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Abstract

Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) algorithms have be-
come increasingly popular for Bayesian inference in large-scale applications. Even
though these methods have proved useful in several scenarios, their performance is
often limited by their bias. In this study, we propose a novel sampling algorithm
that aims to reduce the bias of SG-MCMC while keeping the variance at a reason-
able level. Our approach is based on a numerical sequence acceleration method,
namely the Richardson-Romberg extrapolation, which simply boils down to run-
ning almost the same SG-MCMC algorithm twice in parallel with different step
sizes. We illustrate our framework on the popular Stochastic Gradient Langevin
Dynamics (SGLD) algorithm and propose a novel SG-MCMC algorithm referred to
as Stochastic Gradient Richardson-Romberg Langevin Dynamics (SGRRLD). We
provide formal theoretical analysis and show that SGRRLD is asymptotically con-
sistent, satisfies a central limit theorem, and its non-asymptotic bias and the mean
squared-error can be bounded. Our results show that SGRRLD attains higher rates
of convergence than SGLD in both finite-time and asymptotically, and it achieves
the theoretical accuracy of the methods that are based on higher-order integrators.
We support our findings using both synthetic and real data experiments.

1 Introduction

Markov Chain Monte Carlo (MCMC) techniques are one of the most popular family of algorithms in
Bayesian machine learning. Recently, novel MCMC schemes that are based on stochastic optimiza-
tion have been proposed for scaling up Bayesian inference to large-scale applications. These so-called
Stochastic Gradient MCMC (SG-MCMC) methods provide a fruitful framework for Bayesian in-
ference, well adapted to massively parallel and distributed architecture. In this domain, a first and
important attempt was made by Welling and Teh [1], where the authors combined ideas from the Un-
adjusted Langevin Algorithm (ULA) [2] and Stochastic Gradient Descent (SGD) [3]. They proposed
a scalable MCMC framework referred to as Stochastic Gradient Langevin Dynamics (SGLD). Unlike
conventional batch MCMC methods, SGLD uses subsamples of the data per iteration similar to SGD.

Several extensions of SGLD have been proposed [4–12]. Recently, in [10] it has been shown that
under certain assumptions and with sufficiently large number of iterations, the bias and the mean-
squared-error (MSE) of a general class of SG-MCMC methods can be bounded as O(γ) and O(γ2),
respectively, where γ is the step size of the Euler-Maruyama integrator. The authors have also shown
that these bounds can be improved by making use of higher-order integrators.

In this paper, we propose a novel SG-MCMC algorithm, called Stochastic Gradient Richardson-
Romberg Langevin Dynamics (SGRRLD) that aims to reduce the bias of SGLD by applying a
numerical sequence acceleration method, namely the Richardson-Romberg (RR) extrapolation, which
requires running two chains with different step sizes in parallel. While reducing the bias, SGRRLD
also keeps the variance of the estimator at a reasonable level by using correlated Brownian motions.
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We show that the asymptotic bias and variance of SGRRLD can be bounded as O(γ2) and O(γ4),
respectively. We also show that after K iterations, our algorithm achieves a rate of convergence
for the MSE of order O(K−4/5), whereas this rate for SGLD and its extensions with first-order
integrators is of order O(K−2/3).

Our results show that by only using a first-order numerical integrator, the proposed approach can
achieve the theoretical accuracy of methods that are based on higher-order integrators, such as the
ones given in [10]. This accuracy can be improved even more by applying the RR extrapolation
multiple times in a recursive manner [13]. On the other hand, since the two chains required by the
RR extrapolation can be generated independently, the SGRRLD algorithm is well adapted to parallel
and distributed architectures. It is also worth to note that our technique is quite generic and can be
virtually applied to all the current SG-MCMC algorithms besides SGLD, provided that they satisfy
rather technical weak error and ergodicity conditions.

In order to assess the performance of the proposed method, we conduct several experiments on both
synthetic and real datasets. We first apply our method on a rather simple Gaussian model whose
posterior distribution is analytically available and compare the performance of SGLD and SGRRLD.
In this setting, we also illustrate the generality of our technique by applying the RR extrapolation
on Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [6]. Then, we apply our method on a
large-scale matrix factorization problem for a movie recommendation task. Numerical experiments
support our theoretical results: our approach achieves improved accuracy over SGLD and SGHMC.

