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Tractable sufficient stability conditions for a system

coupling linear transport and differential equations I

Mohammed Safia, Lucie Baudouina, Alexandre Seureta

aLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

This paper deals with the stability analysis of a system of finite dimension
coupled to a vectorial transport equation. We develop here a new method to
study the stability of such a system, coupling ordinary and partial differential
equations, using linear matrix inequalities led by the choice of an appropriate
Lyapunov functional. To this end, we exploit Legendre polynomials and their
properties, and use a Bessel inequality to measure the contribution of our
approximation. The exponential stability of a wide class of delay systems
is a direct consequence of this study, but above all, we are detailing here
a new approach in the consideration of systems coupling infinite and finite
dimensional dynamics. The coupling with a vectorial transport equation is a
first step that already prove the interest of the method, bringing hierarchized
conditions for stability. We will give exponential stability results and their
proofs. Our approach will finally be tested on several academic examples.

Keywords: Transport equation, Lyapunov stability, Bessel inequality.

1. Introduction

Systems coupling partial and ordinary differential equations are one type
of infinite dimensional systems. The robust control of what is also called dis-
tributed parameter systems has been a very active field for the last decades
and has spawned several branches, such as e.g. in stability analysis and sta-
bilization design. This article is meant to perform a stability analysis of a
system of linear ordinary differential equations (ODE) coupled to a vectorial
transport equation, which is a first order hyperbolic partial differential equa-
tion (PDE). Analysing and controlling this type of system coupling ODE
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and PDE is an attractive topic at the interface of applied mathematics and
automatic control. A large number of papers already exists on stability of
this class of systems: see e.g. [20], [34], [28], [35], [26] among many others.
For instance, such systems appear in the context of energy management as
in [36]. The coupled system we will study in this article has the specificity
to represent an alternative formulation of a time-delay system (TDS) with a
vectorial transport equation replacing the delay terms. One should know that
TDS also have a solution that evolves in an infinite dimensional space and in
our opinion, this is an interesting connection that suggests to benefit of the
different approaches for the stability and control in both domains (TDS and
PDE). On the one hand, we can refer to several stability and control studies
of PDE such as in the books [2, 22, 9], and the references therein, or the non-
exhaustive list of articles [6, 12, 21] and [18]. On the other hand, TDS have
been widely investigated in the literature (see e.g. [4, 15, 16, 17, 31], and [24]),
and used in many areas, as in biological systems, mechanical transmissions
or networked control systems.

One of the most fruitful fields of research in stability of these TDS re-
lies on the exhibition of Lyapunov-Krasovskii functionals (LKF). In reference
[16], the candidate Lyapunov functional called complete LKF, leads even to
a necessary and sufficient stability condition. Nevertheless, the parameters
composing this complete LKF make it numerically difficult to handle, es-
pecially for high dimensional systems [14, 23]. A lot of investigations then
turns to approximating these parameters, and more recently, approximation
methods have been improved by considering polynomial like parameters of
arbitrary degree [27].

Our goal in this article is to provide a novel framework to address stability
problem of linear coupled finite/infinite dimensional systems following recent
advances on time-delay systems presented for instance in [31]. Our work here
is a first step towards more general PDE and focusses on the transport equa-
tion case, giving rise to a necesary stability criteria of stability when such
a PDE is coupled to an ODE. The analysis adopted in the present paper
is based on the Lyapunov theorem for infinite dimensional systems, which,
according to us, represents a first relevant challenge. As a consequence of
this more general analysis, we will provide a unified set of linear matrix in-
equalities (LMI) conditions allowed to guarantee exponential stability (in the
sense of the L2-norm) applicable to a wide class of delay systems including
single/multiple/cross-talking delays for differential and difference equations,
as particular case but is not only resume to these classes of systems. The
objective of this paper is to provide a new framework for the analysis of
this linear coupled ODE/hyperbolic PDE system. This contribution extends
our preliminary studies presented in [3] and [29], where only a single trans-
port speed was considered. The main difficulty is related to the infinite
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dimensional state of the system, which prevents from extending directly the
existing methods of the finite dimension analysis. Nevertheless, in order to
provide efficient and tractable stability conditions, we employ a polynomial
approximation of the state expressed using Legendre polynomials, following
the approach developed for TDS in [31].

Notations: N is the set of positive integer, Rn is the n-dimensional
Euclidean space with vector norm | · |n. In is the identity matrix in Rn×n,
0n,m the null matrix ∈ Rn×m, [ A B

? C ] replaces the symmetric matrix
[
A B
B> C

]
.

We denote Sn ⊂ Rn×n (resp. Sn+ = {P ∈ Sn, P � 0}, and Dn
+) the set of

symmetric (resp. symmetric positive definite and diagonal positive definite)
matrices and diag(A,B) is a bloc diagonal matrix. For any square matrix
A, we define He(A) = A + A>. Finally, L2(0, 1;Rm) represents the space
of square integrable functions over the interval [0, 1] ⊂ R with values in Rm

and the partial derivative in time and space are denoted ∂t and ∂x, while the
classical derivative are Ẋ = d

dt
X and L′ = d

dx
L.

