Automatic Identification of Aspectual Classes across Verbal Readings

Ingrid Falk and Fabienne Martin

Universität Stuttgart - SFB 732

*Sem 2016, August 11

Aspectual Polysemy of Verbs

A same verb can instantiate different aspectual classes across its different readings

élargir 'widen'

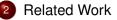
Cette veste élargit Paul aux épaules. This jacket widens Paul 'at the' shoulders On a élargi le débat à la politique étrangère. They extended the debate to foreign policy.

• • • • • • • •

Objectives

- investigate verbal aspectual polysemy
- verb readings as delineated in a French valency lexicon (LVF)
- use of machine learning method

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))


Approach

- automatical extraction of verbal readings from lexicon
- manual assignment of aspectual value for each reading
- automatical classification of readings
 - according to aspectual value (telic, atelic, variable)
 - based on features automatically extracted from lexicon
- exploration of the results:
 - comparison with annotations
 - check whether they improve performance in related tasks

A (10) + A (10) +

Outline

- 3 The Data
- The Annotation
- 5 The Classification
- 6 Evaluation
- Conclusion

8 References

• (10) • (10)

Related Work

- 1. [Siegel and McKeown, 2000]
- 2. [Zarcone and Lenci, 2008]
- 3. [Friedrich and Palmer, 2014]

Similarities

- classify corpus clauses
- into 2-4 aspectual classes, related to Vendlerian categories: states, activities, accomplishments, achievements
- based on features extracted from corpus
 - derived from linguistic diagnostics/ tests

Specificities

Siegel and McKeown, 2000

- type-based features
 - \rightsquigarrow same aspectual value across all readings

Zarcone and Lenci, 2008

- include syntactic properties
 - $\rightsquigarrow\,$ to some extent account for linguistic context of verb

Friedrich and Palmer, 2014

- include clause-based syntactic and semantic features
 - $\rightsquigarrow\,$ account for linguistic context of verb
 - ightarrow but corpus only partly reflects the verb's aspectual variability

・ロト ・ 同ト ・ ヨト ・ ヨト

This study

systematically exploits correlations between

- syntactic and semantic properties encoded in the lexicon and
- the verb's aspectual value in context

A (10) + A (10) +

Table of Contents

1) Motivation

2 Related Work

- 3 The Data
- 4 The Annotation
- 5 The Classification
- 6 Evaluation
- 7 Conclusion
- 8 References

4 6 1 1 4

∃ ► < ∃ ►</p>

The Lexicon

LVF, Les Verbes français [Dubois and Dubois-Charlier, 1997] \approx 12 300 verbs, \approx 25 610 readings, \approx 4190 polysemous verbs Detailed morpho-syntactic and semantic description:

- syntactic frames and argument structure,
- semantic features of main arguments
 - human/ non-human, thematic roles, etc.
- semi-formal predicate decomposition,
- semantic classes (e.g. psych-verbs, change of state verbs, etc.)
- derivational family:
 - (adjectival or nominal) category of the verbal base;
 - nominal and adjectival derivations

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sample entries: *élargir* 'widen'

Semantic description

id	example	sem. decomposition	sem. class
01	On élargit une route/ La route s'élargit.	<mark>r/d</mark> +qt large	Change of state
02	Cette veste élargit Paul aux épaules.	d large	Change of state
03	On élargit ses connaissances.	<mark>r/d</mark> large abs	Change of state
04	On élargit le débat à la polititque étrangère.	f.ire abs VRS	Enter/Leave

Syntactic description

id	schema	encoded information
01	A30	intransitive with adjunct, inanimate subject
	T1308	transitive, human subject, inanimate direct object, instrumental adjunct
	P3008	reflexive, inanimate subject, instrumental adjunct
02	N1i	intransitive, animate subject, prep. phrase headed by de (of)
	A90	intransitive with adjunct, subject human or thing
	T3900	transitive, inanimate subject, object human or thing

Table of Contents

Motivation

2 Related Work

The Data

4 The Annotation

The Classification

6 Evaluation

Conclusion

8 References

4 6 1 1 4

∃ ► < ∃ ►</p>

- 167 verbs
- approx. same number for each Vendlerian class
- 1199 readings from LVF
- ► ≈15 readings per verb
- ▶ 50% more than 13 readings
- only 16 verbs unambiguous