2 Preliminaries

2.1 Stochastic Gradient Langevin Dynamics

In MCMC, one aims at generating samples from a target probability measure π that is known up to a
multiplicative constant. Assume that π has a density with respect to the Lebesgue measure that is still
denoted by π and given by π : θ → e−U(θ)/

∫
Rd e−U(θ̃)dθ̃ where U : Rd → R is called the potential

energy function. In practice, directly generating samples from π turns out to be intractable except
for very few special cases, therefore one often needs to resort to approximate methods. A popular
way to approximately generate samples from π is based on discretizations of a stochastic differential
equation (SDE) that has π as an invariant distribution [14]. A common choice is the over-damped
Langevin equation associated with π, that is the stochastic differential equation (SDE) given by

dϑt = −∇U(ϑt)dt+
√

2dBt , (1)

where (Bt)t≥0 is the standard d-dimensional Brownian motion. Under mild assumptions on U
(cf. [2]), (ϑt)t≥0 is a well defined Markov process which is geometrically ergodic with respect to
π. Therefore, if continuous sample paths from (ϑt)t≥0 could be generated, they could be used as
approximate samples from π. However, this is not possible and therefore in practice we need to
use a discretization of (1). The most common discretization is the Euler-Maruyama scheme, which
boils down to applying the following update equation iteratively: θk+1 = θk − γk+1∇U(θk) +√

2γk+1Zk+1, for k ≥ 0 with initial state θ0. Here, (γk)k≥1 is a sequence of non-increasing step
sizes and (Zk)k≥1 is a sequence of independent and identically distributed (i.i.d.) d-dimensional
standard normal random variables. This schema is called the Unadjusted Langevin Algorithm (ULA)
[2]. When the sequence of the step sizes (γk)k≥0 goes to 0 as k goes to infinity, it has been shown
in [15] and [16] that the empirical distribution of (θk)k≥0 weakly converges to π under certain
assumptions. A central limit theorem for additive functionals has also been obtained in [17] and [16].

In Bayesian machine learning, π is often chosen as the Bayesian posterior, which imposes the
following form on the potential energy: U(θ) = −(

∑N
n=1 log p(xn|θ) + log p(θ)) for all θ ∈ Rd,

where x ≡ {xn}Nn=1 is a set of observed i.i.d. data points, belonging to Rm, for m ≥ 1, p(xn|·) :
Rd → R∗+ is the likelihood function, and p(θ) : Rd → R∗+ is the prior distribution. In large scale
settings, N becomes very large and therefore computing∇U can be computationally very demanding,
limiting the applicability of ULA. Inspired by stochastic optimization techniques, in [1], the authors
have proposed replacing the exact gradient∇U with an unbiased estimator and presented the SGLD
algorithm that iteratively applies the following update equation:

θk+1 = θk − γk+1∇Ũk+1(θk) +
√

2γk+1Zk+1 , (2)
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where (∇Ũk)k≥1 is a sequence of i.i.d. unbiased estimators of∇U . In the following, the common
distribution of (∇Ũk)k≥1 will be denoted by L. A typical choice for the sequence of estimators
(∇Ũk)k≥1 of ∇U is to randomly draw an i.i.d. sequence of data subsample (Rk)k≥1 with Rk ⊂
[N ] = {1, . . . , N} having a fixed number of elements |Rk| = B for all k ≥ 1. Then, set for all
θ ∈ Rd, k ≥ 1

∇Ũk(θ) = −[∇ log p(θ) +
N

B

∑
i∈Rk

∇ log p(xi|θ)] . (3)

Convergence analysis of SGLD has been studied in [18, 19] and it has been shown in [20] that
for constant step sizes γk = γ > 0 for all k ≥ 1, the bias and the MSE of SGLD are of order
O(γ + 1/(γK)) and O(γ2 + 1/(γK)), respectively. Recently, it has been shown that these bounds
are also valid in a more general family of SG-MCMC methods [10].