2. Formulation of the problem

2.1. Linear coupled ODE-PDE system
This article is devoted to the stability analysis of a system of ODEs cou-

pled with a vectorial transport equation that takes the following shape:
Ẋ(t) = AX(t) +Bz(1, t), t > 0,
∂tz(x, t) + Λ∂xz(x, t) = 0, x ∈ (0, 1), t > 0,
z(0, t) = C1X(t) + C2z(1, t), t > 0,
z(x, 0) = z0(x), x ∈ (0, 1)
X(0) = X0.

(1)

The state of this coupled system is composed of X(t) ∈ Rn and z(·, t) ∈
L2(0, 1;Rm). A, B, C1 et C2 are constant matrices with appropriate dimen-
sions. The matrix of propagation speed Λ ∈ Dm

+ is given by:

Λ = diag(ρiImi){i=1...p}. (2)

Thus, each velocity ρi > 0 is applied to mi components of the state z(x, t)
such that m =

∑p
i=1 mi. Note that the situation of negative transport speed

ρi < 0, for some i ≤ p can be recast in the same formulation with positive
transport speed using a change of state spatial variable x′ = 1 − x. The
transport equation ∂tz + Λ∂xz = 0 in (1) of unknown z = z(x, t) is a simple
linear vectorial PDE and if the initial data z0 ∈ L2(0, 1;Rm) and the lateral
boundary data z(0, ·) = u ∈ L2(R+;Rm) are given, it has a unique solution
z ∈ C(R+;L2(0, 1;Rm)) such that (see e.g. [9]), for all t > 0:

‖z(t)‖L2(0,1;Rm) ≤ K(‖z0‖L2(0,1;Rm) + ‖u‖L2(R+;Rm)).

3



Considering now the finite dimensional system in X(t) coupled to the
transport equation in the variable z(x, t), we can notice that the coupling is
linear and the existence of solution can be proved thanks to Theorem A.6 in
[2]. Following this theorem, for every z0 ∈ L2(0, 1;Rm) and X0 ∈ Rn, the
Cauchy problem (1) has a unique solution. Moreover, there exist K > 0 and
δ > 0 such that the solution (z(x, t), X(t)) of system (1) satisfies :

||X(t)||+ ||z(t)||L2(0,1;Rm) ≤ Keδt.

This well-posedness result suggests the choice of the following total energy of
the system E(X(t), z(t)) = |X(t)|2n + ‖z(t)‖2

L2(0,1;Rm), and in the sequel, we

will denote E(t) = E(X(t), z(t)) in order to simplify the notations.

2.2. Lyapunov stability

We are looking for a candidate Lyapunov functional for (1) of the shape:

V (X(t), z(t)) =

∫ 1

0

∫ 1

0

[
X(t)
z(x1, t)

]> [
P Q(x1)

Q>(x2) T (x1, x2)

] [
X(t)
z(x2, t)

]
dx1dx2

+

∫ 1

0

z>(x, t)e−2δxΛ−1

(S + (1− x)R)z(x, t)dx, (3)

where the scalar δ > 0, the matrices P ∈ Sn+, S,R ∈ Sm+ and the functions
Q ∈ L2(0, 1;Rn×m) and T ∈ L∞((0, 1)2; Sm) have to be determined. As for
the energy, in the sequel, we will denote VN(t) = VN(X(t), z(t)) in order to
simplify the notations.

Remark 1. Since the transport speed matrix belongs to Dm
+ , it is invertible

and admits an inverse matrix Λ−1 given by Λ−1 = diag(ρ−1
i Imi){i=1...p}. We

can define its exponential matrix eΛ−1
= ediag(ρ−1

i Imi ) = diag(e1/ρiImi). This
explains the term in e−2δxΛ−1

in functional (3).

This functional is inspired by the complete Lyapunov-Krasovskii func-
tional from [16] which is a necessary and sufficient condition for stability of
linear systems with constant delay. It is however important to mention that
the necessary conditions of [16] only states that if a linear time-delay sys-
tems is asymptotically stable, there exists parameters P,Q, T, S and R such
that the associated functional is a Lyapunov-Krasovskii functional for the
systems. That being said, the method developed in [16] may not be used to
derive a tractable stability test for a given system.

Our functional V defined in(3) is composed of four typical terms. The
first quadratic term in X(t) is dedicated to the state of the ODE, while the
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last three terms are concerned with the state z(x, t) of the PDE. It is worth
mentioning that the last two terms can be interpreted as the weighted energy
of the transport equation (see for instance [9]) and have been widely used
in the literature. The terms depending on Q are introduced to account for
the coupling between the system of ODEs and the PDE. While this class of
functionals is already classical for time delay systems, the interpretation of
such functionals for PDEs is quite recent (see for instance [1] and [26]). The
novelty of the present paper is closely related to these works. The difference
of our approach relies on the use of efficient integral inequalities.

