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An optimization-based numerical method for diffusion problems with sign-changing coefficients

A new optimization-based numerical method is proposed for the solution of diffusion problems with sign-changing conductivity coefficients. In contrast to existing approaches, our method does not rely on the discretization of a stabilized equation and the convergence of the scheme can be proved without any symmetry assumption on the mesh near the interface where the conductivity sign changes.

Résumé

Une méthode d'optimisation pour des problèmes de diffusion avec changement de signe. Nous proposons une nouvelle méthode, basée sur la résolution d'un problème de minimisation, pour l'approximation de problèmes de diffusion avec changement de signe. Cette approche, qui tire profit d'une reformulation du modèle initial sous la forme d'un problème de transmission, ne repose pas sur la discrétisation d'une équation stabilisée, et la convergence de la méthode est obtenue sans hypothèse de symétrie du maillage dans un voisinage de l'interface où la conductivité change de signe.

Version française abrégée

Dans cette note, nous introduisons une méthode d'optimisation pour l'approximation numérique de problèmes de diffusion dont la conductivité change de signe dans le domaine. La résolution numérique efficace de ce genre de problèmes est importante pour de nombreuses applications (e.g., super-lentilles, invisibilité), mais les méthodes existantes ne sont pour l'instant pas satisfaisantes. Dans [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF], les deux approches envisagées reposent (i) sur la discrétisation d'une équation stabilisée, pour laquelle les taux de convergence obtenus sont sous-optimaux, ou (ii) sur des hypothèses de symétrie du maillage autour de l'interface où la conductivité change de signe, exigences pouvant s'avérer très contraignantes pour des interfaces générales (voir [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF]) ou en 3D. La méthode numérique introduite ici, qui utilise une reformulation du modèle initial en un problème de transmission, ne repose pas sur l'ajout de dissipation à l'équation, et nous montrons sa convergence pour des problèmes elliptiques présentant un changement de signe sans aucune hypothèse de symétrie sur le maillage. Nous notons que cette méthode numérique a pour la première fois été introduite par Gunzburger et al. [START_REF] Gunzburger | An optimization-based domain decomposition method for partial differential equations[END_REF] (voir aussi [START_REF] Gunzburger | Solution of elliptic partial differential equations by an optimization-based domain decomposition method[END_REF]), dans un contexte de décomposition de domaine pour des équations elliptiques classiques, sans preuve de convergence. L'application de cet algorithme à des problèmes elliptiques présentant un changement de signe est introduite dans cette note, et la convergence de la méthode est démontrée.

Introduction

Partial differential equations with sign-changing coefficients play an increasingly important role in the modeling of metamaterials, with applications ranging from superlensing to cloaking. In this paper, we consider in an open bounded polytopal domain Ω Ă R d , d P t2, 3u such that Ω " Ω e Y Ω i , with Ω e , Ω i disjoint open polytopal subsets of Ω with nonzero measure, the following sign-changing diffusion problem

´divps K∇ũq " f in Ω, ũ " 0 on BΩ, (1) 
where K is a symmetric, uniformly elliptic and bounded matrix-valued field, and s : Ω Ñ R is a sign function such that s e :" s |Ωe " 1 and s i :" s |Ωi " ´1. The subscripts 'e' and 'i' respectively stand for the exterior (for which we assume that BΩ e X BΩ has nonzero measure) and the interior subdomains, and we denote their interface Γ " BΩ e X BΩ i . We assume that f P L 2 pΩq and study the following weak formulation of Problem (1): Find ũ P H 1 0 pΩq such that apũ, ϕq :" ps K∇ũ, ∇ϕq Ω " pf, ϕq Ω @ϕ P H 1 0 pΩq.

