
HAL Id: hal-01354090
https://hal.science/hal-01354090

Submitted on 22 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Casper: Automatic Tracking of Null Dereferences to
Inception with Causality Traces

Benoit Cornu, Earl T. Barr, Lionel Seinturier, Martin Monperrus

To cite this version:
Benoit Cornu, Earl T. Barr, Lionel Seinturier, Martin Monperrus. Casper: Automatic Tracking of
Null Dereferences to Inception with Causality Traces. Journal of Systems and Software, 2016, 122,
pp.52-62. �10.1016/j.jss.2016.08.062�. �hal-01354090�

https://hal.science/hal-01354090
https://hal.archives-ouvertes.fr

Casper: Automatic Tracking of Null Dereferences to Inception
with Causality Traces

Benoit Cornu*, Earl T. Barr†, Lionel Seinturier*, Martin Monperrus*
*University of Lille & INRIA
†University College London

Abstract: Fixing a software error requires under-
standing its root cause. In this paper, we introduce
“causality traces”, crafted execution traces augmented
with the information needed to reconstruct the causal
chain from the root cause of a bug to an execution
error. We propose an approach and a tool, called
Casper, based on code transformation, which dy-
namically constructs causality traces for null derefer-
ence errors. The core idea of Casper is to replace
nulls with special objects, called “ghosts”, that track
the propagation of the nulls from inception to their
error-triggering dereference. Causality traces are ex-
tracted from these ghosts. We evaluate our contribu-
tion by providing and assessing the causality traces of
14 real null dereference bugs collected over six large,
popular open-source projects.

1 Introduction
Null pointer dereferences are frequent errors that
cause segmentation faults or uncaught exceptions.
Li et al. found that 37.2% of all memory errors
in Mozilla and Apache are null dereferences [15].
Kimura et al. [14] found that there are between one
and four null checks per 100 lines of code on aver-
age. Problematic null dereferences are daily reported
in bug repositories, such as bug MATH#3051. A null
dereference occurs at runtime when a program tries
to read memory using a field, parameter, or variable
that points to “null”, i.e. nothing. The terminology
changes depending on the language, in this paper,
we concentrate on the Java programming language,
where a null dereference triggers an exception called
NullPointerException, often called “NPE”.

Just like any bug, fixing null dereferences requires
understanding their root cause, a process that we call
null causality analysis. At its core, this analysis is
the process of connecting a null dereference, where
the fault is activated and whose symptom is a null
pointer exception, to its root cause, usually the initial

1https://issues.apache.org/jira/browse/MATH-305

1 Exception in thread "main" java.lang.NullPointerException
2 at [..].BisectionSolver.solve(88)
3 at [..].BisectionSolver.solve(66)
4 at ...

Listing 1: The standard stack trace of a real null
dereference bug in Apache Commons Math.

1 Exception in thread "main" java.lang.NullPointerException
2 Dereferenced parameter “f" // symptom
3 at [..].BisectionSolver.solve(88)
4 at [..].BisectionSolver.solve(66)
5 at ...
6 Parameter f bound to field “f2”
7 at [..].BisectionSolver.solve(66)
8 Field “f2” set to null
9 at [..].UnivariateRealSolverImpl.<init>(55) //

cause

Listing 2: What we propose: a causality trace, an
extended stack trace that contains the root cause.

assignment of a null value, by means of a causality
trace — the execution path the null took through the
code from its inception to its dereference.

The literature offers different families of techniques
to compute the root cause of bugs, mainly program
slicing, dataflow analysis, or spectrum-based fault-
localization. However, they have been little studied
and evaluated in the context of identifying the root
cause of null dereferences [11, 4, 24]. Those techniques
are limited in applicability ([11] is an intra-procedural
technique) or in accuracy (program slicing results in
large sets of instructions [3]). The fundamental prob-
lem not addressed in the literature is that the causal-
ity trace from null inception to the null symptom is
missing. This is the problem that we address in this
paper. We propose a causality analysis technique that
uncovers the inception of null variable bindings that
lead to errors along with the causal explanation of
how null flowed from inception to failure during the
execution. While our analysis may not report the root
cause, it identifies the null inception point with cer-
tainty, further localizing the root cause and speeding
debugging in practice.

1

https://issues.apache.org/jira/browse/MATH-305

Let us consider a concrete example. Listing 1
shows a null dereference stack trace which shows
that the null pointer exception happens at line 88
of BisectionSolver. Let’s assume that a perfect fault
localization tool suggests that this fault is located
at line 55 of UnivariateRealSolverImpl (which is
where the actual fault lies). However, the developer
is left clueless with respect to the relation between
line 55 of UnivariateRealSolverImpl and line 88 of
BisectionSolver where the null dereference happens.

What we propose is a causality trace, as shown in
Listing 2. In comparison to Listing 1, it contains three
additional pieces of information. First, it gives the
exact name, here f, and kind, here parameter (local
variable or field are other possibilities), of the variable
that holds null2. Second, it explains the inception of
the null binding to the parameter, the call to solve
at line 66 with field f2 passed as parameter. Third,
it gives the root cause of the null dereference: the
assignment of null to the field f2 at line 55 of class
UnivariateRealSolverImpl. Our causality traces con-
tain several kinds of causal links, of which Listing 2
shows only three: the name of the wrongly derefer-
enced variable, the flow of a null binding through pa-
rameter bindings, and null assignment. Section 2.2
presents the concept of null causality trace.

We present Casper, a tool that transforms Java
programs to capture causality traces and facilitate the
fixing of null deferences3. Casper takes as input the
program under debug and a main routine that triggers
the null dereference. It first instruments the program
under debug by replacing null with “ghosts” that are
shadow instances responsible for tracking causal infor-
mation during execution. To instrument a program,
Casper applies a set of 11 source code transforma-
tions tailored for building causal connections. For
instance, x = y is transformed into o = assign(y)
, where method assign stores an assignment causal
links in a null ghost (Section 2.3). Section 2.4 details
these transformations.

Compared to the related work, Casper is novel
along three dimensions. First, it collects the complete
causality trace from the inception of a null binding
to its dereference. Second, it identifies the inception
of a null binding with certainty. Third, Casper is
lightweight and easily deployable, resting on trans-
formation rather than replacing the Java virtual ma-
chine, a la Bond et al. [4]. The first two properties
strongly differentiate Casper from the related work
[20, 4], which tentatively labels root causes with suspi-

2if the dereference is the result of a method invocation, we
give the code expression that evaluates to null

3We have named our tool Casper, since it injects “friendly”
ghosts into buggy programs.

ciousness values and does not collect causality traces
nor identifies null inception points with certainty.

We evaluate our contribution Casper by providing
and assessing the causality traces of 14 real null deref-
erence bugs collected over six large, popular open-
source projects. We collected these bugs from these
project’s bug reports, retaining those we were able to
reproduce. Casper constructs the complete causal-
ity trace for 13 of these 14 bugs. For 11 out of these
13 bugs, the causality trace contains the location of
the actual fix made by the developer.

