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A method to construct the normal modes for a class of piecewise linear vibratory systems is developed in this study. The approach utilizes the concepts of Poincare maps and invariant manifolds from the theory of dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a series form around an equilibrium point of interest, the present method expands the normal modes in a series form of polar coordinates in a neighborhood of an in variant disk of the system. It is found thal the normal modes, modal dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom example is used to demonstrate the method.

Introduction

In linear vibration theory, modal analysis is a powerful technique that provides a means of reducing the system dynamics to uncoupled individual oscillators. Through the mode shapes and corresponding modal dynamics, the behavior of a linear vibratory system can be completely understood. For this reason, researchers have tried to extend the concept of normal modes to nonlinear systems. Rosenberg took the first steps in this direction [START_REF] Rosenberg | The normal modes of nonlinear n degrees of freedom systems[END_REF][START_REF] Rosenberg | On nonlinear vibrations of systems with many degrees of freedom[END_REF][START_REF] Rosenberg | Nonsimi1ar normal mode vibrations of nonlinear systems having two degrees of freedom[END_REF]. Since then, many studies have appeared in the literature discussing the existence [START_REF] Cooke | The existence of periodic solutions and normal mode vibrations in nonlinear systems[END_REF][START_REF] Pak | On the existence of normal mode vibrations in nonlinear systems[END_REF][START_REF] Rand | A direct method for nonlinear normal modes[END_REF][START_REF] Yen | On the normal modes of nonlinear dual-mass systems[END_REF], stability [START_REF] Atkinson | A study ofthe nonlinearly related modal solutions of coupled nonlinear systems by superposition techniques[END_REF][START_REF] Caughey | A method for examining steady state solutions of forced discrete systems with strong nonlinearities[END_REF][START_REF] Month | An application of Poincare map to the stability of nonlinear normal modes[END_REF][START_REF] Rand | Bifurcation of nonlinear normal modes in a class of2 degrees of freedom systems[END_REF][START_REF] Rand | The geometrical stability of nonlinear normal modes in 2 degrees of freedom systems[END_REF], and construction [START_REF] Greenberg | Modal subspaces and normal mode vibrations[END_REF][START_REF] Rand | Nonlinear normal mode in 2 degrees of freedom systems[END_REF][START_REF] Rand | A direct method for nonlinear normal modes[END_REF][START_REF] Rand | A higher order approximation for nonlinear normal modes in two degrees of freedom systems[END_REF][START_REF] Vander | On normal mode vibrations of nonlinear conservative systems[END_REF] of nonlinear normal modes, and the possibility of some type of nonlinear modal analysis [START_REF] Atkinson | A study ofthe nonlinearly related modal solutions of coupled nonlinear systems by superposition techniques[END_REF][START_REF] Szemplinska-Stupnicka | The resonant vibration of homogeneous nonlinear systems[END_REF][START_REF] Vakakis | Analysis and identification of linear and nonlinear normal modes in vibrating systems[END_REF][START_REF] Vakakis | A theorem on the exact nonsimilar steady state motions of a nonlinear oscillator[END_REF][START_REF] Vakakis | Normal modes and global dynamics of a 2 degrees of freedom system-I. Low energies[END_REF][START_REF] Vakakis | Normal modes and global dynamics of a 2 degrees of freedom system-II. High energies[END_REF]. Other studies have included the investigation of nonlinear nonnal modes for continuous [START_REF] Benamar | The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures[END_REF][START_REF] Benamar | The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam[END_REF][START_REF] Nayfeh | On nonlinear modes of continuous systems[END_REF][START_REF] Nayfeh | Nonlinear normal modes of a continuous system with quadratic nonlinearities[END_REF][START_REF] Pak | Free vibrations of a thin elastica by normal modes[END_REF], nonconservative [START_REF] Caughey | Classical normal modes in damped linear dynamics systems[END_REF][START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF], and internally resonant systems [START_REF] Nayfeh | On nonlinear modes of systems with internal resonance[END_REF]. Shaw and Pierre introduced a constructive method for nonlinear normal modes using invariant manifolds [START_REF] Shaw | An invariant manifold approach to nonlinear normal modes of oscillation[END_REF][START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF][START_REF] Shaw | Nonlinear normal modes and invariant manifolds[END_REF][START_REF] Shaw | Normal modes of vibration for nonlinear continuous systems[END_REF]. This approach is applied here to the case of piecewise linear systems.

While the idea of nonlinear normal modes has drawn much attention, virtually all of the previous works deal with smooth systems. In contrast, nonsmooth systems, in particular piecewise linear (PWL) systems (see, e.g., [START_REF] Chua | The double scroll family[END_REF][START_REF] Kim | Stability and bifurcation analysis of oscillators with piecewise linear characteristics: A general approach[END_REF][START_REF] Natsiavas | On the dynamics of oscillators with bilinear damping and stiffness[END_REF][START_REF] Shaw | On the dynamic response of a system with dry friction[END_REF][START_REF] Sparrow | Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function[END_REF]), received little attention in regards to normal modes. However, PWL vibratory systems are useful models for many practical vibratory systems. For example, conservative systems with clearance, backlash, or piecewise linear springs and dissipative systems with simple coulomb friction are all of PWL type.

Recently, Zuo and Cumier reported a study on the modal motions of a class of PWL systems, where the switching hyperplane passes through the origin [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF]. As one will see in the sequel, their class is a special case of the present class of PWL systems to be studied, where the switching hyperplane does not necessarily pass through the origin. In particular, the present systems may not satisfy the property of positive homogeneity defined in [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF]. As a result, the modal frequency of the present systems depends on the amplitude, in contrast with the systems in [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF] whose modal frequency is independent of the amplitude. Also, the construction of the normal mode manifolds and their attendant dynamics were not pursued in [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF]. However, they did include systems with gyroscopic terms, which are not considered here.

The objective of this paper is to demonstrate a method for the construction of nonlinear normal modes and their attendant dynamics for a class of general conservative PWL systems with N (finite) degrees of freedom. To this end, we utilize the approach of invariant manifolds and asymptotic expansions. Here the invariant manifold, and hence the normal mode, is a one-parameter family of periodic orbits in the state space. The general procedure involves building a Poincare map with the switching hyperplane as the Poincare section in state space, determining the fixed points of the map, and finally constructing the normal mode by asymptotic expansions. Unlike the case for a smooth system, where the normal mode is expanded in a series form near an equilibrium point of the system, the normal mode for a PWL system is expanded in a series form using polar coordinates in a neighborhood of an invariant disk of the system. This invariant disk is precisely the corresponding normal mode manifold of the linear system for energies below those at which the switching takes place.