Several approaches have been developed to study the well-posedness of Problem [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]. We first mention the T-coercivity theory of Bonnet-Ben Dhia et al. [START_REF] Bonnet-Ben Dhia | T-coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]. In this context, well-posedness (in the classical Hadamard sense or in the Fredholm sense) of Problem ( 2) is equivalent to finding a linear, bounded and bijective operator T : H 1 0 pΩq Ñ H 1 0 pΩq such that the bilinear form ap¨, T¨q is coercive (for classical well-posedness) or weakly coercive (for the Fredholm case). The operator T plays the role of an explicit inf ´sup operator. However, proving T-coercivity can be difficult for complex geometries, especially in 3D. More recently, another viewpoint has come out that consists in studying the "limit" as δ Ñ 0 `of the well-posed stabilized problem: Find ũδ P H 1 0 pΩq such that a δ pũ δ , ϕq :" apũ δ , ϕq ´iδpK∇ũ δ , ∇ϕq Ωi " pf, ϕq Ω @ϕ P H 1 0 pΩq,

where H 1 0 pΩq is complex-valued. This approach has been developed in the context of Helmholtz equations by Nguyen [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign-changing coefficients[END_REF][START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign-changing coefficients[END_REF], and makes use of transport operators called reflections.

Different strategies have been studied by Chesnel and Ciarlet Jr. in [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF] for the numerical approximation of Problem (2) (assuming that it is well-posed in the classical Hadamard sense). The first approach is based on a simplicial discretization T h of Ω, that respects the interface Γ and the construction of a conforming finite element space V 0 pT h q that is stable by the operator T. Well-posedness and optimal convergence rates can be shown for this approach. In practice, T-stability is achieved by means of symmetric meshes near the interface, whose construction is a nontrivial task for complicated interfaces (see [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF]) or 3D problems. On general meshes, two main approaches have been investigated by Chesnel and Ciarlet Jr. The first one consists in building a (mesh-dependent) operator T h , such that the bilinear form a is T h -coercive on V 0 pT h q (see, e.g., [START_REF] Nicaise | A posteriori error estimates for a finite element approximation of transmission problems with sign-changing coefficients[END_REF]). This kind of approach is limited by the fact that, in general, well-posedness cannot be proved for the whole range of admissible coefficients. The second idea consists in discretizing the stabilized equation [START_REF] Bonnet-Ben Dhia | Mesh requirements for the finite element approximation of problems with sign-changing coefficients[END_REF], and in scaling the dissipation δ as a function of h. However, and as studied in [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF], this approach leads to suboptimal convergence rates.

In this note, we aim at proposing a new discretization approach, that is based on a reformulation of Problem (1) as a transmission problem, whose solution is obtained numerically from an optimization procedure. The approach we propose is proved to converge, and does not rely on any symmetry assumption on the mesh. As opposed to T-coercivity theory, we do not need to assume well-posedness of Problem (2) in the Hadamard sense (i.e. for any f P H ´1pΩq) to prove convergence of our numerical method. We only need to assume that, for the given f P L 2 pΩq we consider, the solution to Problem (2) exists and is unique. This allows us to treat cases that cannot be analyzed using the T-coercivity theory (cf. Remark 3). The numerical method we consider here has been introduced by Gunzburger et al. [START_REF] Gunzburger | An optimization-based domain decomposition method for partial differential equations[END_REF] (see also [START_REF] Gunzburger | Solution of elliptic partial differential equations by an optimization-based domain decomposition method[END_REF]), in the context of domain decomposition for classical elliptic equations. However, up to now, the convergence of this method has never been proved. We provide the first proof of convergence of such a numerical method, with application to sign-changing elliptic equations, for which this approach seems particularly promising.

Transmission problem and numerical method

We provide in this section, under suitable regularity assumptions, an alternative characterization of the solution to Problem (2), that will be our starting point for the design of the numerical method.

Transmission problem

Recall that f P L 2 pΩq. Hence, s K∇ũ P Hpdiv; Ωq. Denoting, for α P te, iu, by n α the unit normal vector to Γ pointing out of Ω α , and introducing g such that g :"

" pK∇ũq |Ωe ¨ne ı |Γ , (4) 
we have that g P H ´1{2 pΓq. Here, H ´1{2 pΓq denotes the dual of H 1 {2 pBΩ i q when Γ " BΩ i or of H 1 {2 00 pΓq otherwise. For α P te, iu, and for any g P H ´1{2 pΓq, we consider in the subdomain Ω α the problem

s α pK∇u α pgq, ∇ϕ α q Ωα " pf, ϕ α q Ωα `sα xg, ϕ α y Γ @ϕ α P H 1 0zΓ pΩ α q, (5) 
where H 1 0zΓ pΩ α q is the space of functions in H 1 pΩ α q that vanish on BΩ α zΓ.