To sum up, our contributions are:

• The definition of causality traces for null derefer-
ence errors from null inception to its dereference
and the concept of “ghost” classes, which replace
null, collect causality traces, while being other-
wise indistinguishable from null.

• A set of code transformations that inject null
ghosts and collect causality traces of null deref-
erences.

• Casper, an Java implementation of our tech-
nique.

• An evaluation of our technique on 14 real null
dereference bugs collected over 6 large open-
source projects.

The remainder of this paper is structured as fol-
lows. Section 2 presents our technical contribution.
Section 3 gives the results of our empirical evalua-
tion. Section 4 discusses the limitations of our ap-
proach. Sections 5 and 6 respectively discusses the
related work and concludes. Casper and our bench-
mark can be downloaded from https://github.com/
Spirals-Team/casper.

2 Debugging Nulls with Casper

Casper tracks the propagation of a null binding dur-
ing application execution in a causality trace. A null
dereference causality trace is a sequence of program el-
ements (AST nodes) traversed during execution from
the source of the null to its erroneous dereference.

2.1 Overview
We replace nulls with objects whose behavior, from
the application’s point of view, is same as null, ex-
cept that they store a causality trace, defined in Sec-
tion 2.2. We call these objects null ghosts and detail
them in Section 2.3. Casper rewrites the program
under debug to use null ghosts and to store a null’s
causality trace in those null ghosts, (see Section 2.4).

2

https://github.com/Spirals-Team/casper
https://github.com/Spirals-Team/casper

We instantiated Casper’s concepts in Java and there-
fore tailored our presentation in this section to Java
(Section 2.5).

Casper makes minimal assumptions on the appli-
cation under debug, in particular, it does not assume
a closed world where all libraries are known and ma-
nipulable. Hence, a number of techniques used in
Casper comes from this complication.

2.2 Null Dereference Causality Trace

To debug a complex null dereference, the developer
has to understand the history of a null binding from
its inception to its problematic dereference. When a
variable is set to null, we say that a null binding is
created. When clear from context, we drop “binding”
and say only that a null is created. This is a concep-
tual view that abstracts over the programming lan-
guage and the implementation of the virtual machine.
In Java, there is a single null value to which variables
are bound without creating a new null values.

To debug a null dereference, the developer has to
know the details of the null’s propagation, i.e. why
and when each variable became null at a particular lo-
cation. We call this history the “null causality trace”
of the null dereference. Developers read and write
source code. Thus, source code is the natural medium
in which developers reason about programs for de-
bugging. In particular, a null propagates through
assignments and method return values. This is why
Casper defines causal links in a null causality trace
in terms of traversed program elements and their ac-
tual location in code, defined as follows and presented
in Table 1.

Definition 2.1 A null dereference causality trace
is the temporal sequence of program elements (AST
nodes) traversed by a dereferenced null.

2.2.1 Inception

A null binding can obviously originate in hard-coded
null literals (L). In our causality abstraction, these
inception points form the first element (i.e. the pre-
sumed root cause) of a null dereference causality
trace. Recall that Java forbids pointer arithmetic,
so we do not consider this case. Also, when a param-
eter is bound to null, this binding can be detected
at method entry (P). This enables Casper to de-
tect null values as soon they come from libraries that
use callbacks within the application under debug (i.e.
when the stack is of the form app→ lib→ app).

Mnemonic Description Examples

Inception

L null literal

x = null;
Object x = null
return null;

P null at method entry void foo(Object x)
{ . . . }

Propagation

R null at return site

//foo returns null
x = foo()
foo().bar()
bar(foo())

A null assignment x = e;

Causation

U unboxed null
Integer x = e;
int y = x

D null x.foo()
dereference x.field

X external call lib.foo(e)

Table 1: Causality trace elements, their mnemonic
and the language constructs they are associated with.
We use e to denote an arbitrary expression. In all
cases but X, where e appears, a null propagates only
if e evaluates to null.

2.2.2 Propagation

During execution, Casper traces the propagation of
null bindings. First, a null naturally propagates
through source level assignment (A). Second, a null
can be propagated through returned objects. Hence,
Casper detects nulls at the “return site” (R). In foo
().bar() there are two R links if something follows
such as in foo().bar().baz(). If this is followed by an
assignment x=foo().bar(), this is one dereference case
and one assignment case (explained in Section 2.2.2).

2.2.3 Causation

The cause of a null pointer exception is an erroneous
dereference of a null. According to the Java Lan-
guage Specification (“15.6. Normal and Abrupt Com-
pletion of Evaluation”) [10], this can happen during
method calls, field accesses or array accesses. All
cases are represented as by causality link D in Table 1.
Another case is unboxing, which can also trigger null
pointer exceptions (U).

Let us consider the snippet “ x = foo(); ... x.field”
and assume that x.field throws an NPE. The resulting

3

// original type
public MyClass{

private Object o;
public String sampleMethod(){

...
} }

// corresponding generated type
public MyGhostClass extends MyClass{

public String sampleMethod(){
// enriches the causality trace to log
// that this null ghost was dereferenced
computeNullUsage();
throw new CasperNullPointerException();

}
... // for all methods incl. inherited ones

}

Listing 3: For each class of the program under debug,
Casper generates a null ghost class to replace nulls.

null causality trace is R-A-D (return / assignment /
dereference). Here, the root cause is the return of the
method foo.

2.2.4 Traceability

Casper decorates the links in a null dereference
causality trace with the corresponding source code ex-
pression. For each causal link, Casper also collects
the location of the program elements (file, line) as
well as the name and the stack of the current thread.
Consequently, a causality trace contains a temporally
ordered set of information and not just the stack at
the point in time of the null dereference. In other
words, a causality trace contains a null’s root cause
and not only the stack trace of the symptom.

A causality trace is any chain of these causal links.
A trace starts with a L or, in the presence of an ex-
ternal library, with R (direct call) or P (callback); A
causality trace can be arbitrarily long (yet it cannot
be longer than the whole program trace).

2.3 Null Ghosts

The special value null is the unique bottom element
of Java’s nonprimitive type lattice. Redefining null
to track the propagation of a null binding during a
program’s execution would require changing the Java
virtual machine. To make Casper practical and use-
ful for practicing developers, we do not change Java’s
type lattice and leverage the insights that we can em-
ulate null values at the language level as follows.

To define null values that track causality traces
without changing Java, we create null ghost classes
and instantiate them as objects. We use rewriting to
create a null ghost to “haunt” each class defined in

a codebase. A null ghost is an object that 1) con-
tains a null causality trace and 2) has the same ob-
servable behavior as a null value. To this end, a ghost
class contains a queue of causal links and overrides all
methods of the class it haunts to throw null pointer
exceptions. We workaround the Java keyword final
to the maximum possible extent as explained later in
Section 2.5, so as to create a null ghost class for all
classes used at runtime.

