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Abstract

In the present paper we study the problem of existence of honest and adaptive confidence sets for

matrix completion. We consider two statistical models: the trace regression model and the Bernoulli

model. In the trace regression model, we show that honest confidence sets that adapt to the unknown

rank of the matrix exist even when the error variance is unknown. Contrary to this, we prove that in

the Bernoulli model, honest and adaptive confidence sets exist only when the error variance is known a

priori. In the course of our proofs we obtain bounds for the minimax rates of certain composite hypothesis

testing problems arising in low rank inference.

Keywords. Low rank recovery, confidence sets, adaptivity, matrix completion, unknown variance, minimax
hypothesis testing.

1 Introduction

In matrix completion we observe n noisy entries of a data matrix M = (Mij) ∈ R
m1×m2 , and we aim at

doing inference on M . In a typical situation of interest, n is much smaller than m1m2, the total number of
entries. This problem arises in many applications such as recommender systems and collaborative filtering
[3, 20], genomics [17] or sensor localization [35]. Two statistical models have been proposed in the matrix
completion literature: the trace-regression model (e.g. [9, 25, 27, 29, 34] ) and the ‘Bernoulli model’ (e.g.
[10, 16, 26]).

In the trace-regression model we observe n pairs (Xi, Y
tr
i ) satisfying

Y tr
i = 〈Xi,M〉+ ǫi = tr(XT

i M) + ǫi, i = 1, . . . , n, (1.1)

where (ǫi) is a noise vector. The random matricesXi ∈ R
m1×m2 are independent of the ǫi’s, chosen uniformly

at random from the set
B =

{

ej(m1)e
T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}

, (1.2)

were the ej(s) are the canonical basis vectors of Rs. In this model Y tr
i returns the noisy value of the entry

corresponding to the random position Xi.

In the Bernoulli model each entry of M +E, where E = (ǫij) ∈ R
m1×m2 is a matrix of random errors, is

observed independently of the other entries with probability p = n/(m1m2). More precisely, if n ≤ m1m2 is
given and Bij are i.i.d. Bernoulli random variables of parameter p independent of the ǫij ’s, we observe

Y Ber
ij = Bij (Mij + ǫij) , 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. (1.3)
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The major difference between these models is that in the trace-regression model multiple sampling of a
particular entry is possible whereas in the Bernoulli model each entry can be sampled at most once. A
further difference is that in the trace regression model the number of observations, n, is fixed whereas in the
Bernoulli model the number of observations n̂ :=

∑

ij Bij is random with expectation En̂ = n. Despite these
differences, the results on minimax optimal recovery obtained for these two models in the literature are very
similar and from a ‘parameter estimation’ point of view the models appear to be effectively equivalent (see,
e.g., [9, 11, 16, 21, 24, 25, 27, 29, 32]).

In the present paper we investigate questions that go beyond mere ‘estimation’ of the matrix parameter,
namely about the existence of confidence sets for estimators M̂ that adapt to the unknown rank of M .
We find that in the case of unknown noise variance, the information-theoretic structure of the two models
considered is fundamentally different: in the trace regression model, even if only an upper bound for the
variance of the noise is known, honest confidence sets exist that have Frobenius-norm diameter that adapts
to the unknown rank of M . Contrary to this, we prove that such confidence regions cannot exist in the
Bernoulli model when the noise variance is unknown. To complement our results we also show how to
construct adaptive honest confidence sets for these two models in the case of known noise variance.

Our results further illustrate that the question of existence of confidence sets that adapt to unknown
structural properties of non-parametric and high-dimensional models is a delicate matter (see e.g. [2, 6, 7,
18, 22, 23, 28, 30, 31, 33, 36] and Chapter 8.3 in [19]) that depends on a rather subtle interaction of certain
‘information geometric’ properties of the model – the material relevant for the present paper is reviewed in
Section 2. Many of these results reveal limitations by showing that confidence regions that adapt to the
whole parameter space do not exist unless one makes specific ‘signal strength’ assumptions. For example,
Low [28] and Giné and Nickl [18] investigated this question in nonparametric density estimation and Nickl
and van de Geer [31] in the sparse high-dimensional regression model.

Related to our results is a recent paper by Carpentier et. al. [14] who have shown that in the trace re-
gression model with design satisfying the Restricted Isometry Property (RIP), the construction of confidence
sets that adapt to the unknown rank of M is possible (if the error variance is known). However, in the case
of matrix completion problem considered here, the RIP does not hold and knowledge of the error variance
is typically not available. Particularly in the ‘Bernoulli model’, the problem of unknown variance can be
expected to be potentially severe: for related standard normal means model (without low rank structure and
without missing observations) Baraud [2] has shown that in the unknown variance case honest confidence sets
of shrinking diameter do not exist, even if the true model is low dimensional. Similarly, in high-dimensional
regression Cai and Guo [8] prove the impossibility of constructing adaptive confidence sets for the lq-loss,
1 ≤ q ≤ 2, of adaptive estimators if the variance is unknown.

This paper is organized as follows: in Subsection 1.1 we formulate the assumptions and collect notation
which we use throughout the paper. Then, in Section 2, we review and present general results about the
existence of honest and adaptive confidence sets in terms of some information-theoretic quantities that
determine the complexity of the adaptation problem at hand. Afterwards we review the literature on
minimax estimation in matrix completion problems. In Section 4 we give an explicit construction of honest
and adaptive confidence sets in the trace-regression case, adapting a U-statistic approach inspired by Robins
and van der Vaart [33] (see also [19], Section 6.4, and [14]). Finally, we present our results for the Bernoulli
model in Section 5. First, we derive an upper bound for the minimax rate of testing a low rank hypothesis
and deduce from it the existence of honest and adaptive confidence regions in the known variance case. Then,
we show that in the Bernoulli model, contrary to the trace-regression case, honest and adaptive confidence
sets over the whole parameter space do not exist if the variance of the errors is not known a priori. Sections
7-8 contain the proofs of our results.

1.1 Notation & assumptions

By construction, in the Bernoulli model (1.3) the expected number of observations, n, is smaller than the total
number of matrix entries, i.e. n ≤ m1m2. To provide a meaningful comparison we will assume throughout
that n ≤ m1m2 also holds in the trace regression model (1.1). In many applications of matrix completion,
such as recommender systems (e.g. [3, 20]) or sensor localization (e.g. [4, 35]) the noise is bounded but
not necessarily identically distributed. This is the assumption which we adopt in the present paper. More
precisely, we assume that the ǫι are independent random variables that are homoscedastic, have zero mean
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and are bounded:

Assumption 1.1. In the models (1.1) and (1.3) with index ι = i and ι = (i, j), respectively, we assume
E(ǫι) = 0, E(ǫ2ι ) = σ2, ǫι ⊥⊥ ǫη for ι 6= η and that there exists a positive constant U > 0 such that almost
surely

max
ι

|ǫι| ≤ U.

We denote by M = (Mij) ∈ R
m1×m2 the unknown matrix of interest and define

m = min(m1,m2),

d = m1 +m2.

For any l ∈ N we set [l] = {1, . . . , l}. Let A,B be matrices in R
m1×m2 . We define the matrix scalar product

as 〈A,B〉 := tr(ATB). The trace norm of the matrix A is defined as ‖A‖∗ :=
∑

σj(A), the operator norm as
‖A‖ := σ1(A) and the Frobenius norm as ‖A‖2F :=

∑

i σ
2
i =

∑

i,j A
2
ij where (σj(A)) are the singular values

of A arranged in decreasing order. Finally ‖A‖∞ = maxi,j |Aij | denotes the largest absolute value of any
entry of A. Given a semi-metric D we define the diameter of a set S by

|S|D := sup{D(x, y) : x, y ∈ S}.

Furthermore, for k ∈ N0 we define the parameter space of rank k matrices with entries bounded by a in
absolute value as

A(a, k) := {A ∈ R
m1×m2 : ‖A‖∞ ≤ a and rank(A) ≤ k}.

Finally, for a subset Σ ⊂ (0, U ] we define

A(a, k)⊗ Σ := {(A, σ) : A ∈ A(a, k), σ ∈ Σ}.

As usual, for sequences an and bn we say an . bn if there exists a constant C independent of n such that
an ≤ C · bn for all n. We write PM,σ (and EM,σ for the corresponding expectation) for the distribution of
the observations in the models (1.1) or (1.3), respectively.

2 Minimax theory for adaptive confidence sets

In this section we present results about existence of honest and adaptive confidence sets in a general minimax
framework. To this end, let Y = Y n

∼ P
n
f on some measure space (Ωn,B), n ∈ N, where f is contained in

some parameter space A, endowed with a semi-metric D. Let rn denote the minimax rate of estimation over
A, i.e.

inf
f̃n:Ωn→A

sup
f∈A

EfD(f̃ , f) ≍ rn(A).

We consider an ‘adaptation hypothesis’ A0 ⊂ A characterised by the fact that the minimax rate of estimation
in A0 is of asymptotically smaller order than in A: rn(A0) = o(rn(A)) as n → ∞. In our matrix inference
setting we will choose for D the distance induced by ‖ · ‖F , for A0,A the parameter spaces A(a, k0) ⊗
Σ, A(a, k) ⊗ Σ from above, k0 = o(k) as min(n,m) → ∞, and data (Yi, Xi) or (Yij , Bij) arising from
equation (1.1) or (1.3), respectively.