The paper is organized as follows. We begin in Section 2 with a description of the class of PWL systems in which we are interested. The general system will then be transformed into a canonical form for easy formulation. Next, in Section 3, the Poincare map is obtained implicitly. The procedure of constructing the normal mode manifolds for PWL systems, including the determination of the fixed points of the Poincare map, using asymptotic expansion is described in Section 4. Their modal dynamics are established in Section 5. In Section 6, a two degrees of freedom example problem with clearance is given to show some of the calculations involved with using this method and a comparison is made with simulation. Some conclusions are drawn in Section 7.

The Piecewise Linear System and Its Canonical Form

Consider below an unforced, undamped N d.o.f. system for for

hT z < d 1 hT Z > d' ' (I)
where d' > 0 is a scalar constant, z, h, b E ~N, and M, K 1 , K2 are real symmetric positive definite N x N matrices. This is a PWL system with two linear domains. { z E !RN : h T z = d'} is a hyperplane dividing ~N into two regions: the first region { z E ~N : hT z < d'} and the second one { z E ~N : hT z > d'}. Each region is governed by an N d.o.f. linear vibratory subsystem. Since M, K 1 , and K 2 are real symmetric and positive definite, both linear subsystems have N natural modes. For small amplitude motions, when the motions never leave the first region, the system is nothing but the first linear subsystem and is well understood. As the motion amplitudes become large, solutions pass through the switching hyperplane and go into the second region, in which case both linear subsystems will be involved and the system behavior is no longer simple. Many complicated behaviors involved in PWL systems have been reported [START_REF] Chua | The double scroll family[END_REF][START_REF] Sparrow | Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function[END_REF][START_REF] Thompson | Subharmonic resonance and chaotic motions of a bilinear oscillator[END_REF]. In this paper, we are not going to discuss the general behavior of such PWL systems, but only their normal mode motions.

System [START_REF] Atkinson | A study ofthe nonlinearly related modal solutions of coupled nonlinear systems by superposition techniques[END_REF] represents a large class of physical vibratory systems such as systems with clearance, impact, or piecewise linear springs. However, we must point out that it can only represent systems with one clearance, but not those with two or more clearances, which should be modeled by PWL systems with more domains. Normal modes for PWL systems with more than two domains are not considered in the present paper. Also, systems with dry friction do not belong to the class of systems in equation ( 1) because they are nonconservative oscillators.

Before proceeding to the next step, we make some assumptions about system [START_REF] Atkinson | A study ofthe nonlinearly related modal solutions of coupled nonlinear systems by superposition techniques[END_REF]. By premultiply,ing equation (1) with M-1 , the system can be rewritten as

.. { Atz z- - A2z + b' for hT z < d' for hT z > d' '
where At= -M- 1 Kt, A2 = -M-1 K2, and b' = M-1 b. The assumptions are (i) Atz = A2z + b' when hT z = d';

(ii) N modes in both linear subsystems are distinct.

(

Assumption (i) says that the right-hand side of ( 2) is continuous, so that when written in state equation form, i.e., as a system of first order ODEs, the system will possess a continuous vector field. Although the vector field is not C 1 due to its PWL nature, it will satisfy a local Lipschitz condition. Hence, the existence and uniqueness of solutions of (2) are guaranteed. Assumption (ii) is for simplicity and can be removed easily. It is needed to insure that each mode of the linear subsystems is two dimensional in the state space. Without this assumption, we might have a four or more dimensional surface for a certain mode:.. Also, it can be shown that assumption (i) together with the negative definiteness of K and K imply that the origin is the only equilibrium point for system (6) (this can be proved but is not obvious).

With these assumptions in hand, we transform system (2) into a simpler form. Let x = QT z,

where Q = [q1 q2 ... qN] is anN x N matrix with q 1 = ~th and J.t E ~is a suitable constant such that QQT = M. In other words, the switching hyperplane becomes { x E ~N : x 1 = d}, where d = J-Ld'. Such a transformation matrix Q does exist and can be obtained in the following way. Recalling that M is real, symmetric and positive definite, we write M = P D pT, where P is orthogonal and D is diagonal. Take another orthogonal matrix U with the property that u1 = J-LD-1 1 2 pTh, where Ut is the first column ofU. Hence J.t = 1/IID-1 1 2 pThll where 11• 11 denotes the Euclidean 2-norm. Then it is easy to verify that Q = P D 1 1 2 U is as required.

After the transformation x = QT z, system (2) takes the form X -{ ~: + QTbt ::: :: : ~

where K = QT At(QT)-l and K = QT A2(QT)-1 . By our choice ofQ, both K and K are real symmetric negative definite matrices. From the continuity of the vector field, we have

(K-K)x + QTb' = 0 when Xt =d. ( 4 
) Let k = [kt k2 ... kN] and K = [kt k2 ... kN]. Then (4) reads ~ ~ ~ T d(kt-kt) + X2(k2-k2) + .. • + XN(kN-kN) + Q b' = 0,
which most hold Vxi E ~. i = 2, ... , N. Thus, we arrive at

~ ~ k1 = k1 + k, ki = ki, i = 2, ... , N, where k = -( 1/ d) QT b'. Therefore, (3) can be expressed as { Kx x = K x + k ( x 1 -d) for Xt > d '
for [START_REF] Cooke | The existence of periodic solutions and normal mode vibrations in nonlinear systems[END_REF] or in a more compact form [START_REF] Caughey | Classical normal modes in damped linear dynamics systems[END_REF] where Xe = dk-Ik. Moreover, by the symmetry of k, k must be of the form k=[x; 0 ... O]T.

{ Kx x = K(x-Xe) for XI < d for XI > d '
Either equation [START_REF] Cooke | The existence of periodic solutions and normal mode vibrations in nonlinear systems[END_REF] or equation ( 6) can be considered as the canonical form of the PWL system (3) with x; as a parameter, and when x; = 0, they reduce to a purely linear system. Also, for d = 0, the system reduces to that discussed i!l [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF].

It will be clear in Section 4 that as far as K is negative definite, x; is not restricted in size in our analysis. However, since the method of asymptotic expansion is used, the magnitude of x; might affect the region of validity of the expansions. This will be discussed in Section 6.

The Poincare Map

In this section, we derive the Poincare map for the PWL system in canonical form [START_REF] Caughey | Classical normal modes in damped linear dynamics systems[END_REF], which will be used to construct the nonlinear normal mode in the next section. The switching hyperplane provides a natural Poincare section. To this aim, we make use of the symmetry of K and k, and the linearity of the subsystems. Since both subsystems are linear, we can obtain their solutions in closed form which enables one to obtain an analytical, although implicit, expression for the Poincare map.