Our objectives in this paper are to provide an efficient numerical method
to assess stability of system (1) by ensuring that the functional V (X(t), z(t))
in (3) is a Lyapunov functional for this system. As one will read in the proof
of our stability result, it comes down to prove the existence of positive scalars
ε1, ε2 and ε3 such that the following inequalities hold

ε1E(t) ≤ V (t) ≤ ε2E(t), V̇ (t) + 2δV (t) ≤ −ε3E(t). (4)

The details will be developed in Section 4. Finally, we highlight that
thanks to the general formulation of the coupled system (1) we can relate
our work to stability studies of many types of time-delay systems. Among
them, we can mention Systems with single or multiple constant delays which
have been studied in many contribution on the subject (see [32], [19] and [7]) ;
Systems with Cross-Talking delays (see [25]) ; Systems with commensurate
(or, rationally dependent) delays, where a single delay and its multiples are
involved(see e.g. [33]) ; Delay Difference systems, where the ODE is removed
from the dynamics of (1) (see e.g. [11]). However, we insist that time-delay
systems represent a particular subclass of systems generated by system (1).

3. Main tools

The objective of this section is to present our methodology to construct
a candidate Lyapunov functional V of shape (3). The ultimate objective is
to provide tractable stability conditions for the infinite dimensional system,
conditions that can be evaluated on numerical examples. While the param-
eters P , S and R are matrices, which can be easily defined and evaluated
on numerical simulations, the main difficulty in the selection of a candidate
functional relies on the definition of the functions Q and T , that potentially
vary with the integration parameters x1 and x2. Among the possible choices
that can be found in the literature, we will focus on polynomial functions of
a given degree, expressed using an orthogonal family of polynomials (e.g. the
Legendre polynomials). This choice will be motivated in the sequel.
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3.1. Construction of the Lyapunov functional

The goal here is to provide a simple methodology to design the functions
Q and T appearing in (3). To do so, we propose the following construction
as a truncated decomposition of Q and T over specific polynomials:

Q(x) =
N∑
k=0

Q(k)Lk(x), T (x1, x2) =
N∑
i=0

N∑
j=0

T (i, j)Li(x1)Lj(x2), (5)

where N ∈ N, and where Lk, for k ∈ N, denote the shifted Legendre poly-
nomials of degree k considered over the interval [0, 1]. More details about
the definition of these polynomials and of their properties will be provided
afterwards. Denoting QN = [Q(i)]

i=0..N
in Rn,m(N+1), TN = [T (i, j)]i,j=0..N in

Rm(N+1),m(N+1), and

ZN(t) =

[∫ 1

0

z(x, t)L0(x)dx, . . . ,

∫ 1

0

z(x, t)LN(x)dx

]>
∈ Rm(N+1), (6)

the Lyapunov functional (3) becomes easily VN(t) = VN,1(t) + VN,2(t) where

VN,1(t) =

[
X(t)
ZN(t)

]> [
P QN

∗ TN

] [
X(t)
ZN(t)

]
,

VN,2(t) =

∫ 1

0

z>(x, t)e−2δxΛ−1

(S + (1− x)R)z(x, t)dx.

(7)

The interest of using (7) instead of (3) lies in the fact that the parame-
ters defining VN are only matrices, and can be easily defined for numerical
implementation. Nevertheless, this formulation requires an extensive studies
of Legendre polynomials and the vector ZN(t), given in the next subsections.
One should know that Lyapunov functional (7) is richer than those used in
[6, 12, 35]. Indeed, the functionals considered in these papers represent a
particular case of our general functional. In [6], matrices Q, T and R are
not considered, while the result of [12, 35] can be recast as the particular
case with N = 1. The additional values of our approach consist than in
taking into account the coupling between the ODE and the PDE through
the projected state ZN , for any arbitrary value of N .

3.2. Shifted Legendre polynomials

The shifted Legendre polynomials we will use are denoted {Lk}k∈N and act
over [0, 1]. It is crucial that the family {Lk}k∈N forms an orthogonal basis of

L2(0, 1;R) and we have precisely < Lj,Lk >=
∫ 1

0
Lj(x)Lk(x)dx = 1

2k+1
δjk,
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where δjk is Kronecker’s coefficient, equal to 1 if j = k and 0 otherwise.
We denote the corresponding norm of this inner scalar product ‖Lk‖ =√
〈Lk,Lk〉 = 1/

√
2k + 1. The polynomials also satisfy

Lk(0) = (−1)k, Lk(1) = 1, L′k(x) =
k−1∑
j=0

`kjLj(x), k ≥ 1, (8)

and, obviously L′0(x) = 0, with `kj =

{
(2j + 1)(1− (−1)k+j), if j ≤ k − 1,
0, if j ≥ k.

The definition of the polynomials and the proof of these properties are omit-
ted here but can find for instance in [10].

3.3. Truncated state

Now, we have the tools to provide a study of the vector ZN(t) given
in (6) and constructed for a prescribed integer N . We first note that the
m(N + 1) components of ZN(t) are the projection of the m components of
the state z(x, t) = (zi(x, t))i=1...m of the transport equation over the N + 1
first Legendre polynomials {Lk}k∈{0...N} with respect to the canonical inner
product of L2(0, 1;R). One step towards the application of the Lyapunov
theorem is the calculation of the time derivative of ZN(t). Let us first define
some notations depending on N :

1N(Λ) = [Λ . . . Λ]
>
,1∗N(Λ) =

[
Λ −Λ . . . (−1)NΛ

]> ∈ Rm(N+1),m,

LN(Λ) = [`kjΛ]j,k=0..N ∈ Rm(N+1),m(N+1) (9)

where `kj is defined after (8) The following lemma provides an expression of
the time derivative of this vector ZN(t), which will be useful in the sequel.