Listing 3 illustrates this idea. Casper creates
the ghost class MyGhostClass that extends the ap-
plication class MyClass. All methods defined in
the application type are overridden in the new type
(e.g., sampleMethod) as well as all other methods
from the old class (See Section 2.5). The new
methods completely replace the normal behavior
and have the same new behavior. First, the call
to computeNullUsage enriches the causality trace
with a causal element of type D by stating that
this null ghost was dereferenced. Then, it acts as
if one has dereferenced a null value: it throws a
CasperNullPointerException (a special version of the
Java exception NullPointerException, and subtype of
it.). Also, a null ghost is an instance of the marker in-
terface NullGhost. This marker interface will be used
later to keep the same execution semantics between
real null and null ghosts.

2.4 Code Transformations

Casper’s transformations instrument the program
under debug to detect nulls and construct null deref-
erence causality traces dynamically, while preserving
its semantics.

Casper uses code transformation to inject the
method calls listed in Table 2 into the program un-
der debug. The argument x is an object, a null,
or a ghost; the pos argument gives the position in
the original source file of the program element being
transformed, for the sake of clearer traces. If their ar-
gument is null, they create a null ghost and add the
causality link built into their name, i.e. nullAssign
adds A. If their argument is a null ghost, they append
the appropriate causality link to the causality trace.
For instance, o = e is transformed into

o = nullAssign(e, "o, line 24")
where method nullAssign logs whether the expression
e (a variable, a method call, a field access) is null at
this assignment, returns x if x is a valid object or a
ghost, or a new ghost if x is null.

Figure 1 defines Casper’s transformations: α is a
program element, e is a Java expression, and f de-
notes either a function or a field. Since version 5.0,
Java automatically boxes and unboxes primitives to

4

Method Explanation

nullAssign(x, pos) logs whether x is null at this assignment, returns x if x is a valid object or a
ghost, or a new ghost if x is null

nullPassed(x, pos) logs whether x is null when received as parameter at this position, returns void
nullReturn(x, pos) logs whether x is null when returned at this position, returns x if x is a valid

object or a ghost, or a new ghost if x is null
exorcise(x, pos) logs whether x is null when passed as parameter to a library call at this position,

returns "null" if x is a ghost, or x
nullUnbox(x, pos) throws a null pointer exception enriched with a causality trace if a null ghost is

unboxed
nullDeref(x, pos) throws a null pointer exception enriched with a causality trace if a field access

or array access is made on a null ghost

Table 2: Explanations of the methods injected under Casper’s code transformation.

T (α) =



e == null || e instanceof NullGhost if α = e == null

e != null && !(e instanceof NullGhost) if α = e != null

e instanceof MyClass && !(e instanceof NullGhost) if α = e instanceof MyClass

unbox (nullUnbox(e)) if α = unbox (e)

lib.m(exorcise(p1), · · ·) if α = lib.m(p1, · · · , pn)
nullDeref(e).f if α = e.f

o ← nullAssign(e); if α = o ← e (assignment)
return nullReturn(e); if α = return e;

Ret m(~p , final ~Q) {
pi ← nullPassed(pi);,∀pi ∈ ~p
final qj ← nullPassed(q′j);,∀q′j ∈ ~Q
〈mbody〉 }

if α =
Ret m(~p, final ~q) {
〈mbody〉 }

α otherwise

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)

Figure 1: Casper’s transformations: α is program element; if α matches the element on the right, it is
replaced with the element on the left; unmatched program elements are unchanged; the notation is defined
in the text.

and from object wrappers, unbox (e1) denotes Java’s
implicit unboxing operation. The notation used in
Rule 9 is discussed in Section 2.4.1 next.

Rules 1–5 preserve the semantics of the program
under debug (Section 2.4.2). For instance, naïvely
replacing null values with ghosts breaks condition-
als that explicitly check for null: rules 1–3 handle
this case. Rules 6–9 inject calls to collect U and D
causality links (Section 2.2) into assignments, inter-
nal and external method calls, returns, and method
declarations.

2.4.1 Detection of null Bindings

To provide the inception and causality trace of a
null dereference, one must detect null values before
they are dereferenced. This section describes how

Casper’s transformations inject helper methods that
detect and capture null bindings. In Java, as with
all languages that prevent pointer arithmetic, null
bindings originate in null literals within the appli-
cation under debug or when an external library call
returns null.

Casper statically detects null literals, such as
Object o = null (or Object o, which is an equiva-
lent default initialization). For null assignment, as
in x = null, Casper applies rule Rule 7. Field ini-
tializations are handled in the same way, both for
explicit and default initialization. The corresponding
rewritings inject nullAssign, which instantiates a null
ghost and starts its causality trace with L–A.

Not all nulls can be statically detected: a library
can produce them. An application may be infected by
a null from an external library in the following cases:

5

1. assignments whose right hand side involves an ex-
ternal call; 2. method invocations one of whose pa-
rameter expressions involves an external call; 3. call-
backs from an external library into the program under
debug.

Rule 7 handles the assignment case, injecting the
nullAssign method to collect the causality links R, A.
Rule 4 handles boolean or arithmetic expressions. It
injects the nullUnbox method to check nullity and
create a null ghost or update an existing one’s trace
with R and U.

Rule 9 handles library callbacks; a library call back
happens when the application under debug provides
an object to the library and the library invokes a
method of this object, as in the “Listener” design pat-
tern. In this case, the library can bind null to one of
the method’s parameters. Because we cannot know
which method a callback may invoke, Rule 9 inserts
a check for each argument at the beginning of ev-
ery method call, potentially adding P to a ghost’s
causality trace. Rule 8 injects nullReturn to handle
return null, collecting R.

Rewriting Java in the presence of its final keyword
is challenging. The use of final variables, which can
only be assigned once in Java, requires us to duplicate
the parameter as a local variable. Renaming the pa-
rameters to fresh names (b to b_dup), then creating a
local variable with the same name as the original pa-
rameter, allows Casper to avoid modifying the body
of the method.

In Rule 9, 〈mbody〉 matches the body of the de-
clared method; ~p denotes the method’s nonfinal pa-
rameters; ~q are the method’s final parameters. In the
replacement on the left, we abuse notation and use
∈ on the parameter vector to denote selecting each
parameter in each parameter vector. Under this in-
terpretation, the forall operators generate an assign-
ment that calls nullPassed on each parameter. Q is
the vector of fresh names for each final parameter; q′
is one of them, and q is the original name. Listing 4
shows the result of the following application of Rule 9:

T(void method(Object a, final Object b){ <mbody> })

The first method is the input and the second is the
method after instrumentation by Casper.