Definition 2.1 (Honest and adaptive confidence sets). Let α, α′ > 0 be given. A set
Cn = Cn(Y, α) ⊂ A is a honest confidence set at level α for the model A if

lim inf
n

inf
f∈A

P
n
f (f ∈ Cn) ≥ 1− α. (2.1)

Furthermore, we say that Cn is adaptive for the sub-model A0 at level α′ if there exists a constant K =
K(α, α′) > 0 such that

sup
f∈A0

P
n
f (|Cn|D > Krn(A0)) ≤ α′ (2.2)

while still retaining
sup
f∈A

P
n
f (|Cn|D > Krn(A)) ≤ α′. (2.3)
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We next introduce certain composite testing problems.

Definition 2.2 (Minimax rate of testing & uniformly consistent tests). Consider the testing problem

H0 : f ∈ A0 against H1 : f ∈ A, D(f,A0) ≥ ρn (2.4)

where (ρn : n ∈ N) is a sequence of non-negative numbers. We say that ρn is the minimax rate of testing
for (2.4) if

(i) ∀β > 0 ∃ a constant L = L(β) > 0 and a test Ψn = Ψn(β), Ψn : Ωn → {0, 1} such that

sup
f∈A0

Ef [Ψn] + sup
f∈A, D(f,A0)≥ Lρn

Ef [1−Ψn] ≤ β. (2.5)

We say that such a test Ψn is β-uniformly consistent.

(ii) For some β0 > 0 and any sequence ρ∗n = o(ρn) we have

lim inf
n→∞

inf
Ψn:Ωn→{0,1}

[

sup
f∈A0

Ef [Ψn] + sup
f∈A, D(f,A0)≥ρ∗

n

Ef [1−Ψn]

]

≥ β0 > 0. (2.6)

Theorem 2.1. Let ρn be the minimax rate of testing for the testing problem (2.4) and suppose that β0 > 0
is as in (2.6). Suppose that

rn(A0) = o(ρn).

Then a honest and adaptive confidence set Cn that satisfies (2.1)-(2.3) for any α, α′ > 0 such that 0 <
2α+α′ < β0 does not exist. In fact if 3α < β0, then for any honest confidence set Cn that satisfies (2.1) we
have that

sup
f∈A0

Ef |Cn|D ≥ cρn. (2.7)

for a constant c = c(α) > 0.

The first claim of this theorem is Proposition 8.3.6 in [19]. The lower bound (2.7) also follows from that
proof, arguing as in the proof of Theorem 4 in [15].

A converse of Theorem 2.1 also exists, as can be extracted from Proposition 8.3.7 in [19] and an observation
in Carpentier (see [13], proof of Theorem 3.5 in Section 6). For this we need the notion of an oracle-estimator.

Definition 2.3 (Oracle estimator). Let β > 0 be given. We say that an estimator f̂ satisfies an oracle
inequality at level β if there exists a constant C such that for all f ∈ A we have with P

n
f -probability at least

1− β,

D(f̂ , f) ≤ C inf
Ã∈{A,A0}

(

D(f, Ã) + rn(Ã)
)

. (2.8)

This is a typical property of adaptive estimators, and is for example in the trace-regression setting fulfilled
by the soft-thresholding estimator proposed by Koltchinskii et.al. [27]. The following theorem proves that if
the minimax rate of testing is no larger than the minimax rate of estimation in the adaptation hypothesis,
then honest adaptive confidence sets do exist. The proof is constructive and yields a confidence set of
non-asymptotic coverage at least 1− α.

Theorem 2.2. Let α, α′ > 0 be given. Let ρn be the minimax rate of testing for the problem (2.4) such
that a min(α/2, α′)-uniformly consistent test exists. Assume that ρn ≤ C′rn(A0) for some constant C′ =

C(α, α′) > 0. Moreover, assume that an oracle estimator f̂ at level α/2 fulfilling (2.8) exists. Then there
exists a confidence set Cn that adapts to the sub-model A0 at level α′ satisfying (2.2), (2.3) and that is honest
at level α, i.e.,

sup
f∈A

P
n
f (f /∈ Cn) ≤ α.
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3 Minimax matrix completion

Now we adress the matrix completion problem and start by summarizing some results on minimax rates of
estimation. The following lower bound for the risk of recovering a matrix M0 ∈ A(a, k) has been shown by
Koltchinskii et. al. [27]. In the trace-regression model with Gaussian noise we have for constants β ∈ (0, 1)
and c = c(σ, a) > 0 that

inf
M̂

sup
M0∈A(a,k)

PM0,σ

(

‖M̂ −M0‖2F
m1m2

> c
kd

n

)

≥ β.

A similar lower bound can be obtained in the Bernoulli setting (see Klopp [26]). Matching upper bounds
have been shown in several papers. For example, in the trace-regression setting, Klopp [25] shows that a
constrained Matrix Lasso estimator M̂ := M̂(a, σ) satisfies with PM0,σ-probability at least 1− 2/d

‖M̂ −M0‖2F
m1m2

≤ C
kd log(d)

n
and ‖M0 − M̂‖∞ ≤ 2a (3.1)

as long as m log(d) ≤ n ≤ d2/ log2(d) and where C = C(σ, a) > 0. Similarly, in the Bernoulli model
with noise bounded by U it has been shown in Klopp [26] that an iterative soft thresholding estimator
M̂ := M̂(a, σ) satisfies with PM0,σ-probability at least 1− 8/d

‖M̂ −M0‖2F
m1m2

≤ C
kd

n
and ‖M0 − M̂‖∞ ≤ 2a (3.2)

for n ≥ m log(d) and for a constant C = C(σ, a, U) > 0. These lower and upper bounds imply that for the
Frobenius loss and the parameter space A(a, k) the minimax rate rn,m(A(a, k)) is (at most up to a log-factor)
of order

√

m1m2kd/n. (3.3)

4 Trace Regression Model

We first consider the trace regression model. Recall the assumption n ≤ m1m2 and that we write PM,σ

(and EM,σ for the corresponding expectation) for the distribution of the data in the trace regression model
(1.1) when the parameters are M and σ2. For the sake of precision we sometimes write M0 for the ‘true
parameter’ M that has generated the equation (1.1).
For notational simplicity we assume that n is even. Then we can split our observations in two independent
sub-samples of equal size n/2. In what follows all probabilistic statements are under the distribution P (with
corresponding expectation written E) of the first sub-sample (Y tr

i , Xi)i≤n/2 of size n/2 ∈ N, conditional on
the second sub-sample (Y tr

i , Xi)i>n/2, i.e. we have P(.) = PM0,σ( · |(Y tr
i , Xi)i>n/2).

4.1 A non-asymptotic confidence set in the trace regression model with known

variance of the errors.

In this case we can adapt the construction of Carpentier et. al. [14]. More precisely, we construct a minimax
optimal estimator M̂ using only the second sub-sample (Y tr

i , Xi)i>n/2. That is, we use the matrix lasso
estimator from Klopp [25] which achieves the bound (3.1) with probability at least 1− 2/d. Then, we freeze
M̂ and the second sub-sample. We define the following residual sum of squares statistic:

R̂n =
2

n

∑

i≤n/2

(Y tr
i − 〈Xi, M̂〉)2 − σ2. (4.1)

Given α > 0, let ξα,σ,U =
√
2σU log(α), zα = log(3/α) and, for a z > 0, a fixed constant to be chosen, define

the confidence set

Cn =

{

A ∈ R
m1×m2 :

‖A− M̂‖2F
m1m2

≤ 2

(

R̂n + z
d

n
+

z̄ + ξα,σ,U√
n

)

}

, (4.2)

5



where

z̄2 = z̄2(α, d, n, σ, z) = zασ
2 max

(

3‖A− M̂‖22
m1m2

, 4zd/n

)

.

It is not difficult to see (using that x2 . y + x/
√
n implies x2 . y + 1/n) that

EM0,σ

[ |Cn|2F
m1m2

∣

∣

∣

∣

M̂

]

.
‖M̂ −M0‖2F

m1m2
+

zd+ σ2zα/3

n
+

ξα,σ,U√
n

. (4.3)

Markov’s inequality, (4.3) and that M̂ is minimax optimal (up to a log-factor) with PM0,σ-probability of at
least 1 − 2/d as long as m log(d) ≤ n ≤ d2/ log(d) imply that Cn has an adaptive and up to a log-factor
minimax optimal squared diameter with probability 1 − α′ for any α′ > 2/d. The following theorem shows
that Cn is also a honest confidence set:

Theorem 4.1. Let α > 0, α′ > 2/d and suppose that m log(d) ≤ n ≤ d2/ log(d), that Assumption 1.1 is
satisfied and that σ > 0 is known. Let Cn = Cn(Y, α, σ) be given by (4.2) with z > 0. Then, for every n ∈ N

and every M0 ∈ A(a,m),

PM0,σ (M0 ∈ Cn) ≥ 1− 2α

3
− 2e−zd/(11a2).

Hence, for any 1 ≤ k0 < k ≤ m, Cn is a honest and (up to a log-factor) adaptive confidence set at the level
α for the model A(a, k)⊗ {σ} and adapts to the sub-model A(a, k0)⊗ {σ} at level α′.

