
HAL Id: hal-01354028
https://hal.science/hal-01354028v1

Submitted on 23 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design methodology for workload-aware loop scheduling
strategies based on genetic algorithm and simulation

Pedro Henrique Penna, Márcio Castro, Henrique Cota de Freitas, François
Broquedis, Jean-François Méhaut

To cite this version:
Pedro Henrique Penna, Márcio Castro, Henrique Cota de Freitas, François Broquedis, Jean-François
Méhaut. Design methodology for workload-aware loop scheduling strategies based on genetic al-
gorithm and simulation. Concurrency and Computation: Practice and Experience, 2017, 29 (22),
�10.1002/cpe.3933�. �hal-01354028�

https://hal.science/hal-01354028v1
https://hal.archives-ouvertes.fr

Design Methodology for Workload-Aware Loop

Scheduling Strategies Based on Genetic Algorithm

and Simulation

Pedro H. Penna1, Márcio Castro1, Henrique C. Freitas2, François
Broquedis3, and Jean-François Méhaut3

1Universidade Federal de Santa Catarina (UFSC)
2Pontif́ıcia Universidade Católica de Minas Gerais (PUC Minas)

3Université Grenoble Alpes (UGA), Grenoble INP, CNRS, INRIA

Abstract

In High Performance Computing, the application’s workload must
be evenly balanced among threads to deliver cutting-edge performance
and scalability. In OpenMP, the load balancing problem arises when
scheduling loop iterations to threads. In this context, several schedul-
ing strategies have been proposed, but they do not take into account
the input workload of the application and thus turn out to be subop-
timal. In this work, we introduce a design methodology to propose,
study and assess the performance of workload-aware loop scheduling
strategies. In this methodology, a Genetic Algorithm is employed to
explore the state space solution of the problem itself and to guide the
design of new loop scheduling strategies, and a simulator is used to
evaluate their performance. As a proof of concept, we show how the
proposed methodology was used to propose and study a new workload-
aware loop scheduling strategy named Smart Round-Robin (SRR). We
implemented this strategy into GCC’s OpenMP runtime. We carry
out several experiments to validate the simulator and to evaluate the
performance of SRR. Our experimental results show that SRR may
deliver up to 37.89% and 14.10% better performance than OpenMP’s
Dynamic loop scheduling strategy in the simulated environment and
in a real-world application kernel, respectively.

1 Introduction

In High Performance Computing (HPC), parallel applications can be classi-
fied into two groups: regular applications, in which the amount of computa-
tion required to solve a problem depends mostly on the size of the input data;
and irregular applications, which have this property strictly related to the

1

contents of the input data itself [1]. A naive implementation of the matrix
multiplication algorithm is a typical example of a highly regular application.
In this particular example, the number of operations is constantly propor-
tional to the products of the rows of a matrix by the columns of another
matrix, regardless the actual numbers stored in the matrices. In contrast,
in a particle simulation application that uses integer sorting to organize the
set of particles features an irregular behavior. The amount of computation
actually depends on the input sequence, i.e., the input integers themselves.

The difference between these two classes impacts directly on the design
of efficient parallel applications. Indeed, regular applications are highly ap-
preciated because their workload can be easily broken up into homogeneous
tasks by simply dividing the total workload n by the t working threads.
Unfortunately, this strategy is not enough for irregular applications, since it
may lead to a heterogeneous set of tasks, thus causing load imbalance among
the threads. This may result in a considerable performance and scalability
issues, because the overall performance of the application would be bounded
by the performance of the most overloaded thread.

Indeed, evenly distributing the input workload among the working threads
of an irregular application is an NP-Complete minimization problem known
as the Load Balancing Problem [2]. This problem presents high signifi-
cance to the HPC field and it is a recurring subject of research [3, 4]. For
instance, in OpenMP, an industry and academia standard Application Pro-
gramming Interface (API) for parallel programming on shared-memory ar-
chitectures [5], this problem emerges when scheduling iterations in parallel
loops. In this context, the problem is referenced as the Loop Scheduling
Problem and comes down into assigning loop iterations to threads, so as
the load of iterations is evenly distributed. In this scenario, several loop
scheduling strategies have been proposed to address the problem [6]. How-
ever, they do not take into account the input workload of the application
and thus turn out to be suboptimal in some scenarios.