Lemma 1. Consider z ∈ C(R+;L2(0, 1;Rm)) satisfying the transport equa-
tion in system (1). The time derivative of the vector ZN(t) is given by :

ŻN(t) = (1∗N(Λ)C2 − 1N(Λ))z(1, t) + 1∗N(Λ)C1X(t) + LN(Λ)ZN(t), (10)

using the notations defined in (9).

Proof : First, let us compute the time derivative of the projection of the
infinite dimensional state z(x, t) over the Legendre polynomial Lk for any k
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in N. Using the transport equation in (1), integration by parts and properties
(8) of the Legendre polynomials, we can write:

d

dt

∫ 1

0

z(x, t)Lk(x)dx =

∫ 1

0

∂tz(x, t)Lk(x)dx = −
∫ 1

0

Λ∂xz(x, t)Lk(x)dx

= − [Λz(x, t)Lk(x)]10 +

∫ 1

0

Λz(x, t)L′k(x)dx

= −Λz(1, t) + (−1)kΛz(0, t) +
∑max[0,k−1]

j=0 `kjΛ

∫ 1

0

z(x, t)Lj(x)dx.

Consequently, using the notations recently introduced and omitting the
time variable t, we have ŻN = −1N(Λ)z(1) + 1∗N(Λ)z(0) + LN(Λ)ZN . The
proof is concluded by injecting the boundary condition z(0, t) = C1X(t) +
C2z(1, t) in the previous expression. �

3.4. Bessel-Legendre inequality

The following lemma gives a Bessel-type integral inequality that com-
pares an L2(0, 1) scalar product with the corresponding product of the finite
dimensional approximations (built from the projection on the Legendre poly-
nomials).

Lemma 2. Let z ∈ L2(0, 1;Rm) and R ∈ Sm+ . Then the following inequality
holds for all N ∈ N

∫ 1

0
z>(x)Rz(x)dx ≥ Z>N

R . . .

(2N + 1)R

ZN , (11)

Proof : It relies on the orthogonality of the Legendre polynomials and on
the Bessel inequality, see e.g. [31]. More precisely, the proof of this lemma

results easily from the expansion of
∫ 1

0
z>N(x)RzN(x)dx, (and the fact it is

positive definite) where zN(x) = z(x)−
∑N

k=0
Lk(x)
||Lk||2

∫ 1

0
z(y)Lk(y) dy is the ap-

proximation error between the state z and its projection ZN over the N first
Legendre polynomials . �

Remark 2. Considering the Bessel-Legendre inequality with N = 0 or 1
leads to the particular cases of the Jensen Inequality and the Wirtinger-based
inequality [30]. Moreover, when N tends to infinity, the inequality becomes
an equality reflecting the well known Parseval identity.
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It is worth noting that zN is the unique polynomial that minimizes the dis-
tance between z and the set of polynomials of degree less than N . This prop-
erty results from the orthogonality of the Legendre polynomials. This also
proves that inequality (11) is optimal. In addition, inequality (11) applied
to R = Im can be interpreted as the L2-norm of an element of L2(0, 1;Rn)
being greater than the sum of the norm of its projections over the normalized
version of the orthogonal sequence of Legendre polynomials. In that sense,
this inequality refers indeed to the Bessel inequality on Hilbert spaces.

4. Exponential stability result

We provide here a stability result for System (1), whose proof is based on
the proposed Lyapunov functional (7) and the use of Lemma 1 and Lemma 2.
We first define the following set of matrices commuting with the transport
speed matrix Λ ∈ Dm

+ as follows

Mm
Λ := {M ∈ Sm+ ,MΛ = ΛM}. (12)

Remark 3. M ∈ Mm
Λ if and only if M ∈ Sm+ is block diagonal and has the

same Jordan structure as Λ in (2): M = diag(Mi)i=1...p with Mi ∈ Smi+ .

We consider S and R inMm
Λ and we define the following Rm(N+1),m(N+1)

+

matrices on the model of RN in (2):

RN(Λ) = diag(e−2δΛ−1
ΛR, 3e−2δΛ−1

ΛR, . . . , (2N + 1)e−2δΛ−1
ΛR),

SN(Λ) = diag(e−2δΛ−1
S, 3e−2δΛ−1

S, . . . , (2N + 1)e−2δΛ−1
S),

IN = diag(Im, 3Im, . . . , (2N + 1)Im).
(13)

Recall that the matrices LN(Λ), 1N(Λ) and 1∗N(Λ) are defined in (9).