Manually annotated

according to fine-grained aspectual scale of 8 values (from the least to the most telic predicates)

Fine-grained Aspectual Classification: Motivation

- Theoretical linguistics: [Hay et al., 1999, Piñón, 2006, Mittwoch, 2013] among many others
- Interesting opportunities for NLP applications:
- *Eg.* the inference of event completion:

is defeasible with 'weak' accomplishments:

cf. *She filled the truck... but not completely* is an **entailment** with 'strong' accomplishments:

cf. She filled her with joy...?but not completely

Annotation Scheme

Label-Class	Type of telos		Example
1 – S-STA	none		be French
2 – STA-ACT	none	ATE	sit in the garden
3 – S-ACT	none		play in the garden
4 – var	optional	VAR	widen
5 – W-ACC	context-dep or max. telos		empty, eat an apple
6 – S-ACC	max. telos	TEL	eat up an apple
7 – Q-ACH	max. telos	TEL	kill the cat
8 – ACH	max. telos		find the key

æ

イロト イヨト イヨト

Aspectual distribution of 1199 annotated readings

1	2	3		4		5	6	7	8
S-STA	STA-ACT	S-A0	СТ	VAR	w	-ACC	S-ACC	Q-ACH	ACH
182	67	17	5	195		172	227	29	152
			1-	-3 4	ŀ	5-8			
			AT	E VA	R	TEL			
			42	24 19	95	580			

considerable aspectual variability across readings
8 way: 66% of polysemous verbs (types) vary

3 way: 50% of polysemous verbs (types) vary

4 A N 4

- The second sec

Table of Contents

- Motivation
- 2 Related Work
- 3 The Data
- 4 The Annotation
- 5 The Classification
- 6 Evaluation
- 7 Conclusion
- 8 References

4 6 1 1 4

∃ ► < ∃ ►</p>

Classification Setting

Objective

- classify 1199 annotated readings
- into aspectual classes ATE, TEL and VAR
- using features extracted from LVF lexicon

- The second sec

Corpus based

Features in previous work:

- based on linguistic diagnostics
- mostly available in corpus data
- but only partly available in lexicon

< 6 k

H 5

LVF vs. corpus based

Most corpus based features have LVF equivalents:

Siegel and McKeown, 2000

6 features ✓ equivalents in LVF

5 features X

Zarcone and Lenci, 2008 13 features ✓ equivalents in LVF 2 features ४

X LVF equivalents for corpus based features:

- tense
- adverbials

• • • • • • • • • •

- E - M-

Lexical Features

LVF lexical features determine the aspectual class: Semantic class:

- ► 'enter/exit' ~> telic,
- ► change of state ~> never atelic only

Semantic decomposition:

- ► result ~> mostly accomplishments,
- ▶ manner but no result ~> mostly activities, etc.

Syntax:

► intransitivity with human subject ~> atelic

Derivational pattern:

- ► intransitive + no transitive frame ~> unaccusative (telic) or unergative (atelic)
- ► But: + -*eur* nominalisation ~→ atelic (*tombeur/*faller)

э.

The Features

38 Features:

- semantics: semantic decomposition, semantic class, agentivity indicators, semantic roles (manner, location, temporal, etc.), . . .
 - syntax: subject only, direct object, reflexive, passive, ...
- derivation: has a nominal or adjectival derivation,
- polysemy: relative number of readings per lemma

The Classification

The Classification

- using Weka [Hall et al., 2009]
- 38 features
- evaluation: accuracy in 10 fold cross-validation
- baseline: always assigns majority class (telic)
- linear forward feature selection: best feature set of 9 features

周レイモレイモン

Results

Algorithm	complete	selected
trees.j48	61.80	63.00
rules.jrip	63.89	61.56
lazy.kstar	62.89	67.47
functions.libsvm	62.72	61.13
bayes.naivebayes	60.22	65.80
baseline	48.37	48.37

- best setting outperforms baseline by pprox 20%
- most helpful features:
 - semantic decomposition
 - polysemy
 - 2 derivational properties
 - 2 agentivity indicators
 - temporal and manner semantic roles
 - reflexive reading