2.4.2 Semantics Preservation

Casper uses additional transformations in order not
to modify program execution. Consider “ o == null".
When o is null, == evaluates to true. If, however,
o points to a null ghost, the expression evaluates to
false. Casper defines other transformations shown
in rules 1–5, whose aim is to preserve semantics with
the presence of null ghosts.

// initial method
void method(Object a, final Object b){

// method body
}

// is transformed to
void method(Object a, final Object b_dup){

a = NullDetector.nullPassed(a);
final Object b = NullDetector.nullPassed(b_dup);
// method body

}

Listing 4: Illustration of the transformation for the
“Null Method Parameter” (P) causality connection.

Proving that a code transformation, like Casper’s,
preserves semantics is a hard problem: proving that
simple refactorings (such as those built into popular
IDEs) are semantics-preserving has been proposed as
a verification challenge [19]. Even one of the sim-
plest refactoring — renaming variables — cannot be
shown as semantics-preserving because of reflection
and dynamic code evaluation [19]. Thus, we validate
(Section 3.2.1), rather than verify, the correctness of
Casper.

Comparison Operators Rule 1 and Rule 2 pre-
serve the original behavior by rewriting expressions,
to include a disjunction !(o instanceof NullGhost).
Our example “ o == null" becomes the expression
“ o == null && !(o instanceof NullGhost)". Here,
NullGhost is a marker interface that all null ghosts
implement. The rewritten expression is equivalent to
the original, over all operands, notably including null
ghosts.

Java developers can write “ o instanceof MyClass"
to check the compatibility of a variable and a type.
Under Java’s semantics, if o is null, no error is thrown
and the expression returns false. When o is a null
ghost, however, the expression returns true. Rule 3
solves this problem. To preserve behavior, it rewrites
appearances of the instanceof operator, e.g. replacing
“ o instanceof MyClass” with “ o instanceof MyClass
&& !(o instanceof NullGhost)".

Usage of Libraries During the execution of a pro-
gram that uses libraries, one may pass null as a
parameter to a library call. For instance, o could
be null when lib.m(o) executes. After Casper’s
transformation, o may be bound to a null ghost. In
this case, if the library checks whether its parameters
are null, using x == null or x instanceof SomeClass
, a null ghost could change the behavior of the li-
brary and consequently of the program. Thus, for
any method whose source we lack, we modify its calls

6

to “unbox the null ghost”, using Rule 5. In our ex-
ample, lib.m(o) becomes lib.m(exorcise(o)). When
passed a null ghost, the method exorcise returns the
null that the ghost replaces.

Emulating Null Dereferences When derefer-
encing a null, Java throws an exception object
NullPointerException. When dereferencing a null
ghost, the execution must also result in throwing the
same exception. In Listing 3, a null ghost throws
the exception CasperNullPointerException, which
extends Java’s exception NullPointerException.
Casper’s specific exception contains the derefer-
enced null ghost and overrides the usual exception
reporting methods, namely the getCause, toString,
and printStackTrace methods, to display the ghost’s
causality trace.

Java throws a NullPointerException in the fol-
lowing cases: a) a method call on null; b) a
field access on null; or c) an array access on null;
or d) unboxing a null from a primitive type’s ob-
ject wrapper. Casper trivially emulates method
calls on a null: it defines each method in a ghost
to throw CasperNullPointerException, as Listing 3
shows. Java does not provide a listener that mon-
itors field accesses. Rule 6 overcomes this prob-
lem; it wraps expressions involved in a field access
in nullDeref, which checks for a null ghost, prior to
the field access. For instance, Casper transforms
x.f into nullDeref(x).f. Since version 5.0, Java sup-
ports autoboxing and unboxing to facilitate working
with its primitive types. A primitive type’s object
wrapper may contain a null; if so, unboxing a null
value triggers a null dereference error. For example,
Integer a = null; int b = a, a + 3 or a ∗ 3 all throw
NullPointerException.

2.5 Implementation

Casper’s transformations can be done either fully
at the source code level or fully at the binary code
level. This is a trade-off in terms of engineering and
quality of information. With respect to engineering,
according to our experience, the transformations are
easier to write and debug at the source code level. In
Casper, we choose a mix of both.

Casper requires, as input, the source code of the
program under debug, together with the binaries of
the dependencies. Its transformations are automatic
and produce an instrumented version of the program
under debug.

Source Code Transformations We perform our
source code transformations using Spoon [16]. This

Bug ID #LOC #classes

McKoi 48k 275
Freemarker #107 37k 235
JFreeChart #687 70k 476
COLL-331 21k 256
LANG-304 17k 77
LANG-587 17k 80
LANG-703 19k 99
MATH-290 38k 388
MATH-305 39k 393
MATH-369 41k 414
MATH-988a 82k 781
MATH-988b 82k 781
MATH-1115 90k 885
MATH-1117 90k 885

Table 3: Descriptive summary of the benchmark of
null dereferences.

is done at compile time, just before the compilation
to bytecode. Spoon performs all modifications on a
model representing the AST of the program under
debug. Afterwards, Spoon generates new Java files
that contain the program corresponding to the AST
after application of the transformations of Figure 1.

Binary Code Transformations We create null
ghosts with binary code generation using ASM4. The
reason is the Java final keyword. This keyword can
be applied to both types and methods and prevents
further extension. Unfortunately, we must be able to
override all methods to create null ghost classes. To
overcome this protection at runtime, Casper uses its
own classloader, which ignores the final keyword in
method signatures when the class is loaded. For ex-
ample, when MyClass must be “haunted”, the class
loader generates MyClassGhost.class on the fly.

3 Empirical Evaluation

We now evaluate the capability of our approach
to build correct causality traces of real errors from
large-scale open-source projects. The evaluation
answers the following research questions:

RQ1: Does our approach provide the correct causal-
ity trace?
RQ2: Do the code transformations preserve the
semantics of the application?
RQ3: Is the approach useful with respect to the

4http://asm.ow2.org

7

http://asm.ow2.org

fixing process?

RQ1 and RQ2 concern correctness. In the context
of null deference analysis, RQ1 focuses on one kind
of correctness defined as the capability to provide the
root cause of the null dereference. In other words,
the causality trace has to connect the error to its
root cause. RQ2 assesses that the behavior of the
application under study does not vary after applying
our code transformations. RQ3 studies the extent
to which causality traces help a developer to fix null
dereference bugs.

3.1 Benchmark

We built a benchmark of real life null dereference
bugs. There are two inclusion criteria. First, the bug
must be a real bug reported on a publicly-available
forum (e.g. a bug repository). Second, the bug must
be reproducible.

The reproducibility is challenging. Since our ap-
proach is dynamic, we must be able to compile and
run the software in its faulty version. First, we need
the source code of the software at the corresponding
buggy version. Second, we must be able to compile
the software. Third, we need to be able to run the
buggy case. In general, it is really hard to reproduce
real bugs and reproducing null dereferences is no ex-
ception. Often, the actual input data or input se-
quence triggering the null dereference is not given, or
the exact buggy version is not specified, or the buggy
version can no longer be compiled and executed.