The proof of Theorem 4.1 follows the lines of the proof of Theorem 2 in [14] and we omit it here as the
unknown variance results considered in the next section straightforwardly imply the known variance results.

4.2 A non-asymptotic confidence set in the trace regression model with un-

known error variance.

In this subsection we assume, that the precise knowledge of the noise variance σ is not available, although
the quantities a, U are available to the statistician (i.e. upper bounds on the matrix entries and on the noise).
Instead, we assume that σ belongs to a known set Σ ⊂ (0, U ]. In applications of matrix completion this is
usually a realistic assumption.
As in the previous section, we use the second half of the sample, (Y tr

i , Xi)n/2<i≤n, for constructing a minimax

optimal estimator M̂ of M that fulfills ‖M̂‖∞ ≤ a. Since σ is bounded by U we use again the matrix lasso
estimator from Klopp [25] with σ replaced by U which achieves the bound (3.1) with probability at least
1− 2/d. In order to construct the confidence set, we will be interested in all pairs of observations (Y tr

l , Xl)
and (Y tr

s , Xs) in the first sub-sample with 1 ≤ l < s ≤ n/2 such that Xl = Xs (that is, independent
measurements of the same matrix entry). For each (i, j) ∈ [m1] × [m2], let S(i,j) = {k ∈ {1, . . . , n/2} :
Xk = ei(m1)e

T
j (m2)} =: {a1 < ... < ap(i,j)

} where p(i,j) is the number of times that we observe the entry
(i, j). For all indices (i, j) such that S(i,j) 6= ∅, we form the ⌊p(i,j)/2⌋ couples (Xa1 , Xa2), (Xa3 , Xa4), . . . etc.
We denote by N the set of all these pairs and let |N | = N be their number. Re-ordering, we can write
(X̃k, Zk, Z

′
k)k≤N where X̃k = Xl = Xs for some couple (Xl, Xs) ∈ N and Zk = Y tr

l and Z ′
k = Y tr

s . That is,

using two different samples of the same entry X̃k = Xl = Xs we form the observation triples (X̃k, Zk, Z
′
k).

We use (X̃k, Zk, Z
′
k)k≤N to construct a U-Statistic to estimate the squared Frobenius loss. Contrary to the

construction in (4.1) this does not require knowledge of the variance of the errors. We define:

R̂N :=
1

N

N
∑

k=1

(Zk − 〈M̂, X̃k〉)(Z ′
k − 〈M̂, X̃k〉), (4.4)

and we set R̂N = 0 if N = 0. Note that

EM0,σ

[

R̂N

∣

∣

∣

∣

M̂,N ≥ 1

]

=
‖M̂ −M0‖2F

m1m2
. (4.5)
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We define the confidence set

Cn :=

{

A ∈ A(a,m) :
‖A− M̂‖2F

m1m2
≤ R̂N + zα,N

}

(4.6)

where the random quantile constant zα,N is defined as

zα,N :=
U2 + 4a2√

Nα
if N 6= 0 and zα,N = 4a2 if N = 0.

The quantity N is random but we can bound it from below with high probability by n2/(64m1m2) as proven
in the following lemma.

Lemma 4.1. For n ≤ m1m2 we have with probability at least 1− exp
(

−n2/(372m1m2)
)

that:

N ≥ n2

64m1m2
.

Markov’s inequality, (4.5), Lemma 4.1 and that M̂ achieves the nearly optimal rate (3.1) with PM0,σ-
probability of at least 1 − 2/d imply for any k ≤ m, any M0 ∈ A(a, k), any σ ≤ U , any α′ > 2/d +
exp(−n2/(372m1m2)) and a large enough constant C = C(α, α′, σ, a, U) > 0 that

PM0,σ

( |Cn|2F
m1m2

> C
kd log(d)

n

)

≤ α′. (4.7)

Since k is arbitrary this implies that Cn is a confidence set whose ‖ · ‖2F -diameter adapts to the unknown
rank of M0 without requiring the knowledge of σ ∈ Σ. The following theorem implies that Cn is also a
honest confidence set. Note that our result is non-asymptotic and holds for any triple (n,m1,m2) ∈ N

3 as
long as m log d ≤ n ≤ min(d2/ log(d),m1m2).

Theorem 4.2. Let α > 0 be given, assume m log(d) ≤ n ≤ min(d2/ log(d),m1m2) and that Assumption 1.1
is fulfilled. Let Cn = Cn(Y, α) as in (4.6). Then Cn satisfies for any M0 ∈ A(a,m) and any σ ∈ Σ

PM0,σ (M0 ∈ Cn) ≥ 1− α.

Hence, for any α′ > 2/d+ exp(−n2/(372m1m2)) and any 1 ≤ k0 < k ≤ m, Cn is a honest confidence set at
level α for the model A(a, k)⊗Σ that adapts (up to a log-factor) to the rank k0 of any sub-model A(a, k0)⊗Σ
at level α′.

5 Bernoulli Model

In this section we consider the Bernoulli model (1.3). As before we let PM,σ (and EM,σ for the corresponding
expectation) denote the distribution of the data when the parameters are M and σ, and we sometimes write
M0 for the ‘true’ parameter M for the sake of precision.

5.1 A non-asymptotic confidence set in the Bernoulli model with known vari-

ance of the errors.

Here we assume again that σ > 0 is known. In case of the Bernoulli model we are not able to obtain
two independent samples and cannot use the risk estimation approaches from the trace-regression setting.
Instead we use the duality between testing and honest and adaptive confidence sets laid out in Section 2.
We first determine an upper bound for the minimax rate ρ = ρn,m of testing the low rank hypothesis

H0 : M ∈ A(a, k0) against H1 : M ∈ A(a, k), ‖M −A(a, k0)‖2F ≥ ρ2, (5.1)

7



and then apply Theorem 2.2. As test statistic we propose an infimum-test which has previously been used
by Bull and Nickl [6] and Nickl and van de Geer [31] in density estimation and high-dimensional regression,
respectively (see also Section 6.2.4. in [19]). Since σ2 = Eǫ2ij is known we can define the statistic

Tn := inf
A∈A(a,k0)

∣

∣

∣

∣

∣

∣

1√
2n

∑

i,j

Bij

(

(Yij −Aij)
2 − σ2

)

∣

∣

∣

∣

∣

∣

= inf
A∈A(a,k0)

∣

∣

∣

∣

∣

∣

1√
2n

∑

i,j

(

(Yij −BijAij)
2 −Bijσ

2
)

∣

∣

∣

∣

∣

∣

(5.2)

and choose the quantile constant uα such that

Pσ





1√
2n

∣

∣

∣

∣

∣

∣

∑

i,j

Bij(ǫ
2
ij − Eǫ2ij)

∣

∣

∣

∣

∣

∣

> uα



 ≤ α/3. (5.3)

For example, using Markov’s inequality, we get

Pσ





1√
2n

∣

∣

∣

∣

∣

∣

∑

i,j

Bij(ǫ
2
ij − σ2)

∣

∣

∣

∣

∣

∣

> uα



 ≤ 1

2nu2
α

∑

i,j

Varσ
(

Bij(ǫ
2
ij − σ2)

)

≤ σ2(U2 − σ2)

2u2
α

so uα = σ
√

(

3(U2 − σ2)
)

/(2α) is an admissible choice.

Theorem 5.1. Let α ≥ 12 exp(−100d) be given. Consider the Bernoulli model (1.3) and the two parameter
spaces A(a, k) and A(a, k0), 1 ≤ k0 < k ≤ m. Furthermore assume that Assumption 1.1 is fulfilled, that
σ > 0 is known, that n ≥ m log(d) and consider the testing problem (5.1). Suppose

ρ2 ≥ C
m1m2k0d

n
≍ r2n,m(A(a, k0))

where C = C(α, a, U, σ) > 0 is a constant. Then the test Ψn := 1{Tn>uα} where uα is the quantile constant
in (5.3) and Tn is as in (5.2) fulfills

sup
M∈A(a,k0)

EM,σ[Ψn] + sup
M∈A(a,k), ‖M−A(a,k0)‖2

F
≥ρ2

EM,σ[1− Ψn] ≤ α.

Now in order to apply Theorem 2.2 we use the soft-thresholding estimator proposed by Koltchinskii et.
al. [27] which satisfies the oracle inequality (2.8) up to a log-factor in the trace regression model. That this
holds in the Bernoulli-model as well with PM0,σ-probability of at least 1 − 1/d can be proven in a similar
way and we sketch this in Proposition 8.3, removing the log-factor by using stronger bounds on the spectral
norm of the noise matrix (Bijǫij)i,j .

This and Theorem 5.1 imply, using Theorem 2.2, that there exist honest and adaptive confidence sets in
the Bernoulli model if the variance of the errors is known.

Corollary 5.1. Let α ≥ 2/d and α′ ≥ 12 exp(−100d) be given. Suppose that σ > 0 is known, that Assump-
tion 1.1 is fulfilled and that n ≥ m log(d). Then, for any 1 ≤ k0 < k ≤ m, there exists a honest confidence
set Cn at the level α for the model A(a, k)⊗ {σ}, i.e., for any M0 ∈ A(a, k),

PM0,σ (M0 ∈ Cn) ≥ 1− α,

and Cn adapts to the sub-model A(a, k0)⊗ {σ} at level α′.