Table of Contents

- Motivation
- 2 Related Work
- 3 The Data
- 4 The Annotation
- 5 The Classification
- 6 Evaluation
- 7 Conclusion
- 8 References

4 A 1

∃ >

T 1

Aspectual Indicators

- type level
- reflect "aspectual behaviour" across readings of same verb
- computed from
 - 1. predictions
 - 2. manual annotations

			1.	%tel	Proportion of telic readings
			2.	%ate	Proportion of atelic readings
٧.	var	> 1 telicity value for same lemma?	3.	%var	Proportion of flexible readings
m.	maj	Telicity value of majority	4.	probest.max	Max of probability estimates
t.	tel	Any telic reading?	5.	probest.min	Min of probability estimates
a.	ate	Any atelic reading?	6.	probest.avg	Average of probability estimates

Nominal and binary

Numeric

Evaluation

Compare aspectual indicators from 1 and 2

based on manual annotations

lemma	m	t	а	%tel	%ate	%var
casser	TEL	1	0	95.00	0	0.05
'break'	TEL	1	1	95.65	4.35	0
mourir	TEL	1	1	75.00	25.00	0
'die'	TEL	1	1	75.00	25.00	0
remplir	TEL	1	1	70.00	30.00	0
'fill'	TEL	1	1	80.00	20.00	0

Mostly telic

based on predictions

lemma	m	t	а	%tel	%ate	%var
regarder	ATE	0	1	0	91.67	8.33
'look at'	ATE	1	1	16.67	83.33	0
chanter	ATE	0	1	0	66.67	33.33
'sing'	ATE	0	1	0	66.67	33.33
étudier	ATE	1	1	30.00	60.00	10.00
'study'	ATE	1	1	20.00	80.00	0

Mostly atelic

lemma	m	t	а	%tel	%ate	%var
vieillir	VAR	0	1	0	11.11	88.89
ʻget older'	VAR	0	1	0	22.22	77.78
embellir	VAR	0	1	0	33.33	66.67
'beautify'	VAR	1	0	33.33	0	66.67
élargir	VAR	1	1	25.00	25.00	50.00
'widen'	VAR	1	1	25.00	25.00	50.00

Mostly variable

Dominant aspectual value is correctly assigned in most cases,

Idea

can we improve performance in related task using our predictions?

If this is the case

- our predictions are good
- even for unseen verbs/ readings

Task chosen: TempEval Challenge 2007

- automatic detection of temporal relation types in TimeBank data
- aspect is expected to improve the performance

4 6 1 1 4

<s>In Washington <TIMEX3 tid="t53" type="DATE" value="1998-01-14">today</TIMEX3>, the Federal Aviation Administration <EVENT eid="e1" class="OCCURRENCE" stem="release" aspect="NONE" tense="PAST" polarity="POS" pos="VERB"> released</EVENT> air traffic control tapes from <TIMEX3 tid="t54" type="TIME" value="1998-XX-XXTNI">the night</TIMEX3> the TWA Flight eight hundred <EVENT eid="e2" class="OCCURRENCE" stem="go" aspect="NONE" tense=" PAST" polarity="POS" pos="VERB">went</EVENT> down.</s> <TLINK tid="11" relType="BEFORE" eventID="e2" relatedToTime="t53">< <TLINK tid="11" relType="DEFORE" eventID="e2" relatedToTime="t54"></tl>

Task: automatically determine relType of time links - <TLINK>

3 types of time links:

Task A: event ↔ time

Task B: event \leftrightarrow document creation time

Task C: event \leftrightarrow event

Data	French	TimeBank rel. types	verbs in LVF		
Dala	tlinks	rel. types	lemmas(seen)	readings	
А	302	10	164(16)	1597	
В	264	5	149(14)	1329	
С	1172	15	427(40)	3827	

Approach

[Costa and Branco, 2012] - for Portuguese

enhance rel. type detection through the use of aspectual indicators from the web

Our approach – for French

 enhance rel. type detection through the use of LVF aspectual indicators

Costa and Branco's (2012) method

- 1. start with base classifiers for temporal relation detection
- 2. collect aspectual indicators from the web using Google Hits
- 3. enhance features of base system by aspectual indicators