We formed our benchmark in two ways. First, we
tried to replicate results over a published benchmark
[4] as described below. Second, we selected a set of
popular projects. For each project, we used a bag of
words over their bug repository (e.g. Bugzilla or Jira)
to identify an under approximate set of NPEs. We
then faced the difficult challenge of reproducing these
bugs, as bug reports rarely specify the bug-triggering
inputs. Our final benchmark is therefore conditioned
on reproducibility. We do not, however, have any
reason to believe that any bias that may exist in our
benchmark would impact Casper general applicabil-
ity.

Under these constraints, we want to assess how our
approach compares to the closest related work [4].
Their benchmark dates back to 2007. In terms of bug
reproduction several years later, this benchmark is
hard to replicate. For 3 of the 12 bugs in this work, we
cannot find any description or bug report. For 4 of the
remaining 9, we cannot build the software because the
versions of the libraries are not given or are no longer
available. 3 of the remaining 5 do not give the error-

triggering inputs, or they do not produce an error.
Consequently, we were only able to reproduce 3 null
dereference bugs from Bond et al.’s benchmark.

We collected 7 other bugs. The collection method-
ology follows. We look for bugs in the Apache Com-
mons set of libraries (e.g. Apache Commons Lang).
The reasons are the following. First, it is a well-known
and well-used set of libraries. Second, Apache com-
mons bug repositories are public, easy to access and
search. Finally, thanks to the strong software engi-
neering discipline of the Apache foundation, a failing
test case is often provided in the bug report.

To select the real bugs to be added to our bench-
mark we proceed as follows. We took all the bugs from
the Apache bug repository5. We then select 3 projects
that are well used and well known (Collections, Lang
and Math). We add the condition that those bug re-
ports must have “NullPointerException" (or “NPE")
in their title. Then we filter them to keep only those
which have been fixed and which are closed (our ex-
perimentation needs the patch). After filtering, 19
bug reports remain6. Sadly, on those 19 bug re-
ports, 8 are not relevant for our experiment: 3 are too
old and no commit is attached (COLL-4, LANG-42
and LANG-144), 2 concern Javadoc (COLL-516 and
MATH-466), 2 of them are not bugs at all (LANG-87
and MATH-467), 1 concerns a VM problem. Finally,
we add the 11 remaining cases to our benchmark.

Consequently, the benchmark contains the 3 cases
from [4] (Mckoi, freemarker and jfreechart) and 11
cases from Apache Commons (1 from collections, 3
from lang and 7 from math). In total, the bugs come
from 6 different projects, which is good for assessing
the external validity of our evaluation. This makes
a total of 14 real life null dereferences bugs in the
benchmark.

Table 4 shows the name of the applications, the
number of the bug Id (if existing), a summary of the
NPE cause and a summary of the chosen fix. We
put only one line for 7 of them because they use
the same simple fix (i.e. adding a check not null
before the faulty line). The application coverage of
the test suites under study are greater than 90% for
the 3 Apache common projects (11 out of the 14
cases). For the 3 cases from [4] (Mckoi, freemarker
and jfreechart), we do not have access to the full test
suites. Table 3 gives the main descriptive statistics.
For instance, the bug in McKoi is an application of
48000+ lines of code spread over 275 classes.

This benchmark only contains real null derefer-
ence bugs and no artificial or toy bugs. To reas-

5https://issues.apache.org/jira/issues
6The link to automatically set these filters is given in https:

//github.com/Spirals-Team/casper

8

https://issues.apache.org/jira/issues
https://github.com/Spirals-Team/casper
https://github.com/Spirals-Team/casper

Bug Id Problem summary Fix summary

McKoi new JDBCDatabaseInterface with null
param -> field -> deref

Not fixed (bug by [4])

Freemarker #107 circular initialization makes a field null in
WrappingTemplateModel -> deref

not manually fixed. could be fixed manu-
ally by adding hard-code value. no longer
a problem with Java 7.

JFreeChart #687 no axis given while creating a plot can no longer create a plot without axis
modifying constructor for fast failure with
error message

COLL-331 no error message set in a thrown NPE add a check not null before the throw +
manual throwing of NPE

MATH-290 NPE instead of a domain exception when
a null List provided

normalize the list to use empty list instead
of null

MATH-305 bad type usage (int instead of double).
Math.sqrt() call on an negative int -> re-
turn null. should be a positive double

change the type

MATH-1117 Object created with too small values, af-
ter multiple iterations of a call on this ob-
ject, it returns null

create a default object to replace the
wrong valued one

7 other bugs add a nullity check

Table 4: Our benchmark of 14 real null dereference errors from large scale open-source projects; this bench-
mark is publicly available to facilitate replication.

sure the reader about cherry-picking, we have consid-
ered all null dereference bugs of the selected projects.
We have not rejected a single null dereference that
Casper fails to handle.

3.2 Methodology
3.2.1 Correctness

RQ1: Does our approach provide the correct causality
trace? To assess whether the provided element is re-
sponsible for a null dereference, we manually analyze
each case. We manually compare the result provided
by our technique with those coming from a manual
debugging process that is performed using the debug
mode of Eclipse.
RQ2: Do the code transformations preserve the se-

mantics of the application? To assert that our ap-
proach does not modify the behavior of the applica-
tion, we use two different strategies.

We require that the original program and the trans-
formed program both pass and fail the same tests in
the test suite (when it exists). This test suite test
only addresses the correctness of externally observ-
able behavior of the program under debug. To as-
sess that our approach does not modify the inter-
nal behavior, we compare the execution traces of the

original program (prior to code transformation) and
the program after transformation. Here, an “execu-
tion trace” is the ordered list of all method calls and
of all returned values, executing over the entire test
suite. This trace is obtained by logging method en-
try and logging method return. We filter out all calls
to Casper’s framework, then align the two traces.
They must be identical. As for the test suite, exe-
cution trace equivalence is only a proxy to complete
equivalence.

3.2.2 Effectiveness

RQ3: Is the approach useful with respect to the fixing
process? To assert that our additional data is useful,
we look at whether the location of the real fix is given
in the causality trace. If the location of the actual fix
is provided in the causality trace, it would have helped
the developer by reducing the search space of possible
solutions. Note that in 7/14 cases of our benchmark,
the fix location already appears in the original stack
trace. Those are the 7 simple cases where a check
not null is sufficient to prevent the error. Those cases
are valuable in the context of our evaluation to check
that: 1) the variable name is given (as opposed to
only the line number of a standard stack trace), 2)

9

the causality trace is correct (although the fix location
appears in the original stack trace, it does not prevent
a real causality trace with several causal connections).

3.3 Results

3.3.1 RQ1

In all the cases under study, manual debugging
showed that the trace identified by our approach is
correct and the root cause of the trace is the one re-
sponsible for the error. This result can be replicated
since our benchmark and our prototype software are
publicly available.