2.2 Richardson-Romberg Extrapolation for SDEs

Richardson-Romberg extrapolation is a well-known method in numerical analysis, which aims to
improve the rate of convergence of a sequence. Talay and Tubaro [21] showed that the rate of
convergence of Monte Carlo estimates on certain SDEs can be radically improved by using an
RR extrapolation that can be described as follows. Let us consider the SDE in (1) and its Euler
discretization with exact gradients and fixed step size, i.e. γk = γ > 0 for all k ≥ 1. Under mild
assumptions on U (cf. [22]), the homogeneous Markov chain (θk)k≥0 is ergodic with a unique
invariant distribution πγ , which is different from the target distribution π. However, [21] showed that
for f sufficiently smooth with polynomial growth, there exists a constant C, which only depends on
π and f such that πγ(f) = π(f) + Cγ +O(γ2), where π(f) =

∫
Rd f(x)π(dx). By exploiting this

result, RR extrapolation suggests considering two different discretizations of the same SDE with
two different step sizes γ and γ/2. Then instead of πγ(f), if we consider 2πγ/2(f)− πγ(f) as the
estimator, we obtain π(f)− (2πγ/2(f)− πγ(f)) = O(γ2). In the case where the sequence (γk)k≥0
goes to 0 as k → +∞, it has been observed in [23] that the estimator defined by RR extrapolation
satisfies a CLT. The applications of RR extrapolation to SG-MCMC have not yet been explored.

3 Stochastic Gradient Richardson-Romberg Langevin Dynamics

In this study, we explore the use of RR extrapolation in SG-MCMC algorithms for improving their
rates of convergence. In particular, we focus on the applications of RR extrapolation on the SGLD
estimator and present a novel SG-MCMC algorithm referred to as Stochastic Gradient Richardson-
Romberg Langevin Dynamics (SGRRLD).

The proposed algorithm applies RR extrapolation on SGLD by considering two SGLD chains applied
to the SDE (1), with two different sequences of step sizes satisfying the following relation. For the
first chain, we consider a sequence of non-increasing step sizes (γk)k≥1 and for the second chain, we
use the sequence of step sizes (ηk)k≥1 defined by η2k−1 = η2k = γk/2 for k ≥ 1. These two chains
are started at the same point θ0 ∈ Rd, and are run accordingly to (2) but the chain with the smallest
step size is run twice more time than the other one. In other words, these two discretizations are run
until the same time horizon

∑K
k=1 γk, where K is the number of iterations. Finally, we extrapolate

the two SGLD estimators in order to construct the new one. Each iteration of SGRRLD will consist of
one step of the first SGLD chain with (γk)k≥1 and two steps of the second SGLD chain with (ηk)k≥1.
More formally the proposed algorithm is defined by: consider a starting point θ(γ)0 = θ

(γ/2)
0 = θ0

and for k ≥ 0,

Chain 1 : θ
(γ)
k+1 = θ

(γ)
k − γk+1∇Ũ (γ)

k+1

(
θ
(γ)
k

)
+
√

2γk+1Z
(γ)
k+1 , (4)

Chain 2 :

θ
(γ/2)
2k+1 = θ

(γ/2)
2k − γk+1

2 ∇Ũ
(γ/2)
2k+1

(
θ
(γ/2)
2k+1

)
+
√
γk+1Z

(γ/2)
2k+1

θ
(γ/2)
2k+2 = θ

(γ/2)
2k+1 −

γk+1

2 ∇Ũ
(γ/2)
2k+2

(
θ
(γ/2)
2k+1

)
+
√
γk+1Z

(γ/2)
2k+2

(5)

where (Z
(γ/2)
k )k≥1 and (Z

(γ)
k )k≥1 are two sequences of d-dimensional i.i.d. standard Gaussian

random variables and (∇Ũ (γ/2)
k )k≥1, (∇Ũ (γ)

k )k≥1 are two sequences of i.i.d. unbiased estimators
of ∇U with the same common distribution L, meaning that the mini-batch size has to be the same.
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For a test function f : Rd → R, we then define the estimator of π(f) based on RR extrapolation as
follows: (for all K ∈ N∗)

π̂R
K(f) =

(
K+1∑
k=2

γk

)−1 K∑
k=1

γk+1

[
{f(θ

(γ/2)
2k−1) + f(θ

(γ/2)
2k )} − f(θ

(γ)
k )
]
, (6)

We provide a pseudo-code of SGRRLD in the supplementary document.