The main goal of this work is to introduce a design methodology that
may be used to guide the study of new workload-aware loop scheduling
strategies. This methodology relies on a Genetic Algorithm (GA) to ex-
plore the solution space of the problem and thus uncover new strategies,
and a simulator to evaluate their performance. To validate this methodol-
ogy, we propose a new loop scheduling strategy named Smart Round-Robin
(SRR), which considers the input workload at runtime to better balance
the workload among the threads of a parallel application without imposing
substantial overhead. This paper extends our previous work [7] and delivers
the following new contributions to the state-of-the-art:

1. A validation of the proposed simulator through the comparison of its
output against the output obtained in a real platform running a syn-
thetic benchmark. On an extensive evaluation based on simulation,

2

we observed that the SRR strategy may achieve up to 37.80% better
performance than OpenMP’s Dynamic scheduler.

2. An extensive exploration of the state space of the Loop Scheduling
Problem that delivers some insights on the design of new workload-
aware loop scheduling strategies. With this analysis we have uncovered
that loop scheduling strategies that rely on the average input workload
may output near-optimum solutions.

3. An implementation of SRR into the OpenMP’s runtime library of the
GNU Compiler Collection (GCC), thereby enabling any parallel ap-
plication that relies on this programming abstraction to benefit from
it. Our implementation is open-source and it is publicly available for
download. Furthermore, we discuss how one can estimate the work-
load of an application so that it can effectively use SRR. In a real-
world application kernel, the Integer Sort Kernel from the NAS Par-
allel Benchmarks (NPB), SRR has achieved up to 14.10% and 39.87%
better performance than OpenMP’s Dynamic and Guided strategies,
respectively.

The remainder of this work is organized as follows. In Section 2, we
introduce the fundamentals of the Loop Scheduling Problem. In Section 3,
we discuss the related work. In Section 4, we present the design methodol-
ogy that we propose in this work. Then, in Section 5, we present the SRR
algorithm and detail how we implemented it into GCC’s OpenMP runtime.
In Section 6, we expose and discuss our experimental results. Finally, in
Section 7, we present the main conclusions of this work and its future per-
spectives.

2 The Loop Scheduling Problem

The Loop Scheduling Problem is a NP-complete minimization problem that
consists in a particular case of the Load Balancing Problem and can be
formally stated as follows [2]. Let X = {i1, i2, . . . , in} be a set of n iterations,
and wk ∈ N+ be the workload of iteration ik. If Pk is an arbitrary subset of

X, the workload of this subset can be expressed by WPk
=

∑
ik∈Pk

wk.

Given two arbitrary disjoint subsets of X, Pa and Pb, we express the
load imbalance ϕPa,Pb

among them as the absolute difference between their
workloads (Equation 1):

ϕPa,Pb
= |WPa −WPb

| (1)

Therefore, given an integer k ≥ 1, the Loop Scheduling Problem comes
down in partitioning X in k disjoint subsets {P1, P2, . . . , Pk} so as to min-
imize the maximum load imbalance ϕ within these subsets (Equation 2):

3

f(Pa, Pb) = min (max (ϕPa,Pb
)), ∀Pa, Pb ∈ {P1, P2, . . . , Pk} | Pa 6= Pb (2)

The number of loop iterations and partitions are inherent variables to
the Loop Scheduling Problem, so they cannot be left aside. However, other
variables may be considered when the problem is analyzed within a real-
world context, which turns the minimization function into a multi-objective
one. In this new scenario, some important variables are the load of each
loop iteration, the frequency in which the scheduling strategy is invoked,
and the memory affinity that exists among iterations.

The load of each iteration is related to the input workload of the ap-
plication, and it has great influence in the quality of the output scheduling
solution. For instance, if the load of iterations follows a Uniform distri-
bution, the load imbalance tends to be small, whereas for a Gaussian one,
this feature tends to be higher. The frequency in which the loop scheduling
strategy is invoked, on the other hand, is an important concern for runtime
strategies, in which iterations are assigned on the fly. This variable states
how many times the scheduling strategy is invoked, and thus it impacts di-
rectly on the performance of the application. Finally, the memory affinity is
related with the temporal and spatial data localities that exist among loop
iterations that are assigned to the same partition. When they are strongly
present, the memory system is efficiently used, reducing contention in buses
and other interconnection structures and thus increasing performance.

3 Related Work

Several strategies for tackling the Loop Scheduling Problem in a wide range
of scenarios have been proposed. When comes to large-scale Non-Uniform
Memory Access (NUMA) platforms and memory-bound irregular applica-
tions, cutting-edge scheduling strategies that are shipped with OpenMP face
several scalability issues. Aiming to overcome these problems, Durand et al.
introduced a new loop scheduler, called Adaptative [4]. This strategy re-
lies on a work-stealing algorithm to dynamically adapt the granularity of
work in parallel loops to find a compromise between data-access locality
of the OpenMP’s Static and Dynamic schedulers. They implemented this
strategy in OpenMP and assessed its performance with two application ker-
nels, (i) the K-means Clustering, which presents an irregular behavior; and
(ii) the Smooth Particle Hydrodynamic, which features a regular computa-
tion. Their results pointed out that their scheduling strategy outperforms
the Dynamic loop scheduler on irregular applications in about 2.4 times,
while obtaining similar performance to the Static scheduler on regular ap-
plications. Other scheduling strategies that explore locality-awareness are
reported in [3, 8].

4

In contrast to the aforementioned research efforts that rely solely on run-
time information, Thoman et al. proposed a hybrid approach that considers
compiling information [9]. They implemented this solution in the Insieme
Compiler and runtime system, and compared its performance against the
loop schedulers available on OpenMP. Their results pointed out that a hy-
brid scheduling strategy may lead to up to 4.51 of performance speedup over
OpenMP scheduling solutions. Another work that also relies on compiling
information is presented in [10].

With this emerging variety of loop scheduling strategies, the task of se-
lecting the most adequate one for a given application becomes challenging.
To address this situation, Sukhija et al. proposed an approach that uses
supervised Machine Learning techniques to predict the most robust loop
scheduling strategy for a target application/platform [11]. They showed
that their proposed approach: (i) enables the selection of the most robust
loop scheduling algorithm that satisfies a user-specified tolerance on the
given application’s performance; and (ii) offers higher guarantees regarding
the performance of the application using the automatically selected loop
scheduling algorithms, when compared to the performance of the same ap-
plication using an empirically selected loop scheduling algorithm.

Towards a similar goal, Srivastava et al. proposed and evaluated an ap-
proach based on Artificial Neural Networks (ANNs) to predict the flexibility
of dynamic loop scheduling strategies for heterogeneous systems [12]. They
used synthetic benchmarks that simulate the behavior of scientific irregu-
lar applications to train an ANN. To model the input workload of these
synthetic programs, they used three Probability Density Functions (PDFs):
Gamma, Gaussian and Exponential. Their results showed that the proposed
model can be used to quantify the robustness of dynamic loop schedul-
ing strategies. When used in conjunction with other performance metrics,
the robustness metric can be used to select the most robust dynamic loop
scheduling strategy which also yields performance improvements.

In respect to the current efforts for evaluating existing scheduling strate-
gies, Srivastava et al. proposed a methodology for analyzing the robustness
of dynamic strategies [6]. To do so, they implemented eight strategies in
an in-house simulator and used a synthetic benchmark to evaluate them.
This artificial program has n independent iterations and the time of each
of them is modeled by a Gaussian distribution. They concluded that a
simulation-based methodology may be applied to assess the performance of
load balancing strategies. Another work that also suggests a simulation-
based methodology to carry on this analysis is reported in [13].

Our work differs from the previous ones in several points. First, in con-
trast to the related works that propose a simulation-based methodology for
evaluating loop scheduling strategies [6, 13], we propose a methodology that
not only enables the evaluation of such strategies, but also the design of
new ones. To enable this, we propose the use of a state space searching

5

technique based on a GA to study the Loop Scheduling Problem itself. Fur-
thermore, (i) we make our methodology publicly available; (ii) we carry
out a validation of our simulator using synthetic benchmark programs; and
(iii) our simulator is capable of generating synthetic workloads according
to five different PDFs. Second, different than related works that target
locality-aware [4, 3, 8], compiler-based [9, 10] and portfolio-based [11, 12]
scheduling, in this work we focus on workload-aware scheduling.

Finally, as a proof of concept, we show how the proposed methodology
assisted us on the design of a new workload-aware scheduling strategy called
SRR. This strategy relies on the estimation of the load of loop iterations to
better balance the load among the threads. For some applications the load
of loop iterations can be determined at runtime as a function of the input
workload whereas for others such estimation can be obtained from source
code instrumentation or runtime profiling. In addition, in this work, (i) we
present an implementation of this strategy in GCC’s OpenMP runtime, (ii)
we make this implementation publicly available; and (iii) we carry out an
extensive evaluation of SRR using simulation and application kernel bench-
marking techniques.

4 Proposed Methodology

In this section, we present the design methodology that we propose in this
work. This methodology relies on a GA to explore the solution space of the
problem and guide the design of new scheduling strategies, and a simulator to
evaluate the performance of loop scheduling strategies. First, we introduce
a discussion about the problem variables considered in this study. Then, we
present our simulator and the GA, in turn.

4.1 Problem Variables

In Section 2, we discussed the Loop Scheduling Problem and the variables
related to it. Some of these variables are inherent to the problem itself (e.g.,
the load of each iteration) whereas others are related to the intricacy charac-
teristics of the application and/or the platform (e.g., memory affinity). The
methodology proposed in this work considers the following variables: (i) the
number of loop iterations; (ii) the number of working threads; and (iii) the
PDF of task loads associated to the loop iterations. Both the number of
iterations and threads are core variables of the Loop Scheduling Problem,
thus they must be considered. The third variable states the load that is
associated to the loop iterations. The PDF does not only affects the im-
balance between the application tasks, but also the performance of the loop
scheduling strategy.

The other variables that we discussed in Section 2, such as the frequency
in which the scheduling strategy is invoked and the memory affinity that

6

Synthetic Workload
Generator

Synthetic Application

Thread Manager Loop Scheduler

Probability
Density Function

Number of
Iterations

Number of
Threads

Loop Scheduling
Strategy

Figure 1: Architectural overview of the simulator.

exists among loop iterations, were not considered in this study. The ratio-
nale behind this is that these variables are either application- or platform-
dependent, and thus they can be studied in a later step. This is indeed
a future work that we intend to accomplish, and we further discuss it in
Section 7.

4.2 Simulator

The simulation technique is useful for isolating the core variables of a given
problem, precisely controlling the testing environment, and evaluating so-
lutions for that particular problem with minimum efforts. Unfortunately,
existing simulators for the Loop Scheduling Problem reported in Section 3
could not be used because they were not publicly available. For all these rea-
sons, we designed and implemented an open-source simulator1 for assessing
loop scheduling strategies.

Figure 1 presents an architectural overview of this simulator, with its
three main modules on the top and the synthetic application that is virtu-
ally simulated on the bottom. The Synthetic Workload Generator module
takes as input parameters the number of loop iterations and the PDF asso-
ciated to them, and outputs a series of iterations with the given properties.
The load of an iteration expresses the time required to process it, and thus
the set of all iterations represents the input workload of the synthetic appli-
cation. The Thread Manager module creates and schedules the threads of
the synthetic application. It takes as input parameter the number of threads
to be created, and schedules these threads according to a round-robin policy.
This module uses two structures to manage threads: (i) a priority queue of
running threads, which is ordered by their remaining processing time; and
(ii) a list of threads ready for execution. Finally, the Loop Scheduler module
assigns loop iterations output by the Synthetic Workload Generator to the
threads of the synthetic application, according to the scheduling policy that
it takes as input parameter. It exports an interface that allows the study of
both static and dynamic scheduling strategies.

This simulator is an open-source software and can be easily extended to
support new features. Nevertheless, its current version is shipped with the
following features:

1Our simulator is publicly available at www.github.com/cart-pucminas/scheduler

7

www.github.com/cart-pucminas/scheduler

• The Synthetic Workload Generator can generate an arbitrary num-
ber of loop iterations following five different PDFs: Beta, Gamma,
Gaussian, Poisson and Uniform.

• The Loop Scheduler supports two well-known strategies, which are
both available in the OpenMP [5]: Static and Dynamic. The former
divides the loop iterations into equal-sized chunks, and statically as-
signs these chunks to threads in a round-robin fashion. The latter
uses an internal work queue to dynamically assign chunk-sized blocks
of loop iterations to threads. In addition, as we discuss later on (Sec-
tion 5), the workload-aware strategy proposed in this paper (SRR) is
also implemented in the Loop Scheduler module.

• The simulator outputs a detailed trace file containing the following
information about the execution of the synthetic application: (i) the
number of threads; (ii) the number of iterations; (iii) the load of each
iteration; and (iv) the total load assigned to each thread.

4.3 Genetic Algorithm

The simulator presented in the previous section enables us to evaluate the
performance of loop scheduling strategies. Oftentimes, however, it may be
difficult to know if these strategies are outputting a good scheduling (i.e.,
evenly balanced load) for a given input workload. In this context, the state
space search technique can be applied to explore the solution space of a par-
ticular instance of the Loop Scheduling Problem and to better understand
some characteristics of its optimal solution. To perform this exploration,
the problem is faced as a minimization problem, and a heuristic search algo-
rithm, which is guided by the corresponding minimization objective function,
is then applied (recall Equation 1).

Several heuristic search algorithms are known and have already been
applied in different domains [14, 15, 16]. In this work, however, we used a
GA to perform the state space exploration of the Loop Scheduling Problem.
We chose this algorithm over the others due to two main reasons: first, it
has shown promising results in various other contexts [17]; and second, it
does not require any knowledge on how new states are generated from a
given start state, which is true for our particular problem under study. In
the following paragraphs we present a general GA framework, and then we
discuss how we adapted it for the Loop Scheduling Problem.

GAs are based on search heuristics that mimic Darwin’s Evolutionary
Theory [18]. They usually encode the solution of a problem as a tuple
(organism): an n-ary array (chromosome) that represents the solution itself;
and a value (fitness) that corresponds to the evaluation of the problem’s
objective function for that particular solution. Based on this abstraction,
the algorithm builds an initial population of organisms and evolves it with

8

the course of time, by applying genetic operators such as selection, crossover
and mutation.

Algorithm 1 outlines the GA framework that we have used in this work.
This algorithm takes two input parameters: the size of the population (pop-
size) and a stop condition (stop). It first generates an initial population
(pop) of solutions (line 2), and then selects some organisms to form up the
mating pool (lines 5 and 6). Organisms with higher fitness have higher prob-
abilities of being selected, thus having a greater chance to spread their genes
to future populations. Then, organisms that were selected for mating are
chosen at random to form up couples and crossover with a high probability
α (lines 8 to 10). In this process, some offspring (children) are generated
by merging the chromosomes of their parents. New organisms may undergo
to some mutation in their chromosomes, with a low probability β (lines 12
and 13). Finally, to form up a new population, some organisms of the old
population are chosen to be replaced by the new offspring (line 15), and
then a new generation starts. This process terminates when stop condition
is met and the best solution found is returned (lines 16 and 17).

Algorithm 1 A general framework for a Genetic Algorithm.

1 function Genetic-Algorithm(popsize, stop)
2 pop ← Initial-Population(popsize)
3 repeat
4 newpop ← ∅, parents ← ∅
5 for i from 1 to 2 × popsize do
6 parents ← parents ∪ Selection(pop)

7 for i from 1 to popsize do
8 couple ← random pair (x, y) ∈ parents
9 if high probability α then

10 children ← Crossover(couple)
11 for all child ∈ children do
12 if low probability β then
13 child ← Mutation(child)

14 newpop ← newpop ∪ child

15 Replacement(pop, newpop)
16 until stop condition is not met
17 return Best-Organism(pop)

To illustrate how we adapted Algorithm 1 for the Loop Scheduling Prob-
lem, let us consider a scenario with 2 threads and 8 loop iterations, which is
depicted in Figure 2. Each chromosome is encoded as an n-ary array (8, in
this example) that indicates the thread/iteration assignment, and the fitness
of each chromosome is computed accordingly to Equation 1. To build the
initial population, the chromosome of each organism is randomly generated,
according to a uniform probability density function (Figure 2-a). The selec-
tion operation selects pairs of organisms according to the Roulette Wheel

9

1 2 3 4 4 5 6 7

1 2 3 4 4 5 6 7

1 2 3 4 4 5 6 7

1 2 3 4 4 5 6 7

1 2 3 4 4 5 6 7

1 2 3 4 4 5 6 7

(a) Initial Population (b) Selection (c) Crossover (d) Mutation (e) Replacement

10

22

0

14

12

4

1 2 3 4 4 5 6 7 0

1 2 3 4 4 5 6 7 4

1 2 3 4 4 5 6 7 10

1 2 3 4 4 5 6 7 0

1 2 3 4 4 5 6 7 14

1 2 3 4 4 5 6 7 4

1 2 3 4

4 5 6 7 10

1 2 3 4

4 5 6 7 8

1 2 3 4

4 5 6 7 21 2 3 4

4 5 6 7 0

1 2 3 4

4 5 6 7 10

1 2 3 4

4 5 6 7 2

1 2 3 4

5 6 7 2

1 2 3

4 5 6 7 8

1 2 3 4

4 5 7 81 2 3 4

4 5 6 7 0

1 2 3 4

4 5 6 7 2

1 2 3 4

4 5 6 7 2

4

6

4

1 2 3 4

5 6 7 2

1 2 3

4 5 6 7 8

4 5 7 81 2 3 4

4 5 6 7 0

1 2 3 4

4 5 6 7 2

1 2 3 4

4

6

4

1 2 3 4 4 5 6 7 0

chromosome
iterations (0-7) and how

they are assigned to threads

co
u

p
le

Fitness (load imbalance) Thread 2Thread 1

undergone mutationiteration load

elite organism from old population

a

b

c

d

e

f

a

c

c

d

f

f

crossover point

c
1

a
2

a
1

c
2

f
1

d
1

d
2

f
2

c
1

f
1

f
2

c
2

Figure 2: Overall functioning of the GA for an instance of the Loop Schedul-
ing Problem with 2 threads and 8 loop iterations.

N
o

rm
a

liz
e

d
 L

o
a

d
 I

m
b

a
la

n
ce

Number of GA Generations

0 50 100 150 200 250 300 350 400 450 500
0%

10%

20%

30%

40%

50%

60%

1000 2000 3000 4000 5000

Figure 3: Genetic algorithm evolution for a Beta distribution with 96 iter-
ations.

algorithm (Figure 2-b), in which the probability of an organism of being
selected is proportional to its fitness value [18]. Then, pairs of organisms
are selected at random to crossover with each other. This operation uses a
single crossover point and generates two organisms (Figure 2-c). The muta-
tion operation randomly changes parts of the chromosome (Figure 2-d). The
replacement operation (a) applies the elitism technique in the old popula-
tion [19], extracting from it the k best organisms, and (b) chooses randomly
among the remaining organisms those that will form up the new population,
considering both the remaining old population and the new organisms that
were generated during the crossover operation (Figure 2-e).

In this specific example, all organisms selected for mating have gener-
ated some offspring (crossover rate of 100%), three organisms have under-
gone some mutations (mutation rate of 37.5%), and one organism has been
directly placed in the new population (elitism rate of 1%). However, for the
results that we present in this work, we have used the following parameters
for the GA: a crossover rate of 80%, a mutation rate of 10%, a replacement
rate of 90% and an elitism rate of 1%. Furthermore, we halted the GA’s ex-
ecution (stop condition) when the best solution found remained unchanged
for 10, 000 successive generations.

10

These parameters were defined empirically and impact directly on the
convergence of the algorithm. Figure 3 presents the evolution over the time
for an instance of the problem with 96 loop iterations following a Beta PDF,
showing how adequate the chosen parameters were. The best solution of
the initial population has a fairly unbalanced thread/iteration assignment.
However, as the number of GA generations increase, the best solution evolves
towards the optimal one. After 500 generations, the best solution found by
the GA presents 6% of load imbalance, and with 3, 058 generations this value
decreases to 2%. Overall, we carried out the previous analysis on 3, 780
instances of the problem, varying the number of threads, loop iterations
and probability density functions (Beta, Gamma, Gaussian, Poisson and
Uniform). In all these scenarios, our GA presented a very similar behavior,
which validates our approach.

5 The Smart Round-Robin Loop Scheduling Strat-
egy

Existing loop scheduling strategies available in OpenMP are blind to the
application workload. They schedule loop iterations regardless their load.
While this approach may lead to a good performance on some applications,
on others it may lead to load imbalance and thus to a performance degrada-
tion. To overcome this problem, we propose a new loop scheduling strategy
that considers this information. Indeed, with this extra knowledge we could
actually find several near-optimal thread/iteration assignments. However,
the challenge was to come up with a strategy that would efficiently output
such solution without imposing substantial overhead to the application.

To overcome this barrier, we thus considered the solutions output by
the GA. For all the 3, 780 scenarios, we gathered the workload assigned
to threads. Figure 4 presents these results, for 96 loop iterations and 12
threads for all the five PDFs. Grey bars indicate the workload assigned to
each thread. Based on these results, the idea was to design a heuristic that
would mimic such solution.

Indeed, several heuristics are possible. Nevertheless, we restricted our
analysis to those that would rely on some statistical information about the
input workload, more precisely on the average, median and mode. The
coloured lines in Figure 4 point out the expected workload assigned to
threads when each of these three statistical measures are considered. We
observed that, regardless the PDF of the input workload, the average statis-
tical measure is likely to lead to a loop scheduling similar to the one output
by the GA. To confirm this finding