Let us start with the derivation of the solutions of the linear subsystems. Let { -w[, vi }~I and { -w[, vi}~1 be the eigenpairs of K and k, respectively. Suppose that the eigenvectors are normalized in such a way that they have magnitude one and positive first entries, i.e., let vi = [vii v2i ... VNiJT and Vi = [v,i v2i ... VNi]r, then Vti > 0 and VIi > 0. Then the solution of the first linear subsystem is N x(t) = L Vi(ai cos wit+ bi sin wit)= V(C(t)a + S(t)b); [START_REF] Caughey | A method for examining steady state solutions of forced discrete systems with strong nonlinearities[END_REF] i=l N y(t) =: x(t) = LWiVi(-aisinwit + biCOSWit) = vn(-S(ta + C(t)b) , [START_REF] Greenberg | Modal subspaces and normal mode vibrations[END_REF] i=l where V = [vi v2 ... VN] is orthogonal since K is real symmetric, C(t) = diag(cosw 1 t, COSwzt, ... , COS WNt), S(t) = diag(sinw1t, sin W2t, ... , sin WNt), n = diag(wl , w2, ... , WN ), and a = [at az . . . aNJT, b = [bt b2 . . . bn]T E i'RN are coefficients determined by the initial conditions. Setting t ::::: 0 in equations [START_REF] Caughey | A method for examining steady state solutions of forced discrete systems with strong nonlinearities[END_REF] and [START_REF] Greenberg | Modal subspaces and normal mode vibrations[END_REF], we have

x(O) = Va, which leads to

y(O) = Vnb, a= v-1 x(O) = vr x(O),
Inserting [START_REF] Kim | Stability and bifurcation analysis of oscillators with piecewise linear characteristics: A general approach[END_REF] back into [START_REF] Caughey | A method for examining steady state solutions of forced discrete systems with strong nonlinearities[END_REF] and [START_REF] Greenberg | Modal subspaces and normal mode vibrations[END_REF] one obtains

x ( t) = v c ( t) vr x ( o) + v s ( t) n -I vr y ( o); y(t) = -VOS(t)VT x(O) + VOC(t)n-1 vr y(O); (9)
or in an integrated form w(t) = T(t)w(O), [START_REF] Month | An application of Poincare map to the stability of nonlinear normal modes[END_REF] where w(t) = [x(t) y(t)]T and

( ) _ [ V(C)(t)VT VS(t)n-tvT l T t --VOS(t)VT VC(t)VT '
is a 2N x 2N matrix composed of four N x N matrices. Note that we have used the commutative property of two diagonal matrices to simplify the expression. Furthermore, we can put T(t) in the clearer form

( ) = [ V 0] [ C(t) S(t)n- 1 ] [ vr 0 l• T t 0 V -OS(t) C(t)
0 vr [START_REF] Natsiavas | On the dynamics of oscillators with bilinear damping and stiffness[END_REF] It is not difficult to see that T( t) is invertible and that its inverse is given by

T ( ) _ 1 = [ v o ] [ c ( t) -s ( t) n - 1 ] [ vr o ]• t 0 V OS(t) C(t) 0 vr (12)
For the solution of the second linear subsystem, a similar procedure gives

w(t) =We+ T(t)(w(O)-we), (13) 
where we= [xe o]T and T(t) has a definition similar to T(t) and can be obtained from T (t)

by replacing wi, Vi with Wi, fJi . Note that forK,= 0, T(t) = T(t) andxe = 0, and equation [START_REF] Nayfeh | Nonlinear normal modes of a continuous system with quadratic nonlinearities[END_REF] reduces to equation [START_REF] Month | An application of Poincare map to the stability of nonlinear normal modes[END_REF].

We are now in a position to construct the Poincare map. Define the surfaces of section (here, hyperplanes)

2: = { w E ~2N : x 1 = d and Y1 > 0} and 2:* = { w E ~2N : Xt = d and Yt < 0} •
The Poincare map F : ~ --+ ~ is thus defined as [START_REF] Nayfeh | On nonlinear modes of systems with internal resonance[END_REF] Vw E :E, where thi is the time required to take w to a point w * on~* and th2 is that required to return from w* back to :E. In general, both tht and th2 satisfy transcendental algebraic equations and only approximate solutions are possible (see [START_REF] Natsiavas | On the dynamics of oscillators with bilinear damping and stiffness[END_REF][START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF]). Note that although the system is piecewise linear, the corresponding Poincare map is smooth. expansions is provided in this section. Since the systems considered here are conservative, it is well known that each normal mode is a collection of periodic motions [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF]. In other words, we are seeking invariant manifolds in state space that are composed of one-parameter families of periodic orbits. Therefore, when viewed in the Poincare map, the invariant manifold is a one-parameter family of fixed points.

Normal Modes for the PWL System

In the linear case, that is, when K = 0 in system (6), a normal mode is a two-dimensional plane in state space, which intersects the switching hyperplane along a straight line. This line constitutes the one-parameter family of fixed points for the Poincare map ( 14) for the corresponding normal mode. To fix the ideas, let us take the first mode as an example. Let the corresponding eigenvector be written as Vt = (v11/d)[d u2 ... UN]T, where ui = dvii/vn, i = 2, ... , N. Then the 2-D invariant plane for this mode is:

{w = [x y]T E ~2N: x = avi,Y = f3vi,a,;3 E ~},
which is composed of a family of ellipses that are periodic solutions with different amplitudes but the same frequency Wt, as shown in Figure 1. Figure 2 shows the corresponding fixed point family for the Poincare map, given by

{ W = [x yf E 'R 2 N: X=_!!:..._ Vt,Y = j3v1,j3 > 0}.
VII ForK -/= 0, the 2-D invariant plane in state space as well as the one-parameter family of fixed points on the Poincare section will be distorted. The fixed point family is no longer a straight line as in the linear case, but a curve emanating from a point Wt = [( d/vt 1 )vi o]T (see Figure 2). Correspondingly, the invariant plane will become an invariant manifold consisting of two pieces. One piece is an elliptic disk near the origin which represents the small amplitude vibration and is tangent to the switching hyperplane at Wt. This piece is a portion of the linear normal mode of the first linear subsystem since near the origin the system is linear. The other piece represents large amplitude vibration and involves both linear subsystems. This piece again contains two parts, one in the region xI < d and the other in XJ > d. The two parts must match along the Poincare section in the sense that they meet at the curve of fixed points. Figure 3 is a qualitative sketch of such an invariant manifold.