Theorem 1. Consider System (1) with a given transport speed Λ � 0. If
there exists an integer N > 0 such that there exists δ > 0, P ∈ Sn+, QN ∈
Rn,(N+1)m, TN ∈ S(N+1)m, S and R ∈Mm

Λ , satisfying the following LMIs

ΦN(Λ, δ) =

[
P QN

∗ TN + SN(Λ)

]
� 0, ΨN(Λ, δ) =

 Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23

∗ ∗ Ψ33

≺ 0, (14)

where

Ψ11 = He(PA+QN1
∗
N(Λ)C1) + C>1 Λ(R + S)C1 + 2δP,

Ψ12 = PB +QN(1∗N(Λ)C2 − 1N(Λ)) + C>1 Λ(R + S)C2,
Ψ13 = A>QN + C>1 1

∗>
N (Λ)TN +QNLN(Λ) + 2δQN ,

Ψ22 = −e−2δΛ−1
ΛS + C>2 Λ(R + S)C2,

Ψ23 = B>QN + (1∗N(Λ)C2 − 1N(Λ))>TN ,
Ψ33 = He(TNLN(Λ))−RN(Λ) + 2δTN ,
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then, system (1) is exponentially stable. Moreover, for a given transport speed
matrix Λ ∈ Dm

+ , there exists a constant K > 0 and a guaranteed decay rate
δ∗ > δ such that the energy of the system verifies, ∀t > 0,

E(t) ≤ Ke−2δ∗t
(
|z0(0)|2m + ‖z0‖2

L2(0,1;Rm)

)
. (15)

Proof : Our objective is to show that the Lyapunov functional VN given
in (7) verifies the inequalities

ε1E(t) ≤ VN(t) ≤ ε2E(t) and V̇N(t) + 2δVN(t) ≤ −ε3E(t), (16)

for some positive scalars ε1, ε2 and ε3. Therefore, the proof will successively
relate the existence of each εi to one of the LMI stated in Theorem 1.

By proving that the Lyapunov functional verifies inequalities (16), we
prove the exponential stability of system (1), since we get easily V̇N(t) +
(2δ+ ε3

ε2
)VN(t) ≤ 0. Integrating on the interval (0, t) and using 2δ∗ = 2δ+ ε3

ε2
,

we obtain VN(t) ≤ VN(0)e−2δ∗t ∀t > 0. Using (16) once again, we get
ε1E(t) ≤ VN(t) ≤ VN(0)e−2δ∗t ≤ ε2E(0)e−2δ∗t, which corresponds to (15)
that ends the proof of Theorem 1, provided that inequalities (16) are satisfied.

Existence of ε1: On the one hand, since S � 0 and ΦN � 0, there exists

a sufficiently small ε1 > 0 such that ΦN =
[
P QN
∗ TN+SN (Λ)

]
� ε1

[
In 0
∗ IN

]
and

S � ε1e
2δΛ−1

. On the other hand, VN defined by (7) satisfies, ∀t ≥ 0,

VN(t) ≥
[
X(t)
ZN(t)

]>
ΦN(Λ, δ)

[
X(t)
ZN(t)

]
+

∫ 1

0

z>(x, t)e−2δΛ−1

Sz(x, t)dx− Z>N(t)SN(Λ)ZN(t).

Replacing ΦN by its lower bound depending on ε1 and introducing ε1 in

the last integral term, we have VN(t) ≥ ε1

(
|X(t)|2n +

∫ 1

0

z>(x, t)z(x, t)dx

)
+

∫ 1

0

z>(x, t)(e−2δΛ−1

S−ε1Im)z(x, t)dx− Z>N(t)(SN(Λ)−ε1IN)ZN(t).

Since S− ε1e
2δΛ−1 � 0, applying Lemma 2 ensures that the expression on

the second line is positive. We obtain a lower bound of VN(t) depending on
the energy function E(t): VN(t) ≥ ε1(|X(t)|2n + ‖z(t)‖2

L2(0,1;Rm)) ≥ ε1E(t).

Existence of ε2: There exists a sufficiently large scalar β > 0 that allows[
P QN
Q>N TN

]
� β

[
In 0
∗ IN

]
, such that since S � 0 and R � 0, we get

VN(t) ≤ β|X(t)|2n+βZ>N(t)INZN(t)+

∫ 1

0

z>(x, t)e−2δxΛ−1

(S+(1−x)R)z(x, t)dx.
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Taking the upper bound of (1−x) and the exponential term e−2δxΛ−1
in (0, 1),

VN(t) ≤ β|X(t)|2n + βZ>N(t)INZN(t) +

∫ 1

0

z>(x, t)(S +R)z(x, t)dx.

Applying Lemma 2 to the second term of the right-hand side gives
VN(t) ≤ β|X(t)|2n +

∫ 1

0

z>(x, t)(βIm + S +R)z(x, t)dx

≤ β|X(t)|2n + ε2‖z‖2
L2(0,1;Rm) ≤ ε2E(t),

where ε2 = β + λmax(S) + λmax(R). Therefore, the proof of (16) is complete.

Existence of ε3: We define here an augmented state vector, of size n +

(N + 2)m given by ξN(t) =
[
X>(t) z>(1, t) Z>N(t)

]>
. We can compute the

derivative of (X(t), ZN(t)), using the first equation in system (1) and the
new formulation of Lemma 1, omitting the variable t, as follows

d

dt

[
X
ZN

]
=

[
A

1∗N(Λ)C1

]
X +

[
B

1∗N(Λ)C2 − 1N(Λ)

]
z(1) +

[
0

LN(Λ)

]
ZN .