3.3.2 RQ2

All the test suites have the same external behavior
with and without our modifications according to our
two behavior preservation criteria. First, the test
suite after transformation still passes. Second, for
each run of the test suite, the order of method calls is
the same and the return values are the same. In short,
our code transformations do not modify the behavior
of the program under study and provide the actual
causality relationships.

3.3.3 RQ3

We now perform two comparisons. First, we look
at whether the fix locations appear in the standard
stack traces. Second, we compare the standard stack
trace and causality trace to see whether the additional
information corresponds to the fix.

Table 5 presents the fix locations (class and line
number) (second column) and whether: this location
is provided in the basic stack trace (third column); 2)
the location is provided by previous work [4] (fourth
column); 3) it is in the causality trace (last column).
The first column, “# Bug Id”, gives the id of the bug
in the bug tracker of the project (same as Table 4).

In 7 out of 14 cases (the 7 simple cases), the fix
location is in the original stack trace. For those 7
cases, the causality trace is correct and also points to
the fix location. In comparison to the original stack
trace, it provides the name of the root cause variable.

In the remaining 7 cases, the fix location is not in
the original stack trace. This means that in 50% of
our cases, there is indeed a cause/effect chasm, that is
hard to debug [7], because no root cause information
is provided to the developer by the error message. We
now explain in more details those 7 interesting cases.

The related work [4] would provide the root cause
in only 1 out of those 7 cases (according to an analy-
sis, since their implementation is not executable). In

1 Cluster<T> getNearestCluster(
2 Collection<Cluster> clusters, T point) {
3 double minDistance = Double.MAX_VALUE;
4 Cluster<T> minCluster = null; //initialisation
5 for (final Cluster<T> c : clusters) {
6 distance = point.distanceFrom(c.getCenter()); // NaN
7 if (distance < minDistance) {
8 minDistance = distance;
9 minCluster = c;

10 }
11 }
12 return minCluster; //return null
13 }

Listing 5: An excerpt of Math #305 where the
causality trace does not contain the fix location.

comparison, our approach provides the root cause in 4
out of those 7 cases. This supports the claim that our
approach is able to better help the developers in pin-
pointing the root cause compared to the basic stack
trace or the related work.

3.3.4 Detailed Analysis

Case Studies There are two different reasons why
our approach does not provide the fix location: First,
for one case, our approach is not able to provide a
causality trace. Second, for two cases, the root cause
of the null dereference is not the root cause of the
bug.

In the case of Math #290, our approach is not able
to provide the causality trace. This happens because
the null value is stored in an Integer, which is a final
type coming from the JDK. Indeed, java.lang.Integer
is a final Java type from the SDK and our approach
cannot modify them (see Section 4.1).

In the case of Math #305, the root cause of the
null dereference is not the root cause of the bug. The
root cause of this null dereference is shown in List-
ing 5. The null responsible of the null dereference is
initialized on line 4, the method call distanceFrom
on line 6 returns NaN, due to this NaN, the condi-
tion on line 7 fails, and the null value is returned
(line 12). Here, the cause of the dereference is that
a null value is returned by this method. However,
this is the root cause of the null but this is not
the root cause of the bug. The root cause of the
bug is the root cause of the NaN. Indeed, according
to the explanation and the fix given by the devel-
oper the call point.distanceFrom(c.getCenter())
should not return NaN. Hence, the fix of this bug is in
the distanceFrom method, which does not appear in
our causality chain because no null is involved.

In the case of Math #1117, the root cause of the
null dereference is not the root cause of the bug. The
root cause of this null dereference is shown in List-
ing 6. The null responsible of the dereference is the

10

Bug Id Fix location Fix location
in standard
stack trace

Addressed
by Bond et
al. [4]

Fix location
in Casper’s
causality
trace

Causality Trace

McKoi Not fixed No No Yes L-A-R-A-D
Freemarker #107 Not fixed No Yes Yes L-A-D
JFreeChart #687 FastScatterPlot 178 No No Yes L-P -D
COLL-331 CollatingIterator 350 No No Yes L-A-D
MATH-290 SimplexTableau

106/125/197
No No No D

MATH-305 MathUtils 1624 No No No L-R-A-R-D
MATH-1117 PolygonSet 230 No No No L-A-R-A-D
7 simple cases Yes Yes Yes L-A-D (x6)

L-A-U

Total 7 / 14 8/14 11/14

Table 5: Evaluation of Casper: in 13/14 cases, a causality trace is given, in 11/13 the causality trace contains
the location where the actual fix was made.

1 public SplitSubHyperplane split(Hyperplane hyperplane) {
2 Line thisLine = (Line) getHyperplane();
3 Line otherLine = (Line) hyperplane;
4 Vector2D crossing = thisLine.intersection(otherLine);
5 if (crossing == null) { // the lines are parallel
6 double global = otherLine.getOffset(thisLine);
7 return (global < −1.0e−10) ?
8 new SplitSubHyperplane(null, this) :
9 new SplitSubHyperplane(this, null); // initialisation

10 }
11 ...
12 }

Listing 6: An excerpt of Math #1117 where the
causality trace does not contain the fix location.

one passed as second parameter of the constructor
call on line 10. This null value is stored in the field
minus of this SplitSubHyperplane. Here, the cause of
the dereference is that a null value is set in a field of
the object returned by this method. Once again, this
is the root cause of the null but this is not the root
cause of the bug. The root cause of the bug is the
root cause of the condition that should hold global
< −1.0e−10. Indeed, according to the explanation
and the fix given by the developer, the Hyperplane
passed as method parameter should not exist if its
two lines are too close to each other. Here, this Hy-
perplane comes from a field of a PolygonSet. On the
constructor of this PolygonSet they pass a null value
as a parameter instead of this “irregular” object. To
do that, they add a condition based on a previously
existing parameter called tolerance, if the distance
of the two lines are lower than this tolerance, it re-
turns a null value. (It is interesting that the fix of a
null dereference is to return a null value elsewhere.)

Size of Traces We now discuss the size of traces
encountered in our experiment. First, the one of size
3 and of kind L-A-D type. The 7 obvious cases (where
the fix location is in the stack trace) contains 6 traces
of this kind. In all those cases encountered in our
experiment, the null literal has been assigned to a
field. This means that a field has not been initial-
ized (or initialized to null) during the instance cre-
ation, and this field is dereferenced latter. This kind
of trace is pretty short, so one may think that this
case is obvious. However, all these fields are initial-
ized long before the dereference. In other words, when
the dereference occurs, the stack has changed and no
longer contains the information of the initialization
location.

Second, the one of size 4 (JFreeChart #687) where
the null is stored in a variable then passed as argu-
ment in one or multiple methods. In this case, the null
value is either returned by a method at least once, or
passed as a parameter.