In order to obtain the normal mode, we only need to construct the large amplitude piece since the elliptic disk is already known. Because it is generally impossible to obtain the entire invariant manifold in closed form, we shall employ the method of asymptotic expansions which allows us to obtain an approximate invariant manifold in the neighborhood of the elliptic disk. For this purpose, it is natural to use polar coordinates, in contrast with the Cartesian coordinates used by Shaw and Pierre [START_REF] Shaw | Normal modes for nonlinear vibratory systems[END_REF].

There are several steps involved in the procedure for constructing a normal mode for a PWL systems, and the procedure is exactly the same for each mode. First, an approximation to the curve of fixed points is determined. Next, using the curve obtained as a matching condition, the large amplitude piece of the invariant manifold, which is in the neighborhood of the elliptic disk and belongs to the region Xt < d, is obtained in a series form of polar coordinates. Finally, by matching the curve from the first step again, and by making use of another set of polar coordinates, the other portion of the invariant manifold belonging to the region x 1 > d is expanded in the neighborhood of Wt. Then, by gluing together these two pieces and the elliptic disk from the linear normal mode, we are able to construct an approximation of the entire nonlinear normal mode for the PWL system. In what follows, we will explain these steps in some detail. Again, we take the first mode as the illustrative example, where the extension to the other modes is straightforward.

The fixed points of the Poincare map are those on ~ satisfying

F(w) = w, ( 15 
)
subject to [START_REF] Pak | Free vibrations of a thin elastica by normal modes[END_REF] where {•}i represents the i-th element of{•}. In general, equation ( 15) together with equation ( 16) comprises a set of 2N + In order to determine the one-parameter family of fixed points corresponding to the first mode, we can assume a solution in a series in terms of the velocity of the first degree of freedom at the switching point, Yt, up to m-th order as the following

Yl -8• - ' M Xi = Ui + L f.Lij8j + O(m + 1), j=l m Yi L Vij8j + O(m + 1), j=l m th1 = 2:: Ttj8j + O(m + 1); j=l . (17) 
i =2, ... ,N;

(18) i = 2, ... ,N;

(

where 0( m + 1) denotes the higher order terms and the f.Li/s, Vi/s, and Ti/s are unknown coefficients, depending on the parameter "'' which are to be determined. Recall that ui = dvit/vu and [d u2 . . . uN]T is an eigenvector associated with the first mode of the first linear subsystem. Note here that we have assumed vn -1-0. In general, if vli = 0 for some 1 < i < N, then the i-th nonnal mode of the PWL system is the same as that of the first linear subsystem, i.e., a 2-D plane. This is because on this mode, Xt -0 and hence it will never exceed d. Note also that as a 8--+ 0 in equations [START_REF] Rand | Bifurcation of nonlinear normal modes in a class of2 degrees of freedom systems[END_REF] through [START_REF] Rand | The geometrical stability of nonlinear normal modes in 2 degrees of freedom systems[END_REF], the assumed solution reduces to Wt, which is a fixed point for all values of K.

Substituting equations ( 17)- [START_REF] Rand | The geometrical stability of nonlinear normal modes in 2 degrees of freedom systems[END_REF] into equations [START_REF] Pak | On the existence of normal mode vibrations in nonlinear systems[END_REF] and [START_REF] Pak | Free vibrations of a thin elastica by normal modes[END_REF], and matching the coefficients of the same order of 8, we obtain m(2N + 1) equations. In doing this, we need power series expansions ofT( th 1 ) and T( th 2 ) about 6 = 0 up to order m. Then the solution of the /-Lij 's, Vij 's, and Tij 's are obtained by solving these equations sequentially. This completes the first step in the process. Notice that there are m(2N + 1) equations and only 2mN unknowns, although some of the equations are redundant.

Before moving to the next step, we transform the coordinates ( x1, y 1 ) to a polar form ( r, e)

defined by

Xt = rcose, Yl = wrr sin e. ( 22 
)
As a result, a periodic solution of the first mode of the first linear subsystem can be represented simply as r = constant when projected onto (x 1 , yt) plane. Then when r < d, the normal mode can be expressed as

Ui Xi = d rcose, 2 < i < N; ui . e Yi = d WtTSlll ' 2 < i < N,
which is the elliptic disk mentioned above. Generally, in terms of (r, 0), the normal mode for the PWL system takes the form 7 w1r sin B + 9i2(r, B) for rcose > d for 2 < i < N. Basically, our aim in this section is to find approximate solutions for fij(r, B)

and gij(r, B). Clearly, these functions must satisfythe continuity condition on the boundaries.

Next, consider the region r > d and r cos() < d, which is outside the elliptic disk but still governed by the first linear subsystem. Let P( 8) be a fixed point on 2] with y 1 coordinate being 8 and others being given from the first step in equations ( 18) and [START_REF] Rand | A direct method for nonlinear normal modes[END_REF]. Then there must be a periodic trajectory passing through P. 1 Let Po ( 8) be a point on the trajectory in this region whose coordinates are

Xt = T cos(), i=2, ... ,N; ( 25 
) m Yt = w1r sine, Yi = ~i w1r sine+~ /3ij8i + O(m + 1), i = 2, ... , N, (26) 
j=l where the O:ij 's and /3ij 's are functions of e to be determined, r is a function of 8 and () and is assumed to be m r = d+ "L.,rj8j +O(m+ 1), j=l [START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF] where the rj's are also functions of() to be determined. In other words, Po is a point on the normal mode. Reference to Figure 4, which is the state space projected onto the ( x 1 , y 1 ) plane, may clarify matters for the reader at this point. If 8 = 0 in equations ( 25)- [START_REF] Shaw | A periodically forced piecewise linear oscillator[END_REF], Pe becomes a point on the boundary of the elliptic disk and will reach the Poincare section L: at time t = B / WJ. Therefore, it is natural to express the hitting time th(} of Po to P as

B m ih(} = -+ L,tj8j + O(m + 1), Wt . l ]= i =2, ... ,N, (28) 
where the tj 's are again functions of e to be determined.