Then, using (7), we can calculate V̇N,1:

V̇N,1 =
d

dt

([
X
ZN

]>[
P QN

Q>N TN

] [
X
ZN

])
= ξ>N

[
ψ1 ψ2 ψ3

∗ 0 Ψ23

∗ ∗ He(TNLN(Λ))

]
ξN ,

(17)
with ψ1 = He(PA + QN1

∗
N(Λ)C1), ψ2 = PB + QN(1∗N(Λ)C2 − 1N(Λ)),

and ψ3 = A>QN + C>1 1
∗>
N (Λ)TN + QNLN(Λ), and Ψ23 is already given in

Theorem 1. On the other hand, one can write, using the transport equation
in (1) and since S and R ∈Mm

Λ ,

V̇N,2 = −
∫ 1

0

∂x

(
z>(x)e−2δxΛ−1

Λ(S + (1− x)R)z(x)

)
dx

−2δ

∫ 1

0

z>(x)e−2δxΛ−1

(S + (1− x)R)z(x)dx−
∫ 1

0

z>(x)e−2δxΛ−1

ΛRz(x)dx

=

[
− z>(x)e−2δxΛ−1

(
Λ(S + (1− x)R)

)
z(x)

]1

0

−2δVN,2 −
∫ 1

0

z>(x)e−2δxΛ−1

ΛRz(x)dx.

From the boundary condition z(0, t) = C1X(t) + C2z(1, t), we get

V̇N,2(t) = (C1X + C2z(1))>Λ(S +R)(C1X + C2z(1))

−z(1)>e−2δΛ−1

ΛSz(1)− 2δVN,2 −
∫ 1

0

z>(x)e−2δxΛ−1

ΛRz(x)dx.

11



Merging the expressions of V̇N,1 and V̇N,2 and using the definition of the

matrix ΨN(Λ, δ) in (14) and RN in (13), we obtain V̇N(t) + 2δVN(t) =

ξ>N(t)ΨN(Λ, δ)ξN(t) −
∫ 1

0

z>(x, t)e−2δxΛ−1

ΛRz(x, t)dx + Z>N(t)RN(Λ)ZN(t).

Taking the lower bound of the exponential in the integral term yields

V̇N(t) + 2δVN(t) ≤ ξ>N(t)ΨN(Λ, δ)ξN(t)

−
∫ 1

0

z>(x, t)e−2δΛ−1

ΛRz(x, t)dx+ Z>N(t)RN(Λ)ZN(t), (18)

and applying Lemma 2 to the resulting term, the following inequality holds
V̇N(t)+2δVN(t) ≤ ξ>N(t)ΨN(Λ, δ)ξN(t). Thereafter, the second LMI in (14) en-

sures the existence of ε3 sufficiently small such that ΨN(Λ, δ) ≺ −ε3

[
In 0 0
∗ 0 0
∗ ∗ IN

]
and we have also, for the same scalar ε3, ΛR � ε3e

2δΛ−1
. Hence, using these

two matrix inequalities in estimate (18), one obtains V̇N(t) + 2δVN(t) ≤

−
∫ 1

0

z>(x, t)(e−2δΛ−1

ΛR − ε3Im)z(x, t)dx + Z>N(t)[RN(Λ) − ε3IN ]ZN(t) −

ε3|X(t)|2n − ε3

∫ 1

0

|z(x, t)|2dx. Since e−2δΛ−1
ΛR− ε3Im � 0, Lemma 2 can be

applied and ensures that the expression in the second line of the previous
equation is positive, so that the Lyapunov functional VN satisfies (16). One
can therefore conclude on the exponential stability of system (1) with respect
to the norm E(t). �

Remark 4. The general results proved here include the particular case pre-
sented in [3] that involves only one transport speed (Λ = ρIm) for all the
components of the transport variable z(x, t).

5. Hierarchy of LMI conditions

Following the previous studies on delay systems with Bessel-Legendre
inequality (e.g. [31]), the stability conditions of Theorem 1 form a hierarchy
of LMI conditions. This is formulated in the following theorem.

Theorem 2. Considering the coupled system (1), and using the notations
introduced for Theorem 1, define, for a given δ > 0, the set PN(δ) ⊂ Dm

+ by

PN(δ) :=

{
Λ ∈ Dm

+ such that ΦN(Λ, δ) � 0, ΨN(Λ, δ) ≺ 0,
for P ∈ Sn+, S, R ∈Mm

Λ , TN ∈ S(N+1)m, QN ∈ Rn,(N+1)m

}
.

Thus, for all (N,N ′) ∈ N2 and all δ ∈ R, N < N ′ ⇒ PN(δ) ⊂ PN ′(δ).

12



The set PN(δ), for a given positive scalar δ, represent the set of trans-
port speed matrices Λ that are proven to give an exponentially stable system
(1) with decay rate δ, according to the conditions of Theorem 1 at the or-
der N . The inclusion stated here means that increasing N in the conditions
of Theorem 1 can only enlarge the set of allowable speed matrices Λ.