Under mild assumptions on ∇U and the law L (see the conditions in the Supplement), by [19,
Theorem 7] we can show that π̂R

K(f) is a consistent estimator of π(f): when limk→+∞ γk = 0 and
limK→+∞

∑K
k=1 γk+1 = +∞, then limK→+∞ π̂R

K(f) = π(f) almost surely. However, it is not
immediately clear whether applying an RR extrapolation would provide any advantage over SGLD
in terms of the rate of convergence. Even if RR extrapolation were to reduce the bias of the SGLD
estimator, this improvement could be offset by an increase of variace. In the context of a general
class of SDEs, in [13] it has been shown that the variance of estimator based on RR extrapolation can
be controlled by using correlated Brownian increments and the best choice in this sense is in fact
taking the two sequences (Z

(γ/2)
k )k≥1 and (Z

(γ)
k )k≥1 perfectly correlated, i.e. for all k ≥ 1,

Z
(γ)
k = (Z

(γ/2)
2k−1 + Z

(γ/2)
2k )/

√
2 . (7)

This choice has also been justified in the context of the sampling of the stationary distribution of a
diffusion in [23] through a central limit theorem.

Inspired by [23], in order to be able to control the variance of the SGRRLD estimator, we consider
correlated Brownian increments. In particular, we assume that the Brownian increments in (4)
and (5) satisfy the following relationship: there exist a matrix Σ ∈ Rd×d, a sequence (Wk)k≥1

of d dimensional i.i.d. standard Gaussian random variables, independent of (Z
(γ/2)
k )k≥1 such that

Id−Σ>Σ is a positive semidefinite matrix and for all k ≥ 0,

Z
(γ)
k+1 = Σ>(Z

(γ/2)
2k+1 + Z

(γ/2)
2(k+1))/

√
2 + (Id−Σ>Σ)1/2Wk+1 , (8)

where Id denotes the identity matrix. In Section 4, we will show that the properly scaled SGRRLD
estimator converges to a Gaussian random variable whose variance is minimal when Σ = Id, and
therefore Z(γ)

k+1 should be chosen as in (7). Accordingly, (8) justifies the choice of using the same
Brownian motion in the two discretizations, extending the results of [23] to SG-MCMC. On the other
hand, regarding the sequences of estimators for ∇U , we assume that they can also be correlated
but do not assume an explicit form on their relation. However, it is important to note that if the
two sequences (∇Ũ (γ/2)

k )k≥1 and (∇Ũ (γ)
k )k≥1 do not have the same common distribution, then the

SGRRLD estimator can have a bias, which would have the same order as of vanilla SGLD (with the
same sequence of step sizes). In the particular case of (3), in order for SGRRLD to gain efficiency
compared to SGLD, the mini-batch size has to be the same for the two chains.

4 Convergence Analysis

We analyze asymptotic and non-asymptotic properties of SGRRLD. In order to save space and avoid
obscuring the results, we present the technical conditions under which the theorems hold, and the full
proofs in the supplementary document.

We first present a central limit theorem for the estimator π̂R
K(f) of π(f) (see (6)) for a smooth

function f . Let us define Γ
(n)
K =

∑K
k=1 γ

n
k+1 and ΓK = Γ

(1)
K , for all n ∈ N.

Theorem 1. Let f : Rd → R be a smooth function and (γk)k≥1 be a nonincreasing sequence
satisfying limk→+∞ γk = 0 and limK→+∞ ΓK = +∞. Let (θ

(γ)
k , θ

(γ/2)
k )k≥0 be defined by (4)-

(5), started at θ0 ∈ Rd and assume that the relation (8) holds for Σ ∈ Rd×d. Under appropriate
conditions on U , f and L, then the following statements hold:

a) If limK→+∞ Γ
(3)
K /
√

ΓK = 0, then
√

ΓK
(
π̂R
K(f)− π(f)

)
converges in law as K goes to infinity

to a zero-mean Gaussian random variable with variance σ2
R, which is minimized when Σ = Id.

b) If limK→+∞ Γ
(3)
K /
√

ΓK = κ ∈ (0,+∞), then
√

ΓK
(
π̂R
K(f) − π(f)

)
converges in law as K

goes to infinity to a Gaussian random variable with variance σ2
R and mean κµR.
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c) If limK→+∞ Γ
(3)
K /
√

ΓK = +∞, then (ΓK/Γ
(3)
k )
(
π̂R
K(f) − π(f)

)
converges in probability as

K goes to infinity to µR.