5.2 The case of the Bernoulli model with unknown error variance.

In this subsection we assume again, as in Subsection 5.2, that the precise knowledge of the error variance σ
is not available. Whereas in this case for the trace-regression model the construction of honest and adaptive
confidence set was seen to be possible, we will now show that this is not the case for the Bernoulli model. We
use again the duality between testing and confidence sets, this time applying Theorem 2.1. The next theorem
gives a lower bound for the minimax rate of testing for the composite null hypothesis H0 : M ∈ A(a, k0)
of M having rank at most k0 against a rank-k alternative. To simplify the exposition we will consider only
square matrices and also an asymptotic ‘high-dimensional’ framework where min(n,m) → ∞ and k0 = o(k).
We formally allow for k0 = 0, thus including the ‘signal detection problem’ when H0 : M = 0, σ2 = 1.
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Theorem 5.2. Suppose that Assumption 1.1 is satisfied for some U ≥ 2 and assume m = m1 = m2.
Furthermore, let k = kn,m → ∞ be such that 0 < k ≤ m1/3 and k1/4

√

m/n < min(1, a)/2. For 0 ≤ k0 < k
satisfying k0 = o(k) and a sequence ρ = ρn,m ∈ (0, 1/2) consider the testing problem

H0 : M ∈ A(a, k0), σ2 = 1 vs H1 : M ∈ A(a, k), ‖M −A(a, k0)‖2F ≥ m2ρ2, σ2 = 1− 4ρ2. (5.4)

If as min(n,m) → ∞,

ρ2 = o
(

√
km

n

)

, (5.5)

then for any test Ψ we have that

lim inf
min(n,m)→∞

[

sup
M∈A(a,k0)

EM,1[Ψ] + sup
M∈A(a,k), ‖M−A(a,k0)‖2

F
≥m2ρ2

E
M,

√
1−4ρ2 [1−Ψ]

]

≥ 1. (5.6)

In particular, if Σ ⊂ (0, U ] contains the interval [
√
1− 4τ , 1] where τ = lim supn,m k1/4

√

m/n, then (2.6)
holds for the choices A0 = A(a, k0)⊗ Σ,A = A(a, k)⊗ Σ and β0 = 1, ρ∗ = ρ.

Using Theorem 2.1 this implies the non-existence of honest and adaptive confidence sets in the model
(1.3) if the variance of the errors is unknown and k0 = o(

√
k). In particular adaptation to a constant rank

k0, k0 = O(1), is never possible if k → ∞ as min(m,n) → ∞.

Corollary 5.2. Assume that the conditions of Theorem 5.2 are fulfilled and that k0 = o(
√
k). Then for

any α, α′ > 0 satisfying 0 < 2α + α′ < 1 a honest confidence set for the model A(a, k) ⊗ Σ at level α that
adapts to the sub-model A(a, k0)⊗Σ at level α′ does not exist. In fact if α < 1/3, we have for every honest
confidence set Cn for the model A(a, k)⊗ Σ at level α and constant c = c(a, U, α) that

sup
(M0,σ)∈A(a,k0)⊗Σ

EM0,σ|Cn|2F ≥ c
m3

√
k

n
.

6 Conclusions

We have investigated confidence sets in two matrix completion models: the Bernoulli model and the trace
regression model. In the trace regression model the construction of adaptive confidence sets is possible, even
if the variance is unknown. Contrary to this we have shown that the information theoretic structure in the
Bernoulli model is different; in this case the construction of adaptive confidence sets is not possible if the
variance is unknown.

One interpretation is that in practical applications (e.g. recommender systems such as Netflix [3]) one
should incentivise users to perform multiple ratings of every product they rate, to justify the use of the trace
regression model and the proposed U-statistic confidence set.

In the case of the Bernoulli model a few questions remain open: Our proof only shows that one can not
adapt to a low rank hypothesis k0 = o(

√
k) if the variance is unknown. It remains an open question whether

the lower bound ρ in Theorem 5.2 is tight, as well as whether adaptation over ‘non-low-rank parameter
spaces’ when k0 ≫

√
k or k > m1/3 is possible.

7 Proofs

7.1 Proof of Theorem 2.2

Proof. Let Ψn be a test that attains the rate ρ with error probabilities bounded by min(α/2, α′) and let

L = L(min(α/2, α′)) be the corresponding constant in (2.5). Let f̂ denote an estimator that satisfies the
oracle inequality (2.8) with probability of at least 1− α/2. Define a confidence set

Cn := {f ∈ A : D(f̂ , f) ≤ K (rn(A)Ψn + rn(A0)(1 −Ψn))}
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where K > 0 is a constant to be chosen.
We first prove that Cn is adaptive: If f ∈ A\A0 there is nothing to prove, and if f ∈ A0 we have

P
n
f (|Cn|D > Krn(A0)) = P

n
f (Ψn = 1) ≤ α′.

For coverage we investigate three distinct cases and note that

sup
f∈Ã

P
n
f

(

D(f̂ , f) > Crn(Ã)
)

≤ α/2 (7.1)

where C > 0 is as in (2.8) and where Ã ∈ {A0,A}. Hence f̂ is, by the oracle inequality, an adaptive
estimator.
Then for f ∈ A0, by (7.1)

P
n
f (f /∈ Cn) ≤ P

n
f

(

D(f̂ , f) > Krn(A0)
)

≤ α/2 ≤ α

for K ≥ C.
If f ∈ A\A0 and D(f,A0) ≥ Lρn, then for K ≥ C

P
n
f (f /∈ Cn) = P

n
f (D(f̂ , f) > Krn(A),Ψn = 1) + P

n
f (D(f̂ , f) > Krn(A),Ψn = 0)

≤ P
n
f (D(f̂ , f) > Krn(A)) + P

n
f (Ψn = 0) ≤ α.

If f /∈ A\A0 but D(f,A0) < Lρn, then by the oracle inequality and since ρn ≤ C′rn(A0) we have with
probability at least 1− α/2 for such f that

D(f̂ , f) ≤ C(D(f,A0) + rn(A0)) ≤ CLρn + Crn(A0) ≤ C(LC′ + 1)rn(A0).

Thus we still have
P
n
f (f /∈ Cn) = P

n
f (D(f̂ , f) > Krn(A0)) ≤ α/2 ≤ α

for K ≥ C(LC′ + 1).

7.2 Proof of Theorem 4.2

Proof. Recall that

EM0,σ

(

R̂N |N,N > 0
)

=
‖M̂ −M0‖2F

m1m2
=: r. (7.2)

Thus using Markov’s inequality we have for N > 0 that

PM0,σ (M0 /∈ Cn|N,N > 0) ≤ PM0,σ

(

|R̂N − r| > zα,N |N,N > 0
)

≤
VarM0,σ

(

R̂N

∣

∣N,N > 0
)

z2α,N
. (7.3)

Using equation (7.2) we compute

VarM0,σ

(

R̂N

∣

∣N,N > 0
)

=
1

N
EM0,σ

(

(

(Zk − 〈M̂, X̃k〉)(Z ′
k − 〈M̂, X̃i〉)− r

)2
∣

∣

∣
N,N > 0

)

≤ 1

N

[(

E〈M0 − M̂,X1〉4
)

+ 2σ2r + σ4
]

=
1

N

[

‖M̂ −M0‖4L4

m1m2
+ 2σ2r + σ4

]

≤ U4 + 8U2a2 + 16a4

N
= αz2α,N

since ‖M̂ −M0‖∞ ≤ 2a and where we define ‖M̂ −M0‖4L4 :=
∑

i,j(M̂ij −Mij)
4. Hence (7.3) implies

PM0,σ (M0 /∈ Cn|N > 0) ≤ α.

Moreover, as ‖M̂ −M0‖∞ ≤ 2a and zα,0 = 4a2, we have that P (M0 /∈ Cn|N = 0) = 0.
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7.3 Proof of Theorem 5.1

Proof. If M ∈ A(a, k0), then by definition of the infimum and uα we have

EM,σ[Ψ] = PM,σ (Tn > uα) ≤ Pσ





1√
2n

∣

∣

∣

∣

∣

∣

∑

ij

Bij(ǫ
2
ij − σ2)

∣

∣

∣

∣

∣

∣

> uα



 ≤ α/3.