Proof : Let us consider a given δ > 0 and two integers N < N ′. With-
out loss of generality, assume that N ′ = N + 1. If PN(δ) is empty, the
inclusion is easily obtained. If PN(δ) is not empty, then for a given trans-
port speed matrix Λ ∈ PN(δ), we have from the definition of PN(δ) the
LMIs ΦN(Λ, δ) � 0 and ΨN(Λ, δ) ≺ 0 satisfied for δ ≥ 0, P ∈ Sn+, TN ∈
S(N+1)m

+ , QN ∈ Rn,(N+1)m
+ , S and R ∈Mm

Λ . Selecting the matrices

QN+1 = [QN 0n,m]∈ Rn,m(N+2), TN+1 =

[
TN 0m,m(N+1)

∗ 0m,m

]
∈ Rm(N+2),m(N+2),

and keeping S and R, let us express the matrices ΦN+1(Λ, δ) and ΨN+1(Λ, δ)
for this specific selection. The matrix ΦN+1(Λ, δ) can be written as ΦN+1(Λ, δ)

=
[

ΦN (Λ,δ) 0n+m(N+1),m

∗ e−2δΛ−1
(2N+3)S

]
. Since S ∈ Mm

Λ ⊂ Sm+ and ΦN(Λ, δ) � 0 by as-

sumption, then ΦN+1(Λ, δ) � 0 also holds. For the remaining LMI to be
proven, we note that the matrices LN+1(Λ) and RN+1(Λ) can be written as

LN+1 =

[
LN (Λ) 0m(N+1),m

[`N+1,0Λ, ..., `N+1,NΛ] 0m,m

]
, RN+1 =

[
RN (Λ) 0m(N+1),m

∗ (2N + 3)e−2δΛ−1

ΛR

]
.

From these expressions, the matrix ΨN+1(Λ, δ) depending on LN+1(Λ) and

RN+1(Λ) can also be written as ΨN+1(Λ,δ) =
[

ΨN (Λ,δ) 0n+m(N+2),m

∗ −(2N+3)e−2δΛ−1
ΛR

]
.

Since ΨN(Λ, δ) ≺ 0, Λ ∈ Dm
+ and R ∈ Sm+ , we get ΨN+1(Λ, δ) ≺ 0, and

we conclude that PN(δ) ⊂ PN+1(δ). Finally, for any N ′ > N , the inclusion
PN(δ) ⊂ PN ′(δ) is obtained by a recursive reasoning. �

6. Numerical examples

This section aims at illustrating our approach by several examples taken
from the literature. The first example borrowed from [6, 35] describes the
dynamics of an experimental setup. The three last examples can be seen as
academic ones mainly presented to evaluate the potential and accuracy of
our method.

6.1. Example 1

In this example we consider the experimental setup studied in [8, 13,
35] treating the stability of a gas flow transport model. It consists of two
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Figure 1: Evolution of different states in Examples 1.

subsystems: the heating column and the tube. The gas dynamic in the
heating column is modeled by τ̇(t) = −RγTinṁin

pinV0
τ(t)− R

pinV0Cv
τ(t)dQ + γṁin

V0
,

(see [5] and [35]), where τ is the gas density in the heating column, R is the
specific gas constant, Tin is the gas temperature at the input. V0 represents
the volume of the heating column and ṁin is the mass flow. The parameter
dQ is the heating exchange and Cv is the specific heat of a constant volume of
gas. On the other hand, the gas dynamic in the tube is described by a simple
transport equation zt(x, t) + ρzx(x, t) = 0. Following the same procedure
as [35], we consider the linear system under the form of system (1) with
A = −0.1, B = 0.01, C1 = 1, C2 = 0 and the velocity ρ = 1. Solving
the stability conditions presented in Theorem 1, this system is proven to be
exponentially stable with the exponential decay rate δ = 0.089.

In order to illustrate this example, the solution of system (1) with these
matrices and with the initial conditions X(0) = 2 and z(x, 0) = cos(4πx)+1,
is drawn in Figure 1 (a,b), which is consistent with Theorem 1.

6.2. Example 2

Consider system (1) with following matrices

A =

[
0 1
−2 0.1

]
, B =

[
0 0
1 0.1

]
, C1 =

[
1 0
0 0

]
, C2 =

[
0 0
1 0.5

]
, Λ = ρI2.

We first note that matrix A + BC1 = [ 0 1
−1 0.1 ] is not Hurwitz. Therefore,

it means that this system is not asymptotically stable for an arbitrary large
transport speed ρ. The requirement imposing the matrix A + BC1 to be
Hurwitz is required in [6, 35]. This is however not a necessary condition for
the resulting ODE/PDE system to be asymptotically stable. The following
Table 1 demonstrates that Theorem 1 is still able to guarantee exponential
stability even if A+BC1 is not assumed to be Hurwitz. In this situation, it
appears that the stability regions are bounded interval and more especially,
there exist minimal and maximal values of ρ such that the overall system
(1) remains exponentially stable. Table 1 also depicts the evolution of these

14



N=0 N=1 N=2 N=3
Variables 8 12 17 23
δ = 0 ρmin - 0.653 0.582 0.579

ρmax - 15.924 15.941 15.941
δ = 5.10−3 ρmin - 0.661 0.587 0.584

ρmax - 14.470 14.490 14.490
δ = 1.10−2 ρmin - 0.670 0.593 0.589

ρmax - 13.259 13.282 13.282
δ = 5.10−2 ρmin - 0.738 0.634 0.625

ρmax - 7.935 7.980 7.980

Table 1: Minimal and maximal allowable transport speed in example 1.

minimal and maximal values of ρ for several values of δ and N . One can see
from this table that increasing N allows enlarging the length of the interval
[ρmin, ρmax], which illustrates the hierarchical structure of the LMI with
respect to degree of Legendre polynomials N Theorem 2. On the other
hand,we can note from this values that increasing δ obviously reduces the
length.