The expressions of σ2
R and µR are given in the supplementary document.

Proof (Sketch). The proof follows the same strategy as the one in [23, Theorem 4.3] for ULA.
We assume that the Poisson equation associated with f has a solution g ∈ C9(Rd). Then, the
proof consists in making a 7th order Taylor expansion for g(θ

(γ)
k+1), g(θ

(γ/2)
2k ) and g(θ

(γ)
2k+1) at

θ
(γ)
k , θ(γ/2)2k−1 and θ(γ/2)2k , respectively. Then π̂R

K(f) − π(f) is decomposed as a sum of three terms

A1,K +A2,K +A3,K . A1,K is the fluctuation term and Γ
1/2
K A1,K converges to a zero-mean Gaussian

random variable with variance σ2
R. A2,K is the bias term, and ΓKA2,K/Γ

(3)
K converges in probability

to µR as K goes to +∞ if limK→+∞ Γ
(3)
K = +∞. Finally the last term Γ

1/2
K A3,K goes to 0 as K

goes to +∞. The detailed proof is given in the supplementary document.

These results state that the Gaussian noise dominates the stochastic gradient noise. Moreover, we
also observe that the correlation between the two sequences of Gaussian random variables (Z

(γ)
k )k≥1

and (Z
(γ/2)
k )k≥1 has an important impact on the asymptotic convergence of π̂R(f), whereas the

correlation of the two sequences of stochastic gradients does not.

A typical choice of decreasing sequence (γk)k≥1 is of the form γk = γ1k
−α for α ∈ (0, 1]. With

such a choice, Theorem 1 states that π̂R(f) converges to π(f) at a rate of convergence of order
O(K−((1−α)/2)∧(2α)), where a ∧ b = min(a, b). Therefore, the optimal choice for the exponent α
for obtaining the fastest convergence turns out to be α = 1/5, which implies a rate of convergence of
order O(K−2/5). Note that this rate is higher than SGLD whose optimal rate is of order O(K−1/3).
Besides, α = 1/5 corresponds to the second point of Theorem 1, in which there is an equal
contribution of the bias and the fluctuation at an asymptotic level. Futher discussions and detailed
calculations can be found in the supplementary document.

We now derive non-asymptotic bounds for the bias and the MSE of the estimator π̂R(f).

Theorem 2. Let f : Rd → R be a smooth function and (γk)k≥1 be a nonincreasing sequence such
that there exists K1 ≥ 1, γK1

≤ 1 and limK→+∞ ΓK = +∞. Let (θ
(γ)
k , θ

(γ/2)
k )k≥0 be defined by

(4)-(5), started at θ0 ∈ Rd. Under appropriate conditions on U , f and L, then there exists C ≥ 0
such that for all K ∈ N, K ≥ 1:

BIAS:
∣∣E [π̂R

K(f)− π(f)
]∣∣ ≤ (C/ΓK)

{
Γ
(3)
K + 1

}
MSE: E

[{
π̂R
K(f)− π(f)

}2] ≤ C{(Γ(3)
K /ΓK)2 + 1/ΓK} .

Proof (Sketch). The proof follows the same strategy as the one of Theorem 1, but instead of estab-
lishing the exact convergence of the fluctuation and the bias terms, we just give an upper bound for
these two terms. The detailed proof is given in the supplementary document.

It is important to observe that the constant C which appears in Theorem 2 depends on moments of
the estimator of the gradient. For fixed step size γk = γ for all k ≥ 1, Theorem 2 shows that the
bias is of order O(γ2 + 1/(Kγ)). Therefore, if the number of iterations K is fixed then the choice
of γ which minimizes this bound is γ ∝ K−1/3, obtained by differentiating x 7→ x2 + (xK)−1.
Choosing this value for γ leads to the optimal rate for the bias of order O(K−2/3). Note that this
bound is better than SGLD for which the optimal bound of the bias at fixed K is of order O(K−1/2).
The same approach can be applied to the MSE which is of orderO(γ4 + 1/(Kγ)). Then, the optimal
choice of the step size is γ = O(K−1/5), leading to a bound of order O(K−4/5). Similar to the
previous case, this bound is smaller than the bound obtained with SGLD, which is O(K−2/3).