Third, there are three cases where the causality
traces are composed of 5 causal links. For McKoi,
this long trace enables to identify the root cause of
the error, which is provided neither by the standard
stack trace, nor by the related work [4]. For MATH-
305 and MATH-1117, the trace indeed points to the
root cause, but according to the ground truth of the
manual patch, the fix location is at a different place.

Execution Time Casper is primarily meant as a
debugging tool, when a developer has reproduced a
null pointer exception on her machine and she wants
to understand it. To this extent, the time require-
ments are those of a developer working on a task: it’s

11

acceptable for the developer to wait for some minutes
before getting the causality trace of a null dereference.
There are two kinds of overhead due to using Casper:
1) instrumenting the code is an additional step and
compiling the instrumented code takes longer; 3) run-
ning the instrumented code takes longer because of
the additional checks and data collection. In all the
cases of our benchmark, the first phase (instrumen-
tation plus compilation overhead) takes less than 30
seconds. In average for all cases, Casper computes
the causality trace of the failing input in 147 ms, with
a maximum of 1s. To sum up, the instrumentation
and execution time is acceptable for using Casper as
a debugging tool.

4 Discussion

4.1 Limitations

There are a number of technical limitations in our
current prototype implementation: 1. when the root
cause is in external library code that we cannot
rewrite; 2. when a ghost class has to be created for
a JDK class that is loaded; before the invocation
of our specific class loader (hence our implementa-
tion of Casper cannot provide causality traces for
Java strings); 3. when the dereference happens when
throwing a null value, locking null, switching on null
(this requires more engineering effort). 4. when an
array object is dereferenced because there is no way
in Java to create a ghost class for arrays. This is not a
conceptual issue, creating ghost arrays would be triv-
ial in dynamic languages such as Python. 5. external
libraries might modify fields and set them to null.
This is not handled, yet would mean that encapsula-
tion best practices would be violated. A meta-object
protocol as present in dynamic languages would also
overcome this technical limitation specific to Java.

4.2 Causality Trace and Patch

Once the causality trace of a null dereference is
known, the developer can fix the dereference. There
are two basic dimensions for fixing null references
based on the causality trace.

First, the developer has to select in the causal links,
the location where the fix should be applied: it is of-
ten at the root cause, i.e. the first element in the
causality trace. It may be more appropriate to patch
the code elsewhere, in the middle of the propagation
between the first occurrence of the null and the deref-
erence error.

Second, the developer has to decide whether there
should be an object instead of null or whether the

code should be able to gracefully handle the null
value. In the first case, the developer fixes the bug
by providing an appropriate object instead of the null
value. In the second case, she adds a null check in the
program to allow a null value.

Sometimes, the fix for a null dereference will be
an insertion of a missing statement or the correction
of an existing conditional. In this case, the Casper
causality trace does not contain the exact location of
the fix. However, as in the case of bug Math #290
that we have discussed, it is likely that those modifi-
cations will be made in the methods involved in the
causality trace. According to our experience, those
cases are uncommon but future work is required to
validate this assumption.

4.3 Use in Production

As shown in Section 3.3.4, the overhead of the current
implementation is too large to be used in production.
We are confident that advanced optimization can re-
duce this overhead. This is left to future work.

4.4 Threats to Validity

The internal validity of our approach and implemen-
tation has been assessed through RQ1 and RQ2: the
causality trace of the 14 analyzed errors is correct
after manual analysis. The threat to the external va-
lidity lies in the benchmark composition: does the
benchmark reflect the complexity of null dereference
errors in the field? To address this threat, we took
care to design the methodology to build the bench-
mark. It ensures that the considered bugs apply to
large scale software and are annoying enough to be re-
ported and commented in a bug repository. The gen-
eralizability of our results to null dereference errors
in other runtime environments (e.g. .NET; Python)
is an open question to be addressed by future work.

5 Related Work
One way to eradicate null dereference errors upfront
is to use a programming language with no null value
by default such as Cobra [1], or checkers of the ab-
sence of possible null dereferences for certain anno-
tated types or variables [8, 5]. We note that allowing
certain primitively typed variables to be nullable such
as in C# has the opposite effects, it increases the risk
of possible null dereferences.

There are several static techniques to find possi-
ble null dereference bugs. Hovemeyer et al. [12] use
byte-code analysis to provide possible locations where
null dereference may happen. Sinha et al. [20] use

12

source code path finding to find the locations where a
bug may happen and apply the technique to localize
Java null pointer exceptions symptom location. Spoto
[21] devises an abstract interpretation dedicated to
null dereferences. Ayewah and Pugh [2] discussed the
problems of null dereference warnings that are false
positives. Compared to these works, our approach
is dynamic and instead of predicting potential future
bugs that may never happen in production, it gives
the root cause of actual ones for which the developer
has to find a fix.

Dobolyi and Weimer [6] present a technique to tol-
erate null dereferences based on the insertion of well-
typed default values to replace the null value which
is going to be dereferenced. Kent [13] goes further
and, proposes two other ways to tolerate a null deref-
erence: skipping the failing instruction or returning a
well-typed object to the caller of the method. In the
opposite, our work is not on tolerating runtime null
dereference but on giving advanced debugging infor-
mation to the developer to find a patch.

The idea of identifying the root cause in a cause
effect chain has been explored by Zeller [25]. In this
paper, he compares the memory graph from the exe-
cution of two versions of the same program (one faulty
and one not faulty) to extract the instructions and the
memory values which differ and presumably had lead
to the error. This idea has been further extended by
Sumner and colleagues [22, 23]. Our problem state-
ment is different, since those approaches take as input
two different versions of the program or two different
runs and compare them. On the contrary, we build
the causality trace from a single execution.

The Linux kernel employs special values, called poi-
son pointers, to transform certain latent null errors
into fail-fast errors [18]. They share with null ghosts
the idea of injecting special values into the execution
stream to aid debugging and, by failing fast, to reduce
the width of the cause/effect chasm. However, poison
values only provide fail-fast behavior and do not pro-
vide causality traces or even a causal relationship as
we do.

Romano et al. [17] find possible locations of null
dereferences by running a genetic algorithm to exer-
cise the software. If one is found, a test case that
demonstrates the null dereference is provided. Their
technique does not ensure that the null dereferences
found are realistic and represent production problem.
On the contrary, we tackle null dereferences for which
the programmer has to find a fix.

Wang et al. [24] describe an approach to debug
memory errors in C code. What they call “value prop-
agation chain” corresponds to our causality traces.
They don’t provide a taxonomy of causal elements as

we do in Table 1 and they consider pointer arithmetic,
which is irrelevant in our case (no pointer arithmetic
in Java). Their transformations are at the level of x86
code using dynamic instrumentation, while we work
on Java code (mostly source code). This makes a
major difference: all the transformations we have de-
scribed are novel, and cannot be inferred or derived
from Wang et al.’s work.