6.3. Example 3
In this example, we deal with a system with multiple transport speeds,

specifically with Λ = diag(ρ1, ρ2). Let us consider system 1 with matrices

A = [−1.3] , B = [−1 −0.5] , C1 =

[
1
1

]
, C2 =

[
0 0
0 0

]
.

The stability regions for different value of ρ1 and ρ2 are given by Figure 2(a).
We can notice that increasing N allows us to broaden the stability region of
the coupled system. Figure 2 (a) also illustrates the principles presented in
Theorem 2 since we can see that P1 ⊂ P3 ⊂ ... ⊂ P9.

In order to evaluate the conservatism of our approach, we benefits from
the fact that this system has been already studied in the context of time-
delay systems in [32]. Indeed, this systems can be rewritten as Ẋ(t) =
−1.3X(t)−X(t−ρ−1

1 )−0.5X(t−ρ−1
2 ). The stability regions calculated using

a frequency domain approach as in [32] are including in Figure 2(a), where it
can be seen that the stability region we derive here for N = 9 provides a very
inner approximation of the exact stability regions. It is true that Theorem 1
is only able to provide an inner approximation of the stability regions, which
can be calculated in an exact manner using a frequency approach. However,
the frequency approach does not ensure robustness, which corresponds to the
main advantage of our Lyapunov approach.
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Figure 2: Stability regions in the plane (ρ−1
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2 ) for Examples 3 and 4.

It is also important to note that Theorem 1 does not rely on the ap-
plication of the Lyapunov-Krasovskii theorem as usual for time-delay sys-
tems. Theorem 1 is based on the application of Lyapunov theorem for
infinite dimensional systems. However, when the coupled system (1) can
be interpreted as a time-delay system, one can easily prove that its energy
E(t) verifies |X(t)|2n ≤ E(t) ≤ η sups∈[−h,0] |X(s)|2n, for all t > 0, where

h = maxi=1,...,p(ρ
−1
i ), inequalities (16) also implying

ε1|X(t)|2n ≤ V (X, z) ≤ ε2η sups∈[−h,0] |X(s)|2n,
V̇ (X, z) + 2δV (X, z) ≤ −ε3|X(t)|2n.

which ensures the stability of system (1) in the sense of the Lyapunov-
Krasovskii Theorem. This shows that this formulation does not bring any
restriction with the usual Lyapunov-Krasovskii Theorem.

6.4. Example 4

Finally, let us consider system (1) with the matrices A =

[
0 1
−20 −1

]
,

B =

[
0 0 0 0 0 0
−3 −2 −4 −1 −1 0

]
, C1 =

[
I2
I2
02

]
, C2 =

[
02 02 02

02 02 02

I2 02 02

]
,Λ =

[
ρ1I2 0

0 ρ2I4

]
.

Figure 2(b) depicts the stability regions obtained by the conditions of The-
orem 1 in the plane (ρ−1

1 , ρ−1
2 ) for N = 10. Using a similar argument, this
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particular example can be rewritten as a linear systems with commensurate
delays, allowing us to draw the exact stability regions based on a frequency
approach (for instance the one exploited in [32]. One can check that The-
orem 1 is able to provide a very good inner approximation of the stability
region, matching with the region obtained through the frequency domain
analysis (black boundaries in Figure 2(b)).

A final comment dedicated to the time-delay systems analysis deals with
the fact that usual Lyapunov-Krasovskii analysis of such systems with com-
mensurate delays would introduce three independent delays, i.e. ρ−1

1 , ρ−1
2

and also ρ−1
1 + ρ−1

2 , which misses the link between these three delays. The
methodology provided in our present article allows to deal with this class of
systems in a direct and generic manner.

7. Conclusion

In this article we give a general presentation of a system coupling ODEs
with a vectorial transport PDE, and we provide a new approach for the sta-
bility analysis of this kind of systems. The approach consists in a Lyapunov
method that gives LMI conditions depending on the transport speed matrix,
on the degree of the approximation which is based on Legendre polynomi-
als and on the guaranteed decay rate δ of the energy of the system. This
work gives a more general setting for the analysis than the one provided in
[3] which takes into account a single transport speed and no cross talking
transport states. This paper also generalizes the work proposed in [31], on
single constant transport speed, to the case of multiple speeds. In addition,
we prove that the set of stability conditions forms a hierarchy of LMI in-
dexed by the polynomial degree N , in the sense that increasing N reduces
the conservatism of the proposed method.

This stability study can be seen as a milestone for future research on
infinite dimensional systems. A first direction of research would be to extend
this stability study to uncertain or time-varying speed matrices Λ. We also
aim at extending such an analysis to systems coupling ODEs with a wider
class of PDEs, including for instance heat equation or wave equation among
many others.
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