With Po as the initial point w(O) and substituting expressions ( 25)-( 28) into equation [START_REF] Month | An application of Poincare map to the stability of nonlinear normal modes[END_REF], we obtain w(thB) = P or [START_REF] Shaw | Nonlinear normal modes and invariant manifolds[END_REF] By expanding T(the) with respect to 8 = 0 up to order m and matching coefficients of like order in 8 in equation [START_REF] Shaw | Nonlinear normal modes and invariant manifolds[END_REF], one can solve for the a ij 's, f3i j 's, r j 's and t j 's. Then, by inverting the power series of equation ( 27), 8 can be obtained as an approximate function of r and e. Entering the resulting 8(r, (}) into equations [START_REF] Shaw | On the dynamic response of a system with dry friction[END_REF] and [START_REF] Shaw | An invariant manifold approach to nonlinear normal modes of oscillation[END_REF], and comparing the result with equations (23) and [START_REF] Rosenberg | Nonsimi1ar normal mode vibrations of nonlinear systems having two degrees of freedom[END_REF], we have [START_REF] Sparrow | Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function[END_REF] j=l which completes the second step.

m fit (r, (}) ~ L aij(0)8(r, (})j; (30) j=l m 9it(r,B) ~ Lf3ij(B)8(r,O)j,
Finally, to build up the piece of invariant manifold in the region r cos(} > d, we need another polar coordinate set ( f, ¢) for ( x 1, Yt) as shown in Figure 5. Let P ¢ ( 8) be a point on the periodic orbit passing through P. In view of the fact that P¢ is in the neighborhood of Wt, the coordinates of P¢ are assumed to be 32) through [START_REF] Thompson | Subharmonic resonance and chaotic motions of a bilinear oscillator[END_REF], then f = 0, and both P¢H and P shrink to the same point, Wt• Again, the backward hitting time th¢> for P¢ to Pis expressed as a series in 8 as follows m th¢ = Li18j + O(m + 1). j=l [START_REF] Vakakis | Analysis and identification of linear and nonlinear normal modes in vibrating systems[END_REF] As in the procedure described above, the expansion coefficients Cxij 's, ~ij 's, f j 's and ij 's are unknown functions of ¢ determined by the matching condition [START_REF] Vakakis | A theorem on the exact nonsimilar steady state motions of a nonlinear oscillator[END_REF] Transforming (f, ¢) back to (r, B), and from equation [START_REF] Thompson | Subharmonic resonance and chaotic motions of a bilinear oscillator[END_REF], we solve for 8 as a function of (r, B). Then, comparing equations ( 32) and [START_REF] Szemplinska | The Behavior of Nonlinear Vibrating Systems[END_REF] with equations ( 23) and ( 24), we obtain [START_REF] Vakakis | Normal modes and global dynamics of a 2 degrees of freedom system-II. High energies[END_REF] where one should note that 8(r, B) here is a different function from that given in equations [START_REF] Shaw | Normal modes of vibration for nonlinear continuous systems[END_REF] and [START_REF] Sparrow | Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function[END_REF] since they are in different regions of (r, B). This is the final step and it completes the procedure for generating the normal modes of the PWL system [START_REF] Caughey | Classical normal modes in damped linear dynamics systems[END_REF].

m !i2(r, B) ~ L Cxij(r, B)8(r, B)l; j=l m gi2(r, B) ~ L ~ij(r, B)8(r, B)j, j=l (37) 
This section is ended with some remarks on the order of approximation. Since we are expanding the invariant manifold around an invariant disk, solutions will be accurate close to the disk. Here the measurement of closeness is 8, the YI coordinate of a fixed point on the Poincare section ~. Throughout the paper, the order of approximation is in terms of 8.

One may relate 8 to the energy level of the modal motion above and near the switching hyperplane. A larger 8 represents a higher energy level on the invariant manifold. However, their relationship cannot be obtained in closed form since a closed form expression for the invariant manifold is not available.

THE EXISTENCE AND UNIQUENESS OF THE NORMAL MODES

The problem of determining the existence and uniqueness of nonlinear normal modes has been the subject of many efforts since the concept of nonlinear normal modes was introduced [START_REF] Cooke | The existence of periodic solutions and normal mode vibrations in nonlinear systems[END_REF][START_REF] Pak | On the existence of normal mode vibrations in nonlinear systems[END_REF][START_REF] Rand | A direct method for nonlinear normal modes[END_REF][START_REF] Yen | On the normal modes of nonlinear dual-mass systems[END_REF]. For smooth nonlinear systems, the existence problem is well understood. As for uniqueness, the Lyapunov center theorem states that the number of nonlinear normal modes is the same as that of linear modes under nonresonant conditions [START_REF] Shaw | Normal modes of vibration for nonlinear continuous systems[END_REF]. In the case of internal resonance, Nayfeh and Chin reported in [START_REF] Nayfeh | On nonlinear modes of systems with internal resonance[END_REF] that the number of nonlinear normal modes may exceed the number of linear ones. For PWL systems, both the existence and uniqueness problems remain open. In [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF], Zuo and Cumier numerically obtained the normal modes for a special class of PWL systems and discussed the bifurcation of these modes. However, they did not address the existence problem, nor did they investigate internally resonant cases.

Although we do not have a definite answer to the problem of existence and uniqueness of normal modes for PWL systems either, some evidence (a necessary condition) to the existence of the normal modes has been determined. Specifically, the problem is related to the solution of the fixed point equations ( 15) and ( 16). If, for a given linear mode, there is a unique one parameter family of fixed points satisfying equations ( 15) and ( 16), then the nonlinear normal mode exists and is unique for the given mode. Suppose this is indeed the case. Then there must be exactly 2N independent equations in the set of 2N + 1 simultaneous equations (equations ( 15) and ( 16)), i.e., essentially, only one of the equations in ( 15) and ( 16) depends on the others. This is verified by the illustrative example following in Section 6. In other words, the Jacobian matrix of equations ( 15) and ( 16) at the given linear mode with K = 0 and 8 = 0 should have rank equal to 2N.It is shown in Appendix A that this is generally true for nonresonant cases. In lieu of equations ( 15) and ( 16), a more convenient but equivalent form of fixed point equations is used in Appendix A. Under resonant conditions, the rank of the Jacobian matrix will be less than 2N, indicating the possibility of non unique normal modes for a given linear mode. Interestingly, one should note that the PWL system is linear locally and hence the normal mode is unique near the origin, whether resonant or not. Over the switching hyperplane, however, the normal mode can split into several pieces.

Modal Dynamics for the PWL System

With the normal modes in hand, the next step is to establish the dynamics of the normal modes. As expected, the modal dynamics are also of piecewise type.