If we choose γk = γ1k
−α for α ∈ (0, 1], Theorem 2 shows that the bias and the MSE go to 0 as

K goes to infinity. More precisely for α ∈ (0, 1), the bound for the bias is O(K−(2α)∧(1−α)),
and is therefore minimal for α = 1/3. As for the MSE, the bound provided by Theorem 2
is O(K−(4α)∧(1−α)) which is consistent with Theorem 1, leading to an optimal bound of order
O(K−4/5) as α = 1/5.
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Figure 1: The performance of SGRRLD on synthetic data. (a) The true posterior and the estimated
posteriors. (b) The MSE for different problem sizes.

5 Experiments

5.1 Linear Gaussian Model

We conduct our first set of experiments on synthetic data where we consider a simple Gaussian model
whose posterior distribution is analytically available. The model is given as follows:

θ ∼ N (0, σ2
θ Id) , xn|θ ∼ N (a>n θ, σ

2
x) , for all n . (9)

Here, we assume that the explanatory variables {an}Nn=1 ∈ RN×d, σ2
θ and σ2

x are known and we
aim to draw samples from the posterior distribution p(θ|x). In all the experiments, we first randomly
generate an ∼ N (0, 0.5 Id) and we generate the true θ and the response variables x by using the
generative model given in (9). All our experiments are conducted on a standard laptop computer
with 2.5GHz Quad-core Intel Core i7 CPU, and in all settings, the two chains of SGRRLD are run in
parallel.

In our first experiment, we set d = 1, σ2
θ = 10, σ2

x = 1, N = 1000, and the size of each minibatch
B = N/10. We fix the step size to γ = 10−3. In order to ensure that both algorithms are run for a
fixed computation time, we run SGLD for K = 21000 iterations where we discard the first 1000
samples as burn-in, and we run SGRRLD for K = 10500 iterations accordingly, where we discard
the samples generated in the first 500 iterations as burn-in. Figure 1(a) shows the typical results
of this experiment. In particular, in the left figure, we illustrate the true posterior distribution and
the Gaussian density N (µ̂post, σ̂

2
post) for both algorithms, where µ̂post and σ̂2

post denote the empirical
posterior mean and variance, respectively. In the right figure, we monitor the bias of the estimated
variance as a function of computation time. The results show that SGLD overestimates the posterior
variance, whereas SGRRLD is able to reduce this error significantly. We also observe that the results
support our theory: the bias of the estimated variance is ≈ 10−2 for SGLD whereas this bias is
reduced to ≈ 10−4 with SGRRLD.
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Figure 2: Bias and MSE of SGLD and SGRRLD for different step
sizes.

In our second experiment, we
fix γ and K and monitor the
MSE of the posterior covariance
as a function of the dimension
d of the problem. In order to
measure the MSE, we compute
the squared Frobenius norm of
the difference between the true
posterior covariance and the es-
timated covariance. Similarly to
the previous experiment, we av-
erage 100 runs that are initial-
ized randomly. The results are
shown in Figure 1(b). The re-
sults clearly show that SGRRLD provides significant performance improvement over SGLD, where
the MSE of SGRRLD is in the order of the square of the MSE of SGLD for all values of d.

In our next experiment, we use the same setting as in the first experiment and we monitor the bias
and the MSE of the estimated variance as a function of the step size γ. For evaluation, we average
100 runs that are initialized randomly. As depicted in Figure 2, the results show that SGRRLD yields
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significantly better results than SGLD in terms of both the bias and MSE. Note that for very small γ,
the bias and MSE increase. This is due to the term 1/(Kγ) in the bounds of Theorem 2 dominates
both the bias and the MSE as expected since K is fixed. Therefore, we observe a drop in the bias and
the MSE as we increase γ up to ≈ 8× 10−5, and then they gradually increase along with γ.