The case M ∈ A(a, k), ‖M −A(a, k0)‖2F ≥ ρ2 requires more elaborate arguments. Let A∗ be a minimizer in
(5.2). Then

EM,σ[1−Ψ] = PM,σ (Tn < uα)

= Pσ





∣

∣

∣

∣

∣

∣

∑

ij

Bij [(A
∗
ij −Mij)

2 − 2ǫij(A
∗
ij −Mij) + (ǫ2ij − σ2)]

∣

∣

∣

∣

∣

∣

<
√
2nuα



 . (7.4)

For ρ ≥ 8072a
√

k0d/p = 8072a
√

m1m2k0d/n we can apply Lemma 8.1 which yields a weaker version of the
Restricted Isometry Property (RIP). Namely, Lemma 8.1 implies that the event

Ξ :=







∑

i,j

Bij(Aij −Mij)
2 ≥ p

2
‖A−M‖2F ∀A ∈ A(a, k0)







, M ∈ H1,

occurs with probability of at least 1− 2 exp(−100d). We can thus bound (7.4) by

Pσ



 sup
A∈A(a,k0)



2

∣

∣

∣

∣

∣

∣

∑

i,j

Bijǫij(Aij −Mij)

∣

∣

∣

∣

∣

∣

−
∑

i,j Bij(Aij −Mij)
2

2



 > −√
nuα,Ξ



 (7.5)

+Pσ





∣

∣

∣

∣

∣

∣

∑

i,j

Bij(ǫ
2
ij − σ2)

∣

∣

∣

∣

∣

∣

>

∑

i,j Bij(A
∗
ij −Mij)

2

2
−√

nuα,Ξ



+ 2 exp(−100d). (7.6)

The stochastic term (7.6) can be bounded using d2 ≥ 3n and that ρ is large enough. Indeed, on the event Ξ
we have that

∑

i,j Bij(A
∗
ij −Mij)

2

2
≥ pρ2/4 ≥ (1 +

√
2)/

√
3duα ≥ (1 +

√
2)
√
nuα

for ρ ≥ 2
√

uαd/p which implies together with the definition of uα in (5.3) that (7.6) can be bounded by
α/3 + 2 exp(−100d). For the cross term (7.5) we use the two following inequalities which, just as before,
hold on the event Ξ ∀ A ∈ A(a, k0)

∑

i,j Bij(Aij −Mij)
2

4
≥ √

nuα and

∑

i,j Bij(Aij −Mij)
2

8
≥ p‖A−M‖2F

16
.

Hence, using also a peeling argument, (7.5) can be bounded by

∑

s∈N: pρ2/2≤2s<∞

Pσ



 sup
A∈A(a,k0), 2s≤p‖A−M‖2

F
≤2s+1

∣

∣

∣

∑

i,j Bijǫij(Aij −Mij)
∣

∣

∣

p‖A−M‖2F
>

1

16





≤
∑

s∈N: pρ2/2≤2s<∞

Pσ



 sup
A∈A(a,k0), p‖A−M‖2

F
≤2s+1

∣

∣

∣

∣

∣

∣

∑

i,j

Bijǫij(Aij −Mij)

∣

∣

∣

∣

∣

∣

>
2s

16





=
∑

s∈N: pρ2/2≤2s<∞

Pσ

(

Z(s) >
2s

16

)

(7.7)
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where we set the corresponding probability to 0 if the supremum is taken over an empty set and where we
define

Z(s) := sup
A∈A(a,k0), p‖A−M‖2

F
≤2s+1

∣

∣

∣

∣

∣

∣

∑

i,j

Bijǫij(Aij −Mij)

∣

∣

∣

∣

∣

∣

.

Lemma 8.2 (with choices z = 162, ξij = ǫij , t = 2s and q = 1 there ) implies for ρ ≥ 16144U
√

k0d/p and for
2s ≥ pρ2/2 that

Pσ

(

Z(s) >
2s

16

)

≤ exp

( −2s

2097152U2 + 517120aU

)

Hence, (7.7) can be upper bounded by

∑

s∈N: pρ2/2≤2s<∞

exp

( −2s

2097152U2 + 517120aU

)

≤2 exp

(

− pρ2

2097152U2 + 517120aU

)

(7.8)

≤2 exp(−100d)

for ρ ≥ 16169U(a ∨ U)
√

d/p. Consequently (7.4) can be bounded by α/3 + 4 exp(−100d) ≤ 2α/3 since
α ≥ 12 exp(−100d).

7.4 Proof of Theorem 5.2

Proof. Step I : Reduction to an easier testing problem between two distributions

Assume without loss of generality that m is divisible by k. Suppose

ρ = ρn,m =
vk1/4

√
m√

n
(7.9)

where v = vn,m is a sequence such that v = o(1), and assume w.l.o.g. that 0 < v ≤ 1. Moreover we denote
u = 2ρ. For 1 ≤ i ≤ m, 1 ≤ κ ≤ k, 1 ≤ j ≤ m let

Bij
i.i.d.
∼ B(p) and Uκ

i
i.i.d.
∼ R and Vj

i.i.d.
∼ R,

where B(p) is a Bernoulli distribution of parameter p = n/m2 and R is the standard Rademacher distribution
Pr(V1 = ±1) = 1/2. Let P be a uniform random partition of {1, . . . ,m} in k groups of size m/k, and denote
by Kj , Kj ∈ {1, ..., k}, the label of element j of P . Consider the following testing problem:

H ′
0 : M = 0 and ǫij

i.i.d.
∼ R

against

H ′
1 : Mij = uU

Kj

i Vj (7.10)

and ǫij ∼ δ{1−Mij}(1 +Mij)/2 + δ{−1−Mij}(1−Mi,j)/2

Note that the variance of ǫij under H0 is 1 and the variance of the noise under H1 is

(1 −Mij)
2(1 +Mij)/2 + (−1−Mij)

2(1−Mij)/2 = (1−Mij)(1 +Mij) = 1− 4ρ2,

so the noise variables are homoscedastic across the (i, j)’s and |ǫij | ≤ 2 ≤ U . Let π be the distribution of M
under H ′

1 and write ν0 and ν1 for the distribution of Y under H ′
0 and H ′

1, respectively.
Since the prior M in (7.10) consists of k i.i.d. scaled Rademacher vectors that each form m/k columns of
M we have rank(M) ≤ k and ‖M‖∞ = u = 2ρ ≤ a for v small enough and since k1/4

√

m/n ≤ a/2. Thus
M ∈ A(a, k). Then, reordering the columns of M we have

‖M −A(a, k0)‖2F = ‖Mord −A(a, k0)‖2F
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where Mord is a m × m matrix with the (((i − 1)m/k) + 1)-th to the (im/k)-th columns each given by
uri where ri are i.i.d Rademacher vectors of length m, i = 1, ..., k. Then (as in the proof of Theorem
1 in [15]) we transform Mord into the m × k matrix MordP = u

√

m/kR consisting of k column vectors

u
√

m/kri, i = 1, ..., k. The m × k projection matrix P consists of k column vectors, the i-th having zero

entries except for the indices s ∈ [((i − 1)m/k) + 1, . . . , im/k] where it equals
√

k/m. Hence P is an
orthonormal projection matrix and we obtain

‖M −A(a, k0)‖2F ≥ ‖(Mord −A(a, k0))P‖2F = ‖u
√

m/kR −A(a
√

m/k, k, k0)‖2F
where we define

A(a, k, k0) := {A ∈ R
m×k : ‖A‖∞ ≤ a and rank(A) ≤ k0}.

Therefore, if σmin(A) denotes the minimal singular value of a matrix A, we have that

‖M −A(a, k0)‖2F ≥ m2

k
‖uR/

√
m−A(a, k, k0)‖2F

≥ m2u2

k
(k − k0)(σmin(R/

√
m))2

≥ m2u2

2
(σmin(R/

√
m))2 ≥ m2u2

4
= m2ρ2 (7.11)

with probability going to 1, where we have used that k − k0 ≥ k/2 for m large enough (recall k0 = o(k))
as well as the variational characterisation of minimal eigenvalues combined with Corollary 1 in [31] (with
choices n = m, p = k1 = k, θ = 0 and Λmin = 1 there) to lower bound σ2

min(R/
√
m) by 1/2.

To conclude, π is concentrated on H1 and the primed testing problem above is, asymptotically, strictly easier
than the testing problem (5.4) since H ′

0 is contained in H0 and H ′
1 is asymptotically contained in H1. Thus,

we have for any test Ψ by a standard lower bound (as, e.g., in (6.23) in [19]) that for all η > 0

EH0Ψ+ sup
H1

EH1(1 −Ψ) ≥ EH′

0
Ψ+ EH′

1
(1−Ψ)− o(1) ≥ (1 − η)

(

1− dχ2(ν0, ν1)

η

)

− o(1),

where dχ2(ν0, ν1) denotes the χ2-distance between ν0 and ν1, which remains to be bounded.

Step II : Expectation over censored data

We define I = [m]× [m] and observe that the likelihood of the data under ν0 is

L(Y1, ...Ym,m) =
∏

(i,j)∈I

(

(1− p)1{Yij=0} +
p

2
1{Yij=1} +

p

2
1{Yij=−1}

)

and that the likelihood of the data under ν1 is

L(Y1, ...Ym,m) = EM∼π

∏

(i,j)∈I

(

(1 − p)1{Yij=0} + p(1/2 +Mij/2)1{Yij=1} + p(1/2−Mij/2)1{Yij=−1}

)

.

Thus, the likelihood ratio L between these two distributions is given by

L = EM∼π

∏

(i,j)∈I

(

1{Yij=0} + (1 +Mij)1{Yij=1} + (1−Mij)1{Yij=−1}

)

.

So we have that

dχ2(ν0, ν1)
2 + 1 = EY ∼ν0L2

= EY ∼ν0

[

EM∼π

∏

(i,j)∈I

(

1{Yij=0} + (1 +Mij)1{Yij=1} + (1 −Mij)1{Yij=−1}

)]2

= EM,M ′∼π

∏

i,j

[(

1− p+
p

2
(1 +Mij)(1 +M ′

ij) +
p

2
(1−Mij)(1 −M ′

ij)
)]

= EM,M ′∼π

∏

i,j

[

1 + pMijM
′
ij

]

. (7.12)
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where M ′ is an independent copy of M .