Again, the first mode is considered here. Its local coordinate system is taken to be the polar form (r, B) defined by equation [START_REF] Rosenberg | The normal modes of nonlinear n degrees of freedom systems[END_REF]. Hence [START_REF] Yen | On the normal modes of nonlinear dual-mass systems[END_REF] From the state equations, ±1 and iJI are functions of x andy, which are related tor and() on the first mode in piecewise fashion by equations ( 22)- [START_REF] Rosenberg | Nonsimi1ar normal mode vibrations of nonlinear systems having two degrees of freedom[END_REF]. From equation ( 5 (r,B)]T fori = 1 and 2 are as defined in equation [START_REF] Rosenberg | On nonlinear vibrations of systems with many degrees of freedom[END_REF] and their approximate solutions are given in equations [START_REF] Shaw | Normal modes of vibration for nonlinear continuous systems[END_REF] and [START_REF] Vakakis | Normal modes and global dynamics of a 2 degrees of freedom system-I. Low energies[END_REF]. Also, the reader should recall that { •} 1 stands for the first element of { •}. Therefore, where ki is the first column of K. Inserting expressions [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF] and (42) into equations [START_REF] Vander | On normal mode vibrations of nonlinear conservative systems[END_REF] and [START_REF] Yen | On the normal modes of nonlinear dual-mass systems[END_REF], one obtains the dynamics of the first mode as

0 forr < d r = s~/J [kffi(r,B)] forr > dandrcosB < d (43) s~/} [kf fz(r, 8) + K,(r cos()-d)] for r cos e > d for r < d B= -wt+:~: [kfft(r,B)]
forr>dandrcosB<d.

(

) -WI + ~~: [kf h(r, ()) + K,(r COS()-d)] for r COS() > d 44 
As expected, the modal dynamics are of piecewise type and can be regarded as a one degree of freedom nonlinear oscillator. Also, it is easy to see that the right-hand sides of ( 42)-( 44) are continuous. Note that the first piece (r < d) is for motions of the first linear subsystem, which govern for energy levels below that required to exceed the switching hyperplane, while the second and third pieces describe the motion in the two linear domains for higher energy levels. Due to the piecewise nature of the equations, however, conventional methods in determining the frequency-amplitude relationship of nonlinear oscillators fail to apply here. Conventional methods make use of perturbation techniques which require the system to be smooth, which is not the case here. Despite these difficulties, we can still determine the frequency-amplitude relationship of the modal dynamics from the analysis presented in Section 4, rather than deal with equations ( 43) and ( 44) directly.

Consider the motion on the normal mode. When the amplitude is sufficiently small that the vibration stays in the disk region r < d, the system is linear with constant frequency w 1 .

If the vibration is large enough, it will hit the switching hyperplane at a fixed point on the Poincare section ~. Each fixed point is parameterized by the y 1 coordinate and is given by equations ( 17)-( 19) in Section 4. For each Yt = 8, we have one such oscillation whose period is equal to tp = thi + thz, which is also parameterized by 8, as given in equations [START_REF] Rand | A higher order approximation for nonlinear normal modes in two degrees of freedom systems[END_REF] and [START_REF] Rand | The geometrical stability of nonlinear normal modes in 2 degrees of freedom systems[END_REF]. Specifically, where tpj = Ttj + 72j. Thus, the frequency can be easily calculated from

w1 = Zn = Wt + 'EWtjDj + O(m + 1). ip j==l (45)
Equation ( 45) is the frequency-amplitude relationship of the first modal dynamics in terms of 6. We can also convert equation ( 45) to the usual form of relationship between w 1 and A 1 , the peak displacement of XJ. To do this, let iiJ = [x y]T be a fixed point on~ with y 1 = 6.

The peak displacement occurs when the velocity is zero, i.e., Yl = 0. With iJJ as the initial point, we thus seek the value of x1 at Yl = 0. First, the time tho bringing Yl = 8 to Yt = 0 is obtained in terms of a power series in 6 by solving approximately up to the m-th order of 6. Then the peak displacement of x1 is simply given by

(46)
which is also a series form of 6. Using equation ( 46), one can obtain 6 as a function of At in a series in terms of 8. The frequency-amplitude dependence in terms of A 1 is then expressed as for

At < d for At > d
These ideas are now demonstrated by an example.

Example: A Two Degrees of Freedom System with a Clearance

(47)

The system to be considered is shown in Figure 6, which is an undamped, two degrees of freedom system with a clearance. Except for the clearance, no other nonlinearities appear in the system. Following the procedure provided above, the normal modes for the system, the associated modal dynamics and the frequency-amplitude relationship will be given for both normal modes. Numerical simulations are also carried out to compare with the theoretical results.

It is important to point out that most of the manipulations encountered here, such as power series expansions, inversion of power series, and solving for the unknown coefficients of the normal modes, can hardly be done without the aid of computer symbolic manipulators. Indeed, much of the work for this example was done by Mathematica ™ running on a Macintosh II ex computer. All of the numerical simulations presented were carried out using MatLab on a Sun station.

Assume that the springs are unstressed at the equilibrium position, where the displacements XI and x 2 are zero. In addition, all the values for inertia, stiffnesses, and clearance magnitude are taken to be unity except the free spring whose stiffness is assumed to be /1,. The equations of motion are, therefore, for

XI < 1 for x 1 > 1 (48) (49)
In terms of the canonical form given in equation ( 6), the equations of motion are expressed with the following definitions:

d = 1, Xe = ( 3~JK) l 3+2K K= [ -2 1 l 1 -2 ' K [ -2-K, 1 l• 1 - 2 
The eigenpairs of K are -wi = -1, "'=~c);

-wi = -3, A and those for K are where

)q = -K, + J4 + /1,2 2 
Thus, we have

v, = j 1 ~ A} ( ; 1 ) ; v 2 = -Jr=i=~=A=~ UJ , V= ~[: ~~] ,
and is given by

/-l2l = o, /-l22 = 0, 1, vzz = 0, 121 = -2, 122 = 0, t-tz 3 = 3J3 (1 -c) ' 2+1'\; 123 = 3
Then from equations ( 54)-(56), we also get 2(1 + 11.)

TJ 1 = 2, 112 = 0, 113 = - . 3 
Consequently, the one parameter family of fixed points on ~ can be expressed in terms of Yl as YI 8,

(72)

SK, 3 (73) 
X2 1 + V3 8 + 0(4), 3 3 (1 -c) K 3 (74) 
Y2 = 8--8 + 0(4).

3

The corresponding set of fixed points for the second mode, obtained in the same manner, is

given by

YI = 8, s' /'i, -1 + 8 3 + 0(4) 270 (1 -c') ' K -8 --8 3 + 0(4) 27 ' Y2 =
where s' = sin(27r I J3) and c' = cos(27r I J3).

THENORMALMODES

Based on equations ( 72)-( 74), the invariant manifold in the region x 1 < 1 can be constructed.

First, let P denote a fixed point on :E with the coordinates described in equations ( 72)-(74).

