have plotted in
this Figure, the 2D t-sne projection of ConvNet features of validation
and test set of fold 3.

of designing or learning discriminative features. And
the problem is related to the probability distribution of
training, validation and test examples. Figure 4 brings
evidence for this strong statement of ours. As in the
right panel of Figure 3, we have reproduced in there the
2D projection of the ConvNet features for the DCASE16
third fold validation set. In addition, we have also plotted
the projection of the features from the test set. One
important thing to note is that although classes are un-
known, there is a clear mismatch between the distribution
of the validation and test examples. Indeed, one would
have expected a majority of the test examples to be
located in regions of high-density of validation examples.
Strong mismatches can for instance noted for city center
or in-between forest path and residential area. Mismatch
with probably smaller impact on performances can be
highlighted for the car or metro station.

In summary, we clearly blame this mismatch in distri-
bution for spoiling the discriminative power of ConvNets
features (and probably other ones). However, we also be-
lieve that this mismatch is a natural but difficult challenge
posed by acoustic scene classification problems. Indeed,
it is understandable that due to different background
sounds, different volumes of sound or due to the intrinsic
variability of a given environmental or urban sounds, this
mismatch occurs.

To address this mismatch problem, we thus have to
design or learn features that are invariant or robust
enough to these acoustic scene variabilities. This problem
is also known in the machine learning community as the
domain adaptation or transfer learning problem and we
believe that it is possible and probably mandatory to take
inspiration from related works [35], [36], [37] for further
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progress in the acoustic scene classification problem.

V. CONCLUSION

We have investigated in this paper two methodologies
for supervised feature learning for the acoustic scene
classification problem. One of the approaches that we
have explored is based on convolutional neural networks.
The second one is based on a novel model that we
have developed and it is a supervised extension of non-
negative matrix factorization. We have evaluated the
performance of these two approaches on two datasets :
the DCASE16 acoustic scene classification problem and
a corrected and enhanced version of our LITIS Rouen
dataset.

We have carried out a large body of numerical analyses
through which we have shown that the proposed super-
vised learning feature approaches are highly competitive
even though the small-scale setting of the datasets. More
interestingly, our results helped us pointing out two open
questions that we believe need to be addressed for further
breakthroughs. The domain adaptation problem is an
important and difficult one and we plan to concentrate
our future efforts in developing novel approaches able to
circumvent this problem in the context of acoustic scene
classification.
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