Step III : Conditioning over the cross information

Let Nr,r′ be the number of times where the couple Kj = r,K ′
j = r′ occurs. That is,

Nr,r′ :=
m
∑

j′=1

m
∑

j=1

1{Kj=r,Kj′=r′}.

We enumerate the elements inside these groups from 1 to Nr,r′ . We write Ṽ r,r′

j for the corresponding
enumeration of the Vj . Setting N = (Nr,r′)r,r′ and using the definition of the prior, we compute

EM,M ′∼π

∏

i,j

[

1 + pMijM
′
ij

]

= E
N,U,Ṽ ,U ′,Ṽ ′

m
∏

i=1

∏

r,r′∈{1,...,k}2

Nr,r′
∏

j=1

[

1 + pu2U r
i Ṽ

r,r′

j (U r′

i )′(Ṽ r,r′

j )′
]

=: EN

∏

r,r′∈{1,...,k}2

I(Nr,r′) (7.13)

where we define for any N = Nr,r′ > 0

I(N) = EX,W,X′,W ′

m
∏

i=1

N
∏

j=1

[

1 + pu2XiWjX
′
iW

′
j

]

and where (Xi)i≤m, (X ′
i)i≤m, (Wi)j≤N , (W ′

i )j≤N are i.i.d. Rademacher random variables. Moreover, we set
Ir,r′(0) = 0.

Step IV : Bound on EN

∏

r,r′∈{1,...,k}2 I(Nr,r′).

In order to bound I(N) we use the following lemma proved below

Lemma 7.1. Let N = Nr,r′ . There exist constants C1, C2, C3 > 0 such that for v small enough

I(N) ≤ exp
(

C1v
4N/m

)

exp
(

C2v
2
)

exp
(

C3v
4N2k2/m2

)

. (7.14)

Using (7.12), (7.13) and (7.14) we have that

dχ2(ν0, ν1)
2 + 1

= EN

∏

r,r′∈{1,...,k}2

I(Nr,r′) (7.15)

≤ exp(C2v
2)EN







exp





C1v
4

m

∑

r,r′

Nr,r′













∏

r,r′∈{1,...,k}2

exp
(

C3v
4N2

r,r′k
2/m2

)









= exp
(

C2v
2 + C1v

4
)

EN





∏

r,r′∈{1,...,k}2

exp
(

C3v
4N2

r,r′k
2/m2

)



 , (7.16)

since
∑

r,r′ Nr,r′ = m. We bound the expectation of the stochastic term in (7.16) using the following lemma
proved below:

Lemma 7.2. There exists a constant C′ > 0 such that for v small enough we have

EN

[

∏

r,r′

exp
(

C3v
4N2

r,r′k
2/m2

)]

≤ 1 + 2C′v4 + exp
(

−m/k2
)

. (7.17)

Inserting (7.17) into (7.16) and summarizing all the steps we obtain

0 ≤ dχ2(ν0, ν1)
2 ≤ C

(

v2 + exp
(

−m/k2
))

= o(1)
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for a constant C > 0 and therefore, letting η → 0,

E0[Ψ] + sup
H1

EH1 [1−Ψ] ≥ (1− η)

(

1− dχ2 (ν0, ν1)

η

)

− o(1) = 1− o(1).

Proof of Lemma 7.1. Note that, by construction of P , we have that

N = Nr,r′ ≤ m/k

since the number of j where M.,j corresponds to Kj = r is bounded by m/k. As the product of two
independent Rademacher random variables is again a Rademacher random variable, we have

I(N) = ER,R′

m
∏

i=1

N
∏

j=1

[

1 + pu2RiR
′
j

]

,

where R = (Ri)
m
i=1, R

′ = (R′
i)

N
i=1 are independent Rademacher vectors of length m and N , respectively. The

usual strategy to use 1 + x ≤ ex and then to bound iterated exponential moments of Rademacher variables
(as in the proof of Theorem 1 of [15]) only works when k = const, and a more refined estimate is required
for growing k, as relevant here.
We now bound I(N) for a fixed N,m/k ≥ N > 0. Using the binomial theorem twice we have

I(N) = ER′

[

[1

2

N
∏

j=1

[

1 + pu2R′
j

]

+
1

2

N
∏

j=1

[

1− pu2R′
j

]

]m
]

=
1

2m

m
∑

s=1

(

m

s

)

[1

2

[

1 + pu2
]s[

1− pu2
]m−s

+
1

2

[

1− pu2
]s[

1 + pu2
]m−s

]N

=
1

2m2N

m
∑

s=1

(

m

s

) N
∑

q=1

(

N

q

)

[

1 + pu2
]sq+(m−s)(N−q)[

1− pu2
](m−s)q+s(N−q)

= EQ,S

[

[

1 + pu2
]SQ+(m−S)(N−Q)[

1− pu2
](m−S)Q+S(N−Q)

]

with independent Binomial random variables S ∼ B(1/2,m), Q ∼ B(1/2, N). If A := 1−pu2

1+pu2 , we obtain

I(N) = EQ,S

[

[

1 + pu2
]mN

[

1− pu2

1 + pu2

]SN+mQ−2SQ
]

=
[

1 + pu2
]mN

EQ

[

AmQ
ESA

S(N−2Q)
]

=
[

1 + pu2
]mN

EQ

[

AmQ2−m
(

A(N−2Q) + 1
)m]

=
[

1 + pu2
]mN

EQ

[

ANm/2

(

1

2
A(N/2−Q) +

1

2
A(−N/2+Q)

)m]

=
[

1− p2u4
]mN/2

EQ

(

1

2
AQ−N/2 +

1

2
AN/2−Q

)m

.

Now, we denote x := pu2 = 4vk1/2/m ≤ 1/2 for v small enough. Furthermore, we Taylor expand log(A)
about 1 up to second order, i.e.

log(A) = log(1− x)− log(1 + x) = −2x− 1

2

(

1

ξ21
− 1

ξ22

)

x2 =: −2x− c(x)x2

15



for ξ1 ∈ [1/2, 1], ξ2 ∈ [1, 3/2] and where c(x) ∈ [0, 16/9] since x ≤ 1/2. Hence, using also the inequality
ex ≤ 1 + x+ x2/2 + x3/6 + 2x4 we deduce

I(N) ≤ exp
[

−mNx2/2
]

EQ

[1

2
exp

(

− 2x(Q −N/2)− c(x)(Q −N/2)x2)
)

+
1

2
exp

(

− 2x(N/2−Q)− c(x)(N/2−Q)x2)
)

]m

≤ exp
[

−mNx2/2
]

· EQ

[

1

2

(

1− 2x(Q−N/2)− c(x)(Q −N/2)x2 + (−2x(Q −N/2)− c(x)(Q −N/2)x2)2/2

+ (−2x(Q−N/2)− c(x)(Q −N/2)x2)3/6 + 2(−2x(Q−N/2)− c(x)(Q −N/2)x2)4
)

+
1

2

(

1− 2x(N/2−Q)− c(x)(N/2 −Q)x2 + (−2x(N/2−Q)− c(x)(N/2−Q)x2)2/2

+ (−2x(N/2−Q)− c(x)(N/2−Q)x2)3/6 + 2(−2x(N/2−Q)− c(x)(N/2 −Q)x2)4
)

]m

.

Since x ≤ 1/2 and |N/2 − Q|x ≤ 1/4 there exist two constants c2 = c2(x) = c(x)/2 + c(x)2/32 ≤ 1 and
c1 = c1(x) = 32 + 32c(x) + 12c(x)2 + 2c(x)3 + c(x)4/8 ≤ 140 such that the last equation above can be
bounded by

≤ exp
[

−mNx2/2
]

EQ

[

1 + 2x2(Q −N/2)2 + c1|Q−N/2|4x4 + c2|Q−N/2|x2
]m

≤ exp
[

−mNx2/2
]

EQ exp
[

mx2(N − 2Q)2/2 + c1m(Q−N/2)4x4 + c2m|Q−N/2|x2
]

= EQ

[

exp
(m

2

(

x2(2Q−N)2 −Nx2
)

)

exp
(

c1m(Q −N/2)4x4 + c2m|Q−N/2|x2
)]

.

Using the Cauchy-Schwarz inequality twice, this implies that

I(N) ≤
√

EQ

[

exp
(

mx2N
(

(2Q−N)2/N − 1
)

)]

[

EQ

[

exp
(

c1mx4(N − 2Q)4/4
)]

· EQ

[

exp
(

2c2m|2Q−N |x2
)]

]1/4

=:
√

(I)(II)1/4(III)1/4.

Step 1 : Bound on term (III)
By definition of x we have that

(III) = EQ

[

exp
(

2c2m|2Q−N |x2
)]

= EQ

[

exp
(

32c2v
2k|2Q−N |/m

)]

≤ exp
(

32c2v
2kN/m

)

≤ exp
(

4C2v
2
)

(7.18)

for some constant C2 > 0, since Q ∼ B(1/2, N) and N ≤ m/k.