Since w 1 == 1, the coordinate transformation in equation ( 22) becomes

XI = r COS(), YJ = r sin 8. ( 75 
)
Suppose that a point Po on the periodic orbit passing through P has coordinates

x 2 = rcose + az18 + a 22 8 2 + a238 3 + 0(4), ( 76 
) yz = r sine+ (3218 + f3zz8 2 + (3238 3 + 0(4) , (77) 
in addition to x 1 and y 1 given in equation ( 75). Here r is not arbitrary. Depending on 8 and e, it must be chosen so that Po lies on the periodic orbit. Hence we take (78)

The hitting time from Pe to P is assumed to be of the form

th() = B + t1b + t2b 2 + t3b 3 + 0(4). (79) 
Substitution of equations ( 75)-(79) into equation ( 29) yields a set of 12 algebraic equations from which one can determine the 12 unknown coefficients in equations ( 76)-(79). The solution procedure is quite similar to that presented in Section 6.1 and is not repeated here. The resulting solution is

Ct21 =0 ' !321 = 0, r 1 = 0, tr = -1, lX22 =0 ' !322 = 0, 1 r2 =-' 2 t2 = 0 lX23 = v'3 / ' \ , [scos~B+(l-c)sinv'3B], 3 (1 -c) !323 = ( /' \, ) [ s sin J3 B -( 1 -c) cos J3 B], 3 1-c J3 K, {2s-(-/3 + 1)[(1-c) sin(-/3 -1)t9 + scos(J3-1)8]
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(1 -c) For the region r cos B > 1, we set

+ (J3-1)[(1-c) sin(J3 + l)B + scos(v'3 + 1)t9]} , 2+ /' \, 1 .
X 1 = 1 + f COS cp, YI = fsin¢, X2 = Xt + &21D + &22D 2 + &23D 3 + 0(4), A A 2 A 3 Y2 = y 1 + fJ21 D + fJ22 b + /323 D + 0 ( 4), (80) (81) 
(82)

(83) (84) (85) 
as the coordinates of a point P<P on the periodic trajectory through P (see Figure 5). Again, f is not arbitrary. Let f and the backward hitting time th<P of P<P toP be written as ( 1 _ c') (r cos()-1) ,

g~2 (r, B) ~ 0, where 1 K [ 1 (} ( 1) • {) l a23 = -27 ( 1 _ c') s cos y'3 + 1 -c sm y'3 , /'1, [ I , {) ( ') (} l 27 ( 1 _ c 1 ) s sm J3-1-c cos J3 , (88) (89) 
/'1, { r;:; r;:;

[ A-1 V3-1 ] y3 2v 3 s -( v 3 + 1) ( 1 -c') sin y3 () + s' cos V3 () 108 ( 1 -c') 3 3 [ . V3+1 V3+1 ]} -( J3-1) (1 -c 1 ) sm J3 () + s' cos J3 () .
Recall that the parameter K, which is the stiffness of the free spring, accounts for the only nonlinearity in our system. In fact, it can be verified that all of the functions fij, 9ij, ffj, and gij are identically zero when r;, = 0. In this case, all of the modal subspaces are simply two-dimensional planes. Using equations ( 80)-( 81) and ( 88)-( 89), the modal subspaces of the first mode are plotted in Figure 7. Similarly, the modal subs paces of the second mode are shown in Figure 8. From the figures, one can see that the normal modes are of piecewise type with a flat disk at the center.

MODAL DYNAMICS

It follows directly from equations (43) and (44) that the dynamics of the first mode are 0 for r < 1 r= a23(8) sinB[y'2(r-1)-2r3(B)(r-1)]3 for r > 1 and r cos B < 1 ; (90) ~sinB[(rcosB-1) + 3 }3"&~c) (rcosB-l)J31 2 for rcose > 1 The corresponding relationship for the second mode is for At < 1 for At > 1 Again, observe that as "" = 0, the frequencies will be constant, corresponding to the limiting linear system.

It is also interesting to note that the modal motion for this system is synchronous in the sense that both masses simultaneously reach their peaks. However, the displacements do not necessarily vanish simultaneously. Such a phenomenon has been verified in [START_REF] Zuo | Nonlinear real and complex modes of conewise linear systems[END_REF] through simulations for a special case of PWL systems. To see this, observe that !323 ( 1r) and (3~3 ( 1r) are zeros, which yield 921 (r, e) ~ 0 and g~l (r, e) ~ 0 when e = 7L Moreover, we already have g 2 z(r, ()) ~ 0 and g~2 (r, e) ~ 0. These imply that both YI and Y2 are necessarily zero when sine = 0 by equation ( 24), the equation for the normal mode. Hence, both modes are synchronous as described above. Thus, we can compute the ratio of peak amplitudes A2/ At for each mode, which are: Mode 1:

Mode 2: A2 { 1 At ~ 1 -v'3 ( 1 -Cj)K: (A -1) 3 1 2 3../3 SJ t A 2 { 1 At ~ 1 + 2 v'6 SK: (A -1) 3 /2 9(1-c) 1
for for where c1 =cos v'3 1r and s 1 = sin v'3 1r.

for At < 1 for A1 > 1

SIMULATION RESULTS AND COMPARISON WITH THE RITZ METHOD

In order to examine the accuracy and validity of the analysis, the exact modal solutions are needed. For a given mode and a given 8, a fixed point on the Poincare section L; is obtained by solving the fixed point equations ( 15) and ( 16) numerically using the fixed point approximation (72)-(74) as an initial guess. With this fixed point as an initial condition, one can then obtain the modal solution by integrating the equations of motion, equations (48) and (49).

Although conventional perturbation techniques fail to apply to PWL systems as mentioned previously, some energy-based methods, like the Ritz method, are applicable here. As a comparison, the Ritz method will be employed to the example PWL system ( 48) and ( 49). Since the Ritz method can be found in many books (for example, [START_REF] Szemplinska | The Behavior of Nonlinear Vibrating Systems[END_REF]), only final results are presented here. The detailed calculations are shown in Appendix B.

In what follows, we shall compare the present method with the Ritz method and the exact solutions obtained through numerical simulations. To guarantee that they belong to the same 

Q) 5-1.1 •• ••-:--•:-Ritz• method:•• •• • • • ••• ./~••
e .

----: present :method. / energy level, the initial conditions for different approaches are chosen in the following way. For a given mode and a fixed 8, the fixed point approximation (equations (72)-( 74)) is taken to be the initial condition for the present approach. The exact solution uses the exact fixed point under the same mode and 8. From this exact solution, one can get the maximum displacement of the first mass At. Then, the initial condition for the Ritz method is given by [At 0 A1 b2 0], where b2 can be found in Appendix B.