Bond et al. [4] present an approach to dynamically
provide information about the root cause of a null
dereference (i.e. the line of the first null assignment).
The key difference is that we provide the complete
causality trace of the error and not only the first ele-
ment of the causality trace. As discussed in the eval-
uation (Section 3), the actual fix of many null deref-
erence bugs is not necessary done at the root cause,
but somewhere up in the causality trace.

Like null ghosts, the null object pattern replaces
nulls with objects whose interface matches that of
the null-bound variable’s type. Unlike null ghosts,
the methods of an instance of the null object pattern
are empty. Essentially, the null object pattern turns
method NPEs into NOPs. To this extent, the refac-
toring proposed by [9] does not help to debug null
dereferences but avoids some of them. In contrast,
null ghosts collect null dereference causality traces
that allow a developer to localize and resolve an NPE.

6 Conclusion

In this paper, we have presented Casper, a novel
approach for debugging null dereference errors. The
key idea of our technique is to inject special values,
called “null ghosts” into the execution stream to aid
debugging. The null ghosts collect the history of the
null value propagation between its first detection and
the problematic dereference, we call this history the
“causality trace”. We define 11 code transformations
responsible for 1) detecting null values at runtime, 2)
collect causal relations and enrich the causality traces;
3) preserve the execution semantics when null ghosts
flow during program execution. The evaluation of our
technique on 14 real-world null dereference bugs from
large-scale open-source projects shows that Casper is
able to provide a valuable causality trace. Our future
work consists in further exploring the idea of “ghost”
for debugging other kinds of runtime errors such as
arithmetic overflows.

References

[1] The Cobra Programming Language. http://
cobra-language.com/, 2016.

13

http://cobra-language.com/
http://cobra-language.com/

[2] N. Ayewah and W. Pugh. Null dereference anal-
ysis in practice. In Proceedings of the Workshop
on Program Analysis for Software Tools and En-
gineering, pages 65–72. ACM, 2010.

[3] D. Binkley and M. Harman. A survey of em-
pirical results on program slicing. Advances in
Computers, 62:105–178, 2004.

[4] M. D. Bond, N. Nethercote, S. W. Kent, S. Z.
Guyer, and K. S. McKinley. Tracking bad apples:
reporting the origin of null and undefined value
errors. ACM SIGPLAN Notices, 42(10):405–422,
2007.

[5] W. Dietl, S. Dietzel, M. D. Ernst, K. Muşlu, and
T. W. Schiller. Building and Using Pluggable
Type-checkers. In Proceedings of the 33rd In-
ternational Conference on Software Engineering,
pages 681–690, 2011.

[6] K. Dobolyi and W. Weimer. Changing Java’s
Semantics for Handling Null Pointer Exceptions.
In Software Reliability Engineering, 2008. ISSRE
2008. 19th International Symposium on, pages
47–56. IEEE, 2008.

[7] M. Eisenstadt. My hairiest bug war stories. Com-
munications of the ACM, 40(4):30–37, 1997.

[8] M. Fähndrich and K. R. M. Leino. Declaring
and checking non-null types in an object-oriented
language. ACM SIGPLAN Notices, 38(11), 2003.

[9] M. A. G. Gaitani, V. E. Zafeiris, N. Diamantidis,
and E. Giakoumakis. Automated refactoring to
the null object design pattern. Information and
Software Technology, 59:33–52, 2015.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha.
Java Language Specification. Addison-Wesley,
3rd edition, 2005.

[11] D. Hovemeyer and W. Pugh. Finding bugs is
easy. ACM SIGPLAN Notices, 39(12), 2004.

[12] D. Hovemeyer, J. Spacco, and W. Pugh. Eval-
uating and tuning a static analysis to find null
pointer bugs. In ACM SIGSOFT Software En-
gineering Notes, volume 31, pages 13–19. ACM,
2005.

[13] S. W. Kent. Dynamic error remediation: A case
study with null pointer exceptions. Master’s the-
sis, University of Texas, 2008.

[14] S. Kimura, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto. Does return null matter? In
IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering (CSMR-
WCRE), pages 244–253, 2014.

[15] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and
C. Zhai. Have things changed now?: an em-
pirical study of bug characteristics in modern
open source software. In Proceedings of the 1st
workshop on Architectural and system support

for improving software dependability, pages 25–
33. ACM, 2006.

[16] R. Pawlak, M. Monperrus, N. Petitprez,
C. Noguera, and L. Seinturier. Spoon: A Library
for Implementing Analyses and Transformations
of Java Source Code. Software: Practice and Ex-
perience, 2015.

[17] D. Romano, M. Di Penta, and G. Antoniol. An
approach for search based testing of null pointer
exceptions. In Software Testing, Verification
and Validation (ICST), 2011 IEEE Fourth In-
ternational Conference on, pages 160–169. IEEE,
2011.

[18] A. Rubini and J. Corbet. Linux device drivers.
O’Reilly Media, Inc., 2001.

[19] M. Schäfer, T. Ekman, and O. de Moor. Chal-
lenge proposal: Verification of refactorings. In
Proceedings of the 3rd Workshop on Program-
ming Languages Meets Program Verification,
PLPV ’09, pages 67–72, New York, NY, USA,
2008. ACM.

[20] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim,
and M. J. Harrold. Fault Localization and Repair
for Java Runtime Exceptions. In Proceedings of
the eighteenth international symposium on Soft-
ware testing and analysis, pages 153–164. ACM,
2009.

[21] F. Spoto. Precise null-pointer analysis. Software
& Systems Modeling, 10(2):219–252, 2011.

[22] W. Sumner and X. Zhang. Algorithms for au-
tomatically computing the causal paths of fail-
ures. In Fundamental Approaches to Software
Engineering, pages 355–369, 2009.

[23] W. Sumner and X. Zhang. Comparative causal-
ity: Explaining the differences between execu-
tions. In Proceedings of the International Con-
ference on Software Engineering, pages 272–281,
2013.

[24] Y. Wang, I. Neamtiu, and R. Gupta. Generat-
ing sound and effective memory debuggers. In
ACM SIGPLAN Notices, volume 48, pages 51–
62. ACM, 2013.

[25] A. Zeller. Isolating cause-effect chains from com-
puter programs. In Proceedings of the 10th ACM
SIGSOFT symposium on Foundations of soft-
ware engineering, pages 1–10. ACM, 2002.

14

	Introduction
	Debugging Nulls with Casper
	Overview
	Null Dereference Causality Trace
	Inception
	Propagation
	Causation
	Traceability

	Null Ghosts
	Code Transformations
	Detection of null Bindings
	Semantics Preservation

	Implementation

	Empirical Evaluation
	Benchmark
	Methodology
	Correctness
	Effectiveness

	Results
	RQ1
	RQ2
	RQ3
	Detailed Analysis

	Discussion
	Limitations
	Causality Trace and Patch
	Use in Production
	Threats to Validity

	Related Work
	Conclusion