Step 2 : Term (II)
We use mN2x4 ≤ 64v4/m, (N − 2Q)2 ≤ N2 and N ≤ m/k to obtain

(II) ≤ EQ

[

exp
(

64c1v
4N/m · (N − 2Q)2/N

)]

.

Since Q ∼ B(1/2, N) the Rademacher average Z = (N − 2Q)/
√
N is sub-Gaussian with sub-Gaussian

constant at most 1. It hence satisfies (e.g., equation (2.24) in [19]) for c > 2

E exp{Z2/c2} ≤ 1 +
2

c2/4− 1
≤ ec3c

−2

,
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which for v small enough and the choice c−2 = 64c1v
4N/m implies for some constant C1 that

(II) ≤ exp

(

4C1v
4N

m

)

.

Step 3 : Term (I)
We have that

(I) = EQ

[

exp
(

mNx2

[

(2Q−N)2

N
− 1

]

)]

= E



exp





16v2Nk

m





1

N

(

N
∑

i=1

εi

)2

− 1











 = E



exp





16v2k

m

∑

i6=j,i,j≤N

εiεj







 ,

where εi are i.i.d. Rademacher random variables. If A = (aij) is a symmetric matrix with all elements on the
diagonal equal to zero, then for the Laplace transform of an order-two Rademacher chaos Z =

∑

i,j aijεiεj
we have the inequality

EeλZ ≤ exp

{

16λ2‖A‖2F
2 (1− 64‖A‖λ)

}

, λ > 0,

see, e.g., Exercise 6.9 on p.212 in [5] with T = {A}. Now take A = (δi6=j)i,j≤N so that we have ‖A‖ ≤ N
and for v small enough 16v2kN/m ≤ 16v2 ≤ 1/128.

E

[

exp
(16v2k

m

∑

i6=j,i,j≤N

εiεj

)]

≤ exp

(

163v4k2‖A‖2F
2m2(1− 1024v2k‖A‖/m)

)

≤ exp

(

163v4k2N2

m2

)

and therefore we conclude for a constant C3 > 0 that

(I) ≤ exp
(

2C3v
4k2N2/m2

)

. (7.19)

Step 4 : Conclusion on I(N)
Combining the bounds for (I), (II) and (III) with the bound on I(N) we have that

I(N) ≤ exp
(

C2v
2
)

exp
(

C1v
4N/m

)

exp
(

C3v
4k2N2/m2

)

.

Proof of Lemma 7.2. We bound the expectation by bounding it separately on two complementary events.
For this we consider the event ξ where all Nr,r′ are upper bounded by τ := 15m/k2, assumed to be an integer
(if not replace it by its integer part plus one in the argument below). More precisely we define

ξ =
{

∀r ≤ k, ∀r′ ≤ k : Nr,r′ ≤ τ
}

.

Note that {Nr,r′ > τ} occurs only if the size of the intersection of the class r of partition P with the class r′

of partition P ′ is larger than τ . This means that at least τ elements amongm/k elements of the class r′, must
belong to the class r. The positions of these τ elements can be taken arbitrarily within the m/k elements.

For the first element, among those τ , the probability to belong to the class r is m/k
m . For the second element

this probability is m/k
m−1 or (m/k)−1

m−1 and so on. All these probabilities are smaller than (m/k)/(m−m/k+1).
Therefore we have

PN(Nr,r′ > τ) ≤
(

m/k

τ

)(

m/k

m−m/k + 1

)τ

≤ (m/k)τ

τ !
(2/k)τ ≤ 2τ (m/k2)τ τ−τeτ ≤ e−τ ,

where we use
(

m/k
τ

)

≤ (m/k)τ

τ ! and Stirling’s formula. Using a union bound this implies that the probability
of ξ is lower bounded by 1− k2 exp(−15m/k2).

17



We have on the event ξ

EN

[

1{ξ}
∏

r,r′∈{1,...,k}2

exp
(

C3v
4N2

r,r′k
2/m2

)]

≤ exp
(

C3v
4k2 · 152(m/k2)2k2/m2

)]

≤ exp
(

C′v4
)

≤ 1 + 2C′v4.

for C′ = 225C3 and for v small enough. Moreover, by definition of Nr,r′ , we have that Nr,r′ ≤ m/k and
∑

r,r′ Nr,r′ = m. Hence
∑

r,r′

N2
r,r′ ≤ km2/k2 = m2/k

which implies that on ξC

EN

[

1{ξC}
∏

r,r′∈{1,...,k}2

exp
(

C3v
4N2

r,r′k
2/m2

)]

≤ PN(ξC) exp
(

C3v
4k
)

≤ k2 exp
(

− 15m/k2 + C3v
4k
)

≤ k2 exp
(

− 3m/k2
)

≤ exp
(

−m/k2
)

,

for v small enough and since k3 ≤ m. Thus, combining the bounds on ξ and ξC , we have that

EN

[

∏

r,r′

exp
(

C3v
4N2

r,r′k
2/m2

)]

≤ 1 + 2C′v4 + exp
(

−m/k2
)

.

8 Auxiliary results

8.1 Proof of Lemma 4.1

Proof. Assume that among the first n/4 samples we have less than n/8 entries that are sampled twice -
otherwise the result holds since n/8 ≥ n2/64m1m2 for n ≤ m1m2. Then, among the first n/4 samples,
there are at least n/8 distinct elements of B, the set of all standard basis matrices in R

m1×m2 , that have
been sampled at least once. We write S for the set of distinct elements of {Xi}i≤n/4 and obviously have
|S| ≥ n/8. Hence, by definition of the sampling scheme, we have that

P(Xi ∈ S) ≥ n

8m1m2
, n/4 < i ≤ n/2.

Furthermore, when sampling an element from S we have to remove this element from S as we have to use
the entry that is stored in S to form a pair of entries. Hence the probability to sample another element from
S decreases and is bounded by

P(Xj ∈ S\{Xi}
∣

∣Xi ∈ S) ≥ n− 1

8m1m2

for n/4 < i < j < n/2. We deduce by induction for j > i+ k and k ≤ n/2− i− 1 that

P(Xj ∈ S\{Xi, ..., Xi+k}
∣

∣Xi, ..., Xi+k ∈ S) ≥ n− k

8m1m2

which yields
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P

(

N ≥ n2

64m1m2

)

≥ P





∑

n/4<i≤n/2

1{Xi∈S} ≥ n2

64m1m2





≥ P





∑

n/4<i≤n/2

Zi ≥
n2

64m1m2



 (8.1)

where Zi can be taken to be Bernoulli random variables with success probability

p′ =
n− n2

64m1m2

8m1m2
.

Then, Bernstein’s inequality for bounded random variables (see e.g. Theorem 3.1.7 in [19]), (8.1) and the
estimates

E





∑

n/4<i≤n/2

Zi



 ≥ n2

33m1m2

which holds for n ≤ m1m2 and

Var





∑

n/4<i≤n/2

Zi



 ≤ n2

32m1m2

imply that

P

(

N ≥ n2

64m1m2

)

≥ 1− P





∑

n/4<i≤n/2

Zi − E





∑

n/4<i≤n/2

Zi



 ≤ −n2

72m1m2



 ≥ 1− exp

(

n2

372m1m2

)

.

8.2 Lemma 8.1

Lemma 8.1. Consider the Bernoulli model (1.3) and assume n ≥ m log(d). Then, with probability at least
1− 2 exp(−100d) we have for any given M ∈ A(a,m) that

sup
A∈A(a,m), ‖M−A‖F≥Ca

√
(rank(A)∨1)d/p





∣

∣

∣

∣

∣

∣

∑

i,j

(Bij − p)(Aij −Mij)
2

∣

∣

∣

∣

∣

∣

− p

2
‖M0 −A‖2F



 ≤ 0

where C = 8072.

Proof. We have, using a union bound, that

P



 sup
A∈A(a,m), ‖M−A‖F≥Ca

√
(rank(A)∨1)d/p





∣

∣

∣

∣

∣

∣

∑

i,j

(Bij − p)(Aij −Mij)
2

∣

∣

∣

∣

∣

∣

− p

2
‖M0 − A‖2F



 > 0





≤
m
∑

k=1

P



 sup
A∈A(a,k), p‖M−A‖2

F
≥C2a2kd





∣

∣

∣

∣

∣

∣

∑

i,j

(Bij − p)(Aij −Mij)
2

∣

∣

∣

∣

∣

∣

− p

2
‖A−M‖2F



 > 0



 . (8.2)

Then, using a peeling argument each of the terms in (8.2) can be bounded by

∑

s∈N: C2a2kd/2≤2s<∞

P



 sup
A∈A(a,k), 2s≤p‖A−M‖2

F
≤2s+1

∣

∣

∣

∣

∣

∣

∑

i,j

(Bij − p)(Aij −Mij)
2

∣

∣

∣

∣

∣

∣

> 2s/2





≤
∑

s∈N: C2a2kd/2≤2s<∞

P



 sup
A∈A(a,k), p‖A−M‖2

F
≤2s+1

∣

∣

∣

∣

∣

∣

∑

i,j

(Bij − p)(Aij −Mij)
2

∣

∣

∣

∣

∣

∣

> 2s/2



 (8.3)
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with the convention that if the supremum is taken over an empty set the corresponding probability is set
equal to 0. For the cases where the supremum is not taken over an empty set, we apply Lemma 8.2 (with
choices ξij = 1, q = 2, z = 4, U = 1 and t = 2s there ) and obtain for

Z(s) : = sup
A∈A(a,k), p‖A−M‖2

F
≤2s+1

∣

∣

∣

∣

∣

∣

∑

i,j

(Bij − p)(Aij −Mij)
2

∣

∣

∣

∣

∣

∣

that we can bound

P (Z(s) > 2s/2) ≤ exp

( −2s

260352a2

)

Hence, (8.3) can be upper bounded by

∑

s∈N: Ca2kd/2≤2s<∞

exp

( −2s

260352a2

)

≤2 exp

(

− C2kd

260352

)

≤ 2 exp(−101d).