In simulations it is observed that for small8, both the present method and the Ritz method have good estimates to the modal solution. However, as 8 increases, the Ritz method gives a better approximation than the present method for the periodic solutions. This is because the present method is based on asymptotic expansion which holds only for small 8, i.e., in the neighborhood of the invariant disk.

The frequency and peak amplitudes relationships are given in Figures 9 and 10 for different combinations of r;, and modes. It is easy to see that good approximations are achieved for both methods for small 8 ( 8 < 0.4 ), while for large 8, the Ritz method is more accurate than the present method. Also, the effect of r;, can be clearly seen.

Conclusions

Based on the construction of a convenient Poincare map and making use of invariant manifold theory, a general procedure for constructing the normal modes of a class of piecewise linear (PWL) vibratory systems has been developed. The class of systems considered contains two linear subsystems separated by a switching hyperplane in state space. It is shown that such a PWL system possesses a canonical form upon which the proposed method applies. There are several steps in this constructive procedure. First, using the switching hyperplane as a Poincare section ~. a one parameter family of fixed points on :E is obtained for each mode. Then, using a form of polar coordinates, the state space is decomposed into three regions.

The first one (r < d) is the region of small amplitude vibrations in which the usual linear modes hold. While both the second (r > d and r cos B < d) and third (r cos B > d) regions correspond to large amplitude motions, they are governed by two different linear subsystems. In the first region, the normal modes are invariant elliptic disks and are easily obtained. The normal modes in the other two regions are constructed by matching the fixed point family on the Poincare section. Each mode in the second region is expanded in a series form around a neighborhood of the invariant disk in the first region. In the last region, the normal mode is expanded in a series form near the point where the invariant disk in the first region and the switching hyperplane are tangent.

From the expressions for the normal modes, the modal dynamics and corresponding frequency-amplitude dependence relationship on each mode are obtained. As expected, the normal modes, the modal dynamics, and the frequency-amplitude relationships are all of piecewise type (although not piecewise linear).

An undamped, two degrees of freedom system with a clearance is demonstrated as an example to illustrate the procedure. The numerical results demonstrate the effectiveness of the procedure. It must be admitted that the Ritz method is far easier to apply and is more accurate in terms of estimating frequencies. The advantage of the present method is that it allows one to construct the differential equations that give the modal dynamics.
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From now on, P instead of P(b) will be used for brevity, similarly for P 8[START_REF] Greenberg | Modal subspaces and normal mode vibrations[END_REF] and P,p[START_REF] Greenberg | Modal subspaces and normal mode vibrations[END_REF] in the sequel.

Consider the first mode and note that Wt = 1, d = 1 and u2 = 1 for our example. We express the fixed point w = [x y]T on I: as Xt = 1, X2 = 1 + Jl2ID + Jl22D 2 + fl23D 3 + 0(4), YI = 8, Y2 = v218 + v228 2 + v238 4 + 0(4), and the hitting times as thl = 1"110 + Tt2D 2 + T13D 3 + 0(4); th2 = 27r + T2t0 + T220 2 + 1"330 3 + 0(4),

(52) (53) where the approximations are done up to third order. The coefficients in equations (50)- ( 53) have to be chosen to satisfy the fixed point equations [START_REF] Pak | On the existence of normal mode vibrations in nonlinear systems[END_REF] and [START_REF] Pak | Free vibrations of a thin elastica by normal modes[END_REF]. Instead of solving equations [START_REF] Pak | On the existence of normal mode vibrations in nonlinear systems[END_REF] and [START_REF] Pak | Free vibrations of a thin elastica by normal modes[END_REF] simultaneously, which requires some cumbersome calculations, we divide the job into several steps. First, th 1 is solved (in terms of other unknowns) from equation [START_REF] Pak | Free vibrations of a thin elastica by normal modes[END_REF]. Next, the hitting point w* of w on :E* is obtained in terms of the unknowns.

Finally, w* is put into equation [START_REF] Pak | On the existence of normal mode vibrations in nonlinear systems[END_REF] and solved. The resulting equations for thi are (56) 

Equations ( 57)-( 59) are significantly more complicated if thl is not obtained first. From equation ( 58), one can see that Yi < 0 when o is sufficiently small and that w* is indeed on

Substituting equations ( 57)-(59) into equation ( 15) results in the following 12 equations with 9 unknowns: The fixed point equations ( 15) and ( 16) are equivalent to the following equation:

where w* = [x* y*JT E ~*. This can be written as

where~= (tht, x2, ... , XN, YI, ... , YN; th2, x2., ... , x jy, Yi, ... , yjy ).

(

We know that when "' = 0, equation (92) possesses the following solution for the first mode: ~0 = ( 0, U2, ... , UN, 0, ... , 0; ~: , U2, ... , UN, 0, ... , 0) , which is the linear solution. The Jacobian matrix of equation ( 92) at (~0 , 0) is given by (after some manipulations)

where the 2N x 2N matrices J1 and J2 are defined by where a = dwiJvu, ON stands for theN-dimensional zero vector, and Im is the identity matrix of order m. If J is nonsingular, by the implicit function theorem, there exists only one fixed point for each "' near 0. Then it is impossible to have a one-parameter family of fixed passing through ( ~0 , 0). Thus, J must be singular in order for the normal mode to exist. It will be shown below that J is indeed not of full rank and exactly has rank equal to 4N-1 if the system has no internal resonance. Let Jibe the i-th column of J. First, replace Jl and hN+l in J by . ' 

. WN )

S -

= dtag 0, Sill -21r, ... , Sill -27r .

Wt W] W]

Therefore, without internal resonance, we will have

for each i = 2, ... , N . It follows that the null space dimension of hN-T(2n/wt) and therefore of J' is 2.

Next, pull out j i and j~N + 1 from J'. The remaining matrix becomes

which has 4N -2 columns. It is obvious that j~ is independent of the columns of J". Also, it is not difficult to check thatj~N+l is dependent on j~ and the columns of J". Thus, we deduce that the rank of J" is 4N-3.

Finally, one can prove that adding j 1 and hN+l back to J" will increase the matrix rank by 2, which results in our claim that J has a rank equal to 4N -1.

If wdwt is an integer for some i =f 1, then hN -T(2n jwr) will have a null space of dimension more than 2, which implies the rank of J will be less than 4N-1.

Appendix B. Detailed Calculations for the Ritz Method

The Ritz method assumes a modal solution of the form:

where w is the modal frequency and b2 is the ratio of peak amplitudes to be determined. The system equation is rewritten as:

Then by minimizing the solution error in the sense 271"

I Ci(B) dB= 0,

where B = wt, w and b2 can be obtained in terms of At . For the example system given in equations ( 48) and (49), equation (93) reads where + corresponds to the first mode and -to the second mode.