In Ω e , Problem (5) always admits a unique solution u e pgq P H 1 0zΓ pΩ e q, as the measure of BΩ e X BΩ is nonzero. In Ω i , Problem (5) also admits a unique solution u i pgq P H 1 0zΓ pΩ i q if the measure of BΩ i X BΩ is nonzero. Otherwise, the problem in Ω i is purely Neumann and we assume that the flux g P H ´1{2 pΓq satisfies pf, 1q Ωi ´xg, 1y Γ " 0 to ensure that Problem (5) admits a solution, that is unique up to an additive constant. We fix the constant by imposing pu i pgq, 1q Γ " pu e pgq, 1q Γ . Finally, for g P H ´1{2 pΓq, we denote by upgq the function such that upgq |Ωα :" u α pgq, α P te, iu. Proposition 2.1 (Characterization of the solution to Problem (2)) We assume that (2) admits a unique solution ũ P H 1 0 pΩq, and that there exists s ą 1 2 such that ũ|Ωα P H 1`s pΩ α q for α P te, iu. Then, ' the flux g defined in (4) belongs to L 2 pΓq, and satisfies g " ´"p´K∇ũq |Ωi ¨ni ı |Γ ;

' upgq " ũ P H 1 0 pΩq; ' almost everywhere on the interface Γ, u e pgq " u i pgq;

' the problem inf gPL 2 pΓq }u e pgq ´ui pgq} 2 0,Γ admits g as its unique solution.

Remark 1 (Assumptions on ũ) The existence (and uniqueness) of a solution ũ P H 1 0 pΩq to Problem (2) is satisfied in practice in a large variety of situations (cf., e.g., [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign-changing coefficients[END_REF]). The assumption ũ|Ωα P H 1`s pΩ α q for α P te, iu, s ą 1 2 , made in Proposition 2.1 is convenient for the analysis, as it enables to work in L 2 pΓq instead of working in H ´1{2 pΓq. This theoretical assumption is quite strict, but not mandatory in practice for the method to be applicable. In a forthcoming work [START_REF] Abdulle | An optimization-based method for sign-changing PDEs[END_REF], we will consider a test-case for which this regularity assumption is violated, and show that numerical convergence can still be observed.

Minimization problem and numerical method

We consider a family of simplicial conformal discretizations tT h u h of Ω, that respects the interface Γ and is shape-regular in the sense of Ciarlet [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. The subscript h stands for the meshsize, i.e. the maximum diameter of all the simplices in T h . We denote by Γ h the set of faces of the mesh T h belonging to Γ. For k P N ‹ and α P te, iu, we introduce the space V k pT h,α q :" v P H 1 pΩ α q | v |T P P k d pT q, @T P T h,α ( , where P k d pT q is the space of d-variate polynomial functions of total degree less or equal to k in T P T h . We also introduce the subspace V k 0zΓ pT h,α q :" V k pT h,α q X H 1 0zΓ pΩ α q. For α P te, iu, and for any g P H ´1{2 pΓq, we consider, in the subdomain Ω α , the following conforming approximation of Problem (5):

s α pK∇u h,α pgq, ∇ϕ h,α q Ωα " pf, ϕ h,α q Ωα `sα xg, ϕ h,α y Γ @ϕ h,α P V k 0zΓ pT h,α q. ( 6 
)
As in the continuous case, Problem (6) always admits a unique solution u h,e pgq P V k 0zΓ pT h,e q in Ω e , and u h,i pgq P V k 0zΓ pT h,i q in Ω i when the measure of BΩ i X BΩ is nonzero. For the case of a pure Neumann problem in Ω i , we assume that pf, 1q Ωi ´xg, 1y Γ " 0, ensuring existence of a solution and uniqueness up to an additive constant, that we fix imposing pu h,i pgq, 1q Γ " pu h,e pgq, 1q Γ . For g P H ´1{2 pΓq, we introduce u h pgq such that u h pgq |Ωα :" u h,α pgq, α P te, iu.