The result then follows by noting that log(m) ≤ d.

8.3 Lemma 8.2

Lemma 8.2. Consider the Bernoulli model (1.3). Suppose that ξij are independent random variables with
maxij |ξij | ≤ U and that m log(d) ≤ n. Let z > 0, q ∈ {1, 2}, M ∈ A(a,m) and 1 ≤ k0 < m be given.
Finally, for C = 1009 suppose that t ∈ R+ is such that t ≥ C2z(4a)2q−2U2k0d/2 and that the supremum in

Z(t) := sup
A∈A(a,k0), p‖A−M‖2

F
≤2t

∣

∣

∣

∣

∣

∣

∑

i,j

[(Bijξij − EBijξij)(Aij −Mij)
q]

∣

∣

∣

∣

∣

∣

is not empty. Then,

P

(

Z(t) >
t√
z

)

≤ exp

( −t

322(8(2a)2q−2U2z + 505(2a)qU
√
z/32)

)

(8.4)

Proof. We first bound EZ(t) and then apply Talagrand’s [37] inequality. Using symmetrization (e.g. Theorem
3.1.21 in [19]) and two contraction inequalities (e.g. Theorems 3.1.17 and 3.2.1 in [19]), we obtain that

EZ(t) ≤ 2UE



 sup
A∈A(a,k0), p‖A−M‖2

F
≤2t

∣

∣

∣

∣

∣

∣

∑

i,j

Bijεij(Aij −Mij)
q

∣

∣

∣

∣

∣

∣





≤ 2(4a)q−1UE



 sup
A∈A(a,k0), p‖A−M‖2

F
≤2t

∣

∣

∣

∣

∣

∣

∑

i,j

Bijεij(Aij −Mij)

∣

∣

∣

∣

∣

∣





≤ 2(4a)q−1UE

(

sup
A∈A(a,k0), p‖A−M‖2

F
≤2t

|〈ΣR, A−A0〉|
)

+ 2(4a)q−1UE |〈ΣR, A0 −M〉|

≤ 8(4a)q−1U
√

k0t/pE ‖ΣR‖+ 2(4a)q−1UE |〈ΣR, A0 −M〉| . (8.5)

where εij are independent Rademacher random variables, ΣR :=
(

Bijεij
)

ij
and where A0 is an arbi-

trary element in A(a, k0) such that p‖A0 − M‖2F ≤ 2t. Such an A0 exists as soon as the supremum
is not taken over an empty set. An extension of Corollary 3.6 in [1] to rectangular matrices by self-
adjoint dilation (e.g. section 3.1. in [1]) implies (with choices ξij = Bijεij/

√
p, bij =

√
p, α = 3 and

σ = max
(

maxj
√

∑m1

i=1 b
2
ij ,maxi

√

∑m2

j=1 b
2
ij

)

≤ √
pd there ) that

E ‖ΣR‖ ≤ e2/3(2
√

pd+ 42
√

log(d)) ≤ 86
√

pd
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since m log(d) ≤ n. For the second term in (8.5) we have

E|〈ΣR, A0 −M〉| ≤ (Var(〈ΣR, A0 −M〉))1/2

=
(

p‖A0 −M‖2F
)1/2 ≤

√
2t.

Hence, for C2z(4a)2q−2U2k0d/2 ≤ t and since C = 1009 we have that

EZ(t) ≤ 688(4a)q−1U
√

k0td+ 2(4a)q−1U
√
2t ≤ 31t/(32

√
z). (8.6)

We now make use of the following inequality due to Talagrand [37], which in the current form with explicit
constants can be obtained by inverting the tail bound in Theorem 3.3.16 in [19].

Theorem 8.1. Let (S,S) be a measurable space and let n ∈ N. Let Xk, k = 1, . . . , n be independent S-
valued random variables and let F be a countable set of functions f = (f1, ..., fn) : S

n → [−K,K]n such that
Efk(Xk) = 0 for all f ∈ F and k = 1, ..., n. Set

Z := sup
f∈F

n
∑

k=1

fk(Xk).

Define the variance proxy

Vn := 2KEZ + sup
f∈F

n
∑

k=1

E
[

(fk(Xk))
2
]

.

Then, for all t ≥ 0,

P (Z − EZ ≥ t) ≤ exp

( −t2

4Vn + (9/2)Kt

)

.

The functional A → ‖A − M‖2F is continuous on the compact set of matrices {A ∈ A(a, k0) : ‖A −
M‖2F ≤ 2t}, hence by continuity and compactness the supremum is attained over a countable subset. Thus
we may apply Talagrand’s inequality to Z(t). We have for our particular case, since supf∈F |f(X)| =
supf∈{F

⋃
{−F}} f(x), that

Xij = Bijξij − EBijξij , S = [−2U, 2U ]

F =

{

f : Sm1×m2 → [−2(2a)qU, 2(2a)qU ]m1×m2 , fij(Xij) = (−1)lXij(Aij −Mij)
q,

A ∈ A(a, k0), p‖A−M‖2F ≤ 2t, l ∈ {0, 1}
}

and moreover

sup
(A,l), A∈A(a,k0), p‖A−M‖2

F
≤2t, l∈{0,1}

∑

i,j

E

[

(

(−1)l(Bijξij − EBijξij)(Aij −Mij)
q
)2
]

≤(2a)2q−2 sup
A∈A(a,k0), p‖A−M‖2

F
≤2t

∑

i,j

Var(Bijξij)(Aij −Mij)
2

≤(2a)2q−2U2 sup
A∈A(a,k0), p‖A−M‖2

F
≤2t

∑

i,j

p(Aij −Mij)
2 ≤ 2(2a)2q−2U2t.

Therefore, using our previous estimate in (8.6) for EZ(t) as well, we have for the variance proxy Vm1m2 that

Vm1m2 ≤ 2(2a)2q−2U2t+ 31(2a)qUt/(8
√
z).

Hence, using (8.6) and Talagrand’s inequality, we obtain

P

(

Z(t) >
t√
z

)

≤ P

(

Z(t)− EZ(t) >
t

32
√
z

)

≤ exp

( −t

322(8(2a)2q−2U2z + 505(2a)qU
√
z/32)

)

.
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8.4 An oracle estimator in the Bernoulli model

Here we prove that the soft-thresholding estimator proposed by Koltchinskii et. al. [27] for the trace-
regression setting fulfills the oracle inequality (2.8) in the Bernoulli model.
Their estimator is defined as

M̂ ∈ argmin
A∈Rm1×m2

( ‖A‖2F
m1m2

− 2

n
〈Y,A〉+ λ‖A‖∗

)

(8.7)

where λ is a tuning parameter which we choose as

λ = 3

(

3
√
2σ +

√
2CU√

mn

)

(8.8)

where C > 0 is the constant in Corollary 3.12 in [1].

Proposition 8.3. Consider the Bernoulli model (1.3). Assume n ≥ m log(d) and that Assumption 1.1 is
fulfilled. Let M̂ be given as in (8.7) with a choice of λ as in (8.8). Then, with PM0,σ-probability of at least
1− 1/d we have for any M0 ∈ A(a,m) that

‖M̂ −M0‖2F
m1m2

≤ inf
A∈Rm1×m2

(‖M0 −A‖2F
m1m2

+ C
drank(A)

n

)

≤ inf
k∈{0,...,m}

(‖M0 −A(a, k)‖2F
m1m2

+ C
dk

n

)

for a constant C = C(a, σ, U) > 0.

Proof. Going through the proof of Theorem 2 and Corollary 2 in [27] line by line we see that we only need
to bound the spectral norm of the matrix

Σ :=
1

n
(Bijǫij)i,j

by λ/3 with high probability. Using self-adjoint dilation to generalize Corollary 3.12 and Remark 3.13 in [1]
for rectangular matrices (with choices ε = 1/2, σ̃∗ = U and

σ̃ = max



max
j

√

√

√

√

m1
∑

i=1

EσB2
ijǫ

2
ij ,max

i

√

√

√

√

m2
∑

j=1

EσB2
ijǫ

2
ij



 = σ
√

n/m

there) we obtain

Pσ

(∥

∥

∥

∥

∥

n
∑

i=1

εiXi

∥

∥

∥

∥

∥

> 3
√
2σ

√

n

m
+ t

)

≤ d exp

(

− −t2

C1U2

)

for a constant C1 > 0. Choosing t =
√
2C1U

√

n
m and using that n ≥ m log(d) yields that Ξ occurs with

Pσ-probability at least 1− 1/d.
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