Figure 3: Bias and MSE of SGRRLD with different rates for step
size (α).

We conduct the next experiment
in order to check the rate of con-
vergence that we have derived
in Theorem 2 for fixed step size
γk = γ for all k ≥ 1. We ob-
serve that the optimal choice for
the step size is of the form γ =
γ?bK

−1/3 and γ = γ?MK
−0.2 for

the bias and MSE, respectively.
To confirm our findings, we first
need to determine the constants
γ?b and γ?M, which can be done
by using the results from the pre-
vious experiment. Accordingly,
we observe that γ?b ≈ 8.5 ·10−5 ·
(20000)1/3 ≈ 2 · 10−3 and γ?M ≈ 1.7 · 10−4 · (20000)0.2 ≈ 10−3. Then, to confirm the right depen-
dency of γ on K, we fix K = 106 and monitor the bias with the sequence of step sizes γ = γ?bK

−α

and the MSE with γ = γMK
−α for several values of α as given in Figure 3. It can be observed that

the optimal convergence rate is still obtained for α = 1/3 for the bias and α = 0.2 for the MSE,
which confirms the results of Theorem 2. For a decreasing sequence of step sizes γk = γ?1k

α for
α ∈ (0, 1], we conduct a similar experiment to confirm that the best convergence rate is achieved
choosing α = 1/3 in the case of the bias and α = 0.2 in the case of the MSE. The resulting figures
can be found in the supplementary document.
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Figure 4: The performance of RR extrapolation on SGHMC.

In our last synthetic data experi-
ment, instead of SGLD, we con-
sider another SG-MCMC algo-
rithm, namely the Stochastic Gra-
dient Hamiltonian Monte Carlo
(SGHMC) [6]. We apply the pro-
posed extrapolation scheme de-
scribed in Section 3 to SGHMC
and call the resulting algorithm
Stochastic Gradient Richardson-
Romberg Hamiltonian Monte
Carlo (SGRRHMC). In this ex-
periment, we use the same set-
ting as we use in Figure 2, and
we monitor the bias and the MSE of the estimated variance as a function of γ. We compare SGR-
RHMC against SGHMC with Euler discretization [6] and SGHMC with an higher-order splitting
integrator (SGHMC-s) [10] (we describe SGHMC, SGHMC-s, and SGRRHMC in more detail in the
supplementary document). We average 100 runs that are initialized randomly. As given in Figure 4,
the results are similar to the ones obtained in Figure 2: for large enough γ, SGRRHMC yields
significantly better results than SGHMC. For small γ, the term 1/(Kγ) in the bound derived in
Theorem 2 dominates the MSE and therefore SGRRHMC requires a larger K for improving over
SGHMC. For large enough values of γ, we observe that SGRRHMC obtains an MSE similar to that
of SGHMC-s with small γ, which confirms our claim that the proposed approach can achieve the
accuracy of the methods that are based on higher-order integrators.

5.2 Large-Scale Matrix Factorization

In our second set of experiments, we evaluate our approach on a large-scale matrix factorization
problem for a link prediction application, where we consider the following probabilistic model:
Wip ∼ N (0, σ2

w), Hpj ∼ N (0, σ2
h), Xij |W,H ∼ N

(∑
pWipHpj , σ

2
x

)
, where X ∈ RI×J is the

observed data matrix with missing entries, and W ∈ RI×P and H ∈ RD×P are the latent factors,
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(a) MovieLens-1Million (b) MovieLens-10Million (c) MovieLens-20Million

Figure 5: The performance of SGRRLD on large-scale matrix factorization problems.

whose entries are i.i.d. distributed. The aim in this application is to predict the missing values of
X by using a low-rank approximation. This model is similar to the Bayesian probabilistic matrix
factorization model [24] and it is often used in large-scale matrix factorization problems [25], in
which SG-MCMC has been shown to outperform optimization methods such as SGD [26].