Results

Performance of

- 9 out of 15 classifiers could be improved
- ▶ by 1%–3%

- The second sec

Our method

- 1. start with base classifiers for temporal relation detection
- 2. compute LVF aspectual indicators
- 3. enhance features of base system by aspectual indicators

Results:

Performance of

- 8 out of 15 classifiers could be improved
- ▶ by 1%–3%
- similar to Costa and Branco (2012)

 \rightsquigarrow good performance of LVF model on unseen verbs

italics: base classifiers, **bold face:** enhanced classifiers

Classifier	А	В	С
trees.j48	0.71	0.81	0.40
	0.73 ¹	0.82 ³	0.41 ^{<i>a</i>}
rules.jrip	0.71	0.83	0.36
	0.73 ⁶	0.84 ⁶	0.37 ^m
lazy.kstar	0.72	0.82	0.42
		0.85 ⁵	
functions.libsvm	0.74	0.83	0.40
		0.85 ⁶	
bayes.naivebayes	0.73	0.84	0.40
baseline	0.72	0.62	0.29

Ingrid Falk and Fabienne Martin Aspectu

Table of Contents

- Motivation
- 2 Related Work
- 3 The Data
- 4 The Annotation
- 5 The Classification
- 6 Evaluation
- Conclusion
- 8 References

4 6 1 1 4

∃ ► < ∃ ►</p>

Conclusion

- Through the use of
 - ► a rich morpho-syntactic and semantic valency lexicon and
 - a machine learning approach

we could model aspectual variation reasonably well.

We gained insights about distribution and behaviour of aspectually polysemous verbs across readings

Future work:

• Explore behaviour and distribution in corpus data.

Thank you!

æ

Table of Contents

- Motivation
- 2 Related Work
- 3 The Data
- 4 The Annotation
- 5 The Classification
- 6 Evaluation
- Conclusion

8 References

4 6 1 1 4

∃ ► < ∃ ►</p>

References I

[Bittar et al., 2011] Bittar, A., Amsili, P., Denis, P., and Danlos, L. (2011). French TimeBank: An ISO-TimeML Annotated Reference Corpus. pages 130–134. Association for Computational Linguistics.

[Costa and Branco, 2012] Costa, F. and Branco, A. (2012). Aspectual Type and Temporal Relation Classification. pages 266–275. Association for Computational Linguistics.

[Dubois and Dubois-Charlier, 1997] Dubois, J. and Dubois-Charlier, F. (1997). *Les Verbes français.*

Larousse.

[Friedrich and Palmer, 2014] Friedrich, A. and Palmer, A. (2014). Automatic prediction of aspectual class of verbs in context. volume 2, pages 517–523. Association for Computational Linguistics.

-

References II

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).

The weka data mining software: An update.

SIGKDD Explor. Newsl., 11(1):10–18.

[Hay et al., 1999] Hay, J., Kennedy, C., and Levin, B. (1999).

Scalar structure underlies telicity in 'degree achievements'.

In Tanya Matthews, D. S., editor, *Semantics and Linguistic Theory (SALT) 9*, pages 127–144.

[Mittwoch, 2013] Mittwoch, A. (2013).

On the criteria for distinguishing accomplishments from activities, and two types of aspectual misfits.

In Arsenijevic, B., Gehrke, B., and Marín, R., editors, *Studies in the Composition and Decomposition of Event Predicates*, pages 27–48. Springer, Berlin.

3

References III

[Piñón, 2006] Piñón, C. (2006).

Weak and strong accomplishments.

In Kiss, K., editor, *Event Structure and the Left Periphery. Studies on Hungarian*, pages 91–106. Springer, Dordrecht.

[Siegel and McKeown, 2000] Siegel, E. V. and McKeown, K. R. (2000).

Learning Methods to Combine Linguistic Indicators: Improving Aspectual Classification and Revealing Linguistic Insights.

Computational Linguistics, 26(4):595–628.

[Zarcone and Lenci, 2008] Zarcone, A. and Lenci, A. (2008).

Computational Models for Event Type Classification in Context.

In *Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)*, Marrakech, Morocco. European Language Resources Association (ELRA).

-