To define the minimization problem, we introduce F k pΓ h q :" q P L 2 pΓq | q |F P P k d´1 pF q, @F P Γ h ( when the measure of BΩ i X BΩ is nonzero, and we add the constraint pq, 1q Γ " pf, 1q Ωi otherwise. We then define the functional J h : F k pΓ h q Ñ R `such that J h pg h q :" }u h,e pg h q ´uh,i pg h q} 2 0,Γ `λphq}g h } 2 0,Γ , where λ : R ‹ `Ñ R ‹ `is a function such that lim hÑ0 λphq " 0, and we consider the minimization problem inf

g h PF k pΓ h q J h pg h q. (7) 
The continuous function J h is coercive on F k pΓ h q, and hence admits at least one minimizer: there exists gh P F k pΓ h q such that J h pg h q ď J h pg h q for any g h P F k pΓ h q.

The approximation of ũ we then consider is u h pg h q. The following result is a direct consequence of (8) and of the properties of the L 2 -orthogonal projector from L 2 pΓq onto F k pΓ h q.

Lemma 2.1 (Estimate on J h pg h q) Assume that g defined in (4) is in L 2 pΓq. Then, the following holds:

J h pg h q ď }u h,e pgq ´uh,i pgq}

2 0,Γ `λphq}g} 2 0,Γ . (9) 

Convergence

From now on, we write A À B when there exists a constant c ą 0, possibly depending on K, k, and on the geometry, but independent of h, and of ũ, g, such that A ď cB. Lemma 3.1 (Approximation properties) Suppose that the assumptions of Proposition 2.1 are fulfilled. Then, letting p " minpk, sq, there exists δ P `0, 

for α P te, iu and with δ m α P p0, 1s only depending on the geometry of Ω α . By setting δ " min

´δm e 2 , δ m i 2 ¯,
we obtain the stated result. We next treat the case of a pure Neumann problem in Ω i . Due to the choice pu h,i pgq, 1q Γ " pu h,e pgq, 1q Γ to fix the constant, a straightforward Aubin-Nitsche duality argument fails. We therefore consider an auxiliary function u h,i pgq, defined as the unique discrete solution of the same Neumann problem in Ω i , but for which we fix the constant as in the continuous problem, namely pu h,i pgq, 1q Ωi " pũ, 1q Ωi . Then, there exists δ n i P p0, 1s, only depending on the geometry of Ω i , such that

}u h,i pgq ´ũ} 0,Ωi `h δ n i 2 }u h,i pgq ´ũ} 0,Γ `hδ n i }∇pu h,i pgq ´ũq} 0,Ωi À h p`δ n i |ũ| 1`p,Ωi . (11) 
Note that, a priori, δ n i ‰ δ m i since regularity results for pure Neumann or mixed problems are different in general. Next, we observe that u h,i pgq ´uh,i pgq " c h , for a constant c h P R. We then write |Γ| c h " pu h,i pgq ´uh,i pgq, 1q Γ " pu h,e pgq ´uh,i pgq, 1q Γ " pu h,e pgq ´ũ, 1q Γ `pũ ´uh,i pgq, 1q Γ , which yields, using [START_REF] Nguyen | Negative index materials and their applications: recent mathematics progress[END_REF] and [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign-changing coefficients[END_REF],

|c h | ď |Γ| ´1{2 ´}u h,e pgq ´ũ} 0,Γ `}u h,i pgq ´ũ} 0,Γ ¯À h p`δ m e 2 |ũ| 1`p,Ωe `hp`δ n i 2 |ũ| 1`p,Ωi . (12) 
We finally obtain from [START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign-changing coefficients[END_REF] }u h,i pgq ´ũ} 0,Γ ď }u h,e pgq ´ũ} 0,Γ `2}u h,i pgq ´ũ} 0,Γ À h p`δ We note that, as a consequence of Lemma 3.1, it is always possible to choose λphq in [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] such that }u h,e pgq ´uh,i pgq} 2 0,Γ " O pλphqq or }u h,e pgq ´uh,i pgq} 2 0,Γ " o pλphqq. We then have the Theorem 3.2 (Convergence of the method) Suppose that the assumptions of Proposition 2.1 are fulfilled. Denote u h pg h q by ũh . Then, up to a choice of λphq in [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] such that }u h,e pgq ´uh,i pgq} 2 0,Γ " O pλphqq, there holds as h Ñ 0:

gh á g in L 2 pΓq, ∇ h ũh á ∇ũ in L 2 pΩq d , ũh Ñ ũ in L 2 pΩq. (13) 
If we further choose λphq such that }u h,e pgq ´uh,i pgq} 2 0,Γ " o pλphqq, then we have

gh Ñ g in L 2 pΓq, ∇ h ũh Ñ ∇ũ in L 2 pΩq d , ũh Ñ ũ in L 2 pΩq. (14) 
Proof We begin by remarking that, for α P te, iu,

u h,α pg h q " u h,α pgq `vh,α , (15) 
where

v h,α P V k 0zΓ pT h,α q satisfies pK∇v h,α , ∇ϕ h,α q Ωα " ppg h ´gq , ϕ h,α q Γ @ϕ h,α P V k 0zΓ pT h,α q. (16) 
From ( 16), we readily infer

}∇v h,α } 2 0,Ωα À }g h ´g} 0,Γ }v h,α } 0,Γ . (17) 
Besides, the following estimate can be obtained from (9):

}g h } 2 0,Γ ď }u h,e pgq ´uh,i pgq} 2 0,Γ λphq `}g} 2 0,Γ . (18) 
As soon as }u h,e pgq ´uh,i pgq} 2 0,Γ {λphq ď c, the combination of ( 18), (17), and of a continuous trace inequality (as well as of an appropriate Poincaré inequality [5, Equation (1.1)] when the measure of BΩ i X BΩ is zero) enables to infer that there exist g0 P L 2 pΓq, and v α P H 1 0zΓ pΩ α q, α P te, iu, so that the following convergences hold as h Ñ 0, up to a subsequence (retaining the same notation):

gh á g0 in L 2 pΓq, ∇v h,α á ∇v α in L 2 pΩ α q d , v h,α Ñ v α in L 2 pΩ α q, v h,α á v α in L 2 pΓq. (19) 
Now, from (9) we infer }u h,e pg h q ´uh,i pg h q} 2 0,Γ ď }u h,e pgq ´uh,i pgq}

2 0,Γ `λphq}g} 2 0,Γ ď ´c `}g} 2 0,Γ ¯λphq. (20) 
Owing to the fact that λphq tends to zero as h vanishes, we deduce from (20) that }u h,e pg h q ´uh,i pg h q} 0,Γ Ñ 0 as h Ñ 0. Combining this last result with (15) and Lemma 3.1, we get that }v h,e ´vh,i } 0,Γ Ñ 0 as h Ñ 0 and hence, owing to (19), that v e " v i almost everywhere on Γ. Passing to the limit in ( 16) using ( 19) and a strongly converging interpolant for test functions, it can be shown that v P H 1 0 pΩq such that v |Ωα :" v α for α P te, iu satisfies ps K∇v, ∇ϕq Ω " 0 for all ϕ P H 1 0 pΩq, which implies, from the well-posedness of Problem [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF], that v " 0 and g0 " g (this last result is inferred considering the limit equation in a subdomain, and using a density argument along with the fact that g0 , g P L 2 pΓq). The uniqueness of the limits implies that the whole sequences converge in (19). Collecting these last results, (15), and Lemma 3.1, we prove [START_REF] Nicaise | A posteriori error estimates for a finite element approximation of transmission problems with sign-changing coefficients[END_REF]. If we further choose λphq such that }u h,e pgq ´uh,i pgq} 2 0,Γ {λphq Ñ 0 as h Ñ 0, we get from (18) and from the weak convergence of gh towards g that

}g} 0,Γ ď lim hÑ0 inf }g h } 0,Γ " lim hÑ0 sup }g h } 0,Γ ď }g} 0,Γ , (21) 
which states the strong convergence of gh towards g in L 2 pΓq. Testing (16) with v h,α , and using (21) combined with the weak convergence result for v h,α in L 2 pΓq of (19), we finally get the strong convergence of ∇v h,α towards 0 in L 2 pΩ α q d for α P te, iu, proving (14) and concluding the proof. l

Numerical validation

We consider the 2D symmetric cavity test-case of [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF], for which Ω :" p´1, 1q ˆp0, 1q and Ω e :" p´1, 0qˆp0, 1q (it follows that Ω i " p0, 1qˆp0, 1q and Γ " t0uˆr0, 1s). For this test-case, both the exterior and the interior problems feature mixed Dirichlet-Neumann boundary conditions. For the particular geometry considered here, elliptic regularity holds in both subdomains (see, e.g., [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]Remark I.3.6]), so that δ " 1 2 in Lemma 3.1. The tensor K is taken isotropic, with constant value in each subdomain (k |Ωe " k e ą 0 and k |Ωi " k i ą 0). For this particular setting, it is known [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF] and is associated to the right-hand side f " ´divps k∇ũq P L 2 pΩq. It can be easily seen that, for α P te, iu, ũ|Ωα P H 1`l pΩ α q for any l ą 0, meaning that p " k in Lemma 3.1.

As in [START_REF] Chesnel | T-coercivity and continuous Galerkin methods: application to transmission problems with sign-changing coefficients[END_REF], we choose k e " 1 and k i " 1.001, so that ν " ´1.001. We run the computations on a sequence of non-symmetric (with respect to the interface Γ), unstructured meshes. Results are depicted on Figure 1 for linear pk " 1q and second-order pk " 2q FEM, for our approach (solid blue), and for classical FEM (dashed black) applied to (2). For our approach, the parameter λphq is chosen as Oph β q with βďp2k`1q, as required by Theorem 3.2 and Lemma 3.1. Here we choose λphq " 0.002 h 3 for k " 1 and λphq " 0.002 h 4.2 for k " 2. We first observe that all convergence plots for our approach are strictly monotone, as opposed to classical FEM. In the L 2 -norm, for h sufficiently small, we observe a slightly super-convergent behavior for our approach for both k " 1 and k " 2. In the H 1 -norm, for both orders, our method seems to reach the expected convergence rates for h sufficiently small, and clearly outperforms classical FEM. The choice of a small multiplicative coefficient 0.002 in the function λ is guided by the fact that the norm of g is big for such a contrast. Hence, for coarse meshes for which convergence is far from being reached, one has to give less weight to the second term of the functional J h in the minimization process, to have a chance to recover a correct approximation of g. This weight is useless when h is sufficiently small. Remark 2 (Stabilization parameter) For coarse meshes, one has to tune the parameter λphq in a nontrivial, contrast-depending way. This has to do with the regularization we use. If the L 2 -orthogonal projection Π k h g of g onto F k pΓ h q was known, then we would stabilize the functional J h with µphq Remark 3 It has to be noted that the symmetric cavity test-case can be analyzed by means of T-coercivity.

However, it cannot be on general meshes, which is the main outcome of our approach. Furthermore, there are also many cases (even in 2D) that cannot be analyzed, at the continuous level, using the T-coercivity approach. This is for example the case of the cloaking device studied in [10, Section 4]. In that case, the operator associated to the problem, viewed as an operator from H 1 0 pΩq to H ´1pΩq is not Fredholm, as its range is not closed. T-coercivity is hence inapplicable. However, it is known that, for compatible righthand sides f P L 2 pΩq, the solution exists and is unique in H 1 0 pΩq [START_REF] Nguyen | Negative index materials and their applications: recent mathematics progress[END_REF]. The convergence of our numerical method for compatible loadings as well as numerical experiments for such problems will be investigated in a forthcoming work [START_REF] Abdulle | An optimization-based method for sign-changing PDEs[END_REF].
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  that Problem (2) is wellposed in the classical Hadamard sense if and only if the contrast ν :" ´ki ke is different from ´1. Figure 1. Relative errors on Ω vs. meshsize for the symmetric cavity test-case with ν " ´1.001.
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									The exact
	solution ũ P H 1 0 pΩq we consider is						
	ũpx, yq :"	$ ' ' & ' ' %	ˆpx `1q k e k e ´ki px ´1q sinpπyq 2 ´2k e ´ki px `1q ˙sinpπyq k e ´ki	in Ω e , in Ω i ,