In this experiment, we compare SGRRLD against SGLD on three large movie ratings datasets, namely
the MovieLens 1Million (ML-1M), MovieLens 10Million (ML-10M), and MovieLens 20Million
(ML-20M) (grouplens.org). The ML-1M dataset contains about 1 million ratings applied to
I = 3883 movies by J = 6040 users, resulting in a sparse observed matrix X with 4.3% non-zero
entries. The ML-10M dataset contains about 10 million ratings applied to I = 10681 movies by
J = 71567 users, resulting in a sparse observed matrix X with 1.3% non-zero entries. Finally, The
ML-20M dataset contains about 20 million ratings applied to I = 27278 movies by J = 138493
users, resulting in a sparse observed matrix X with 0.5% non-zero entries. We randomly select 10%
of the data as the test set and use the remaining data for generating the samples. The rank of the
factorization is chosen as P = 10. We set σ2

w = σ2
h = σ2

x = 1. For all datasets, we use a constant
step size. We run SGLD for K = 10500 iterations where we discard the first 500 samples as burn-in.
In order to keep the computation time the same, we run SGRRLD for K = 5250 iterations where
we discard the first 250 iterations as burn-in. For ML-1M we set γ = 2 × 10−6 and for ML-10M
and ML-20M we set γ = 2 × 10−5. The size of the subsamples B is selected as N/10, N/50,
and N/500 for ML-1M, ML-10M and ML-20M, respectively. We have implemented SGLD and
SGRRLD in C by using the GNU Scientific Library for efficient matrix computations. We fully
exploit the inherently parallel structure of SGRRLD by running the two chains in parallel as two
independent processes, whereas SGLD cannot benefit from this parallel computation architecture due
to its inherently sequential nature. Therefore their wall-clock times are nearly exactly the same.

Figure 5 shows the comparison of SGLD and SGRRLD in terms of the root mean squared-errors
(RMSE) that are obtained on the test sets as a function of wall-clock time. The results clearly show
that in all datasets SGRRLD yields significant performance improvements. We observe that in the
ML-1M experiment SGRRLD requires only ≈ 200 seconds for achieving the accuracy that SGLD
provides after ≈ 400 seconds. We see similar behaviors in the ML-10M and ML-20M experiments:
SGRRLD appears to be more efficient than SGLD. The results indicate that by using our approach, we
either obtain the same accuracy of SGLD in shorter time or we obtain a better accuracy by spending
the same amount of time as SGLD.

6 Conclusion
We presented SGRRLD, a novel scalable sampling algorithm that aims to reduce the bias of SG-
MCMC while keeping the variance at a reasonable level by using RR extrapolation. We provided
formal theoretical analysis and showed that SGRRLD is asymptotically consistent and satisfies a
central limit theorem. We further derived bounds for its non-asymptotic bias and the mean squared-
error, and showed that SGRRLD attains higher rates of convergence than all known SG-MCMC
methods with first-order integrators in both finite-time and asymptotically. We supported our findings
using both synthetic and real data experiments, where SGRRLD appeared to be more efficient than
SGLD in terms of computation time on a large-scale matrix factorization application. As a next step,
we plan to explore the use of the multi-level Monte Carlo approaches [27] in our framework.
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[19] Y. W. Teh, A. H. Thiéry, and S. J. Vollmer, “Consistency and fluctuations for stochastic gradient Langevin

dynamics,” Journal of Machine Learning Research, vol. 17, no. 7, pp. 1–33, 2016.
[20] Y. W. Teh, S. J. Vollmer, and K. C. Zygalakis, “(Non-)asymptotic properties of Stochastic Gradient

Langevin Dynamics,” arXiv preprint arXiv:1501.00438, 2015.
[21] D. Talay and L. Tubaro, “Expansion of the global error for numerical schemes solving stochastic

differential equations,” Stochastic Anal. Appl., vol. 8, no. 4, pp. 483–509 (1991), 1990.
[22] J. C. Mattingly, A. M. Stuart, and D. J. Higham, “Ergodicity for SDEs and approximations: locally

Lipschitz vector fields and degenerate noise,” Stochastic Process. Appl., vol. 101, no. 2, pp. 185–232,
2002.

[23] V. Lemaire, G. Pagès, and F. Panloup, “Invariant measure of duplicated diffusions and application to
Richardson–Romberg extrapolation,” Ann. Inst. H. Poincaré Probab. Statist., vol. 51, no. 4, pp. 1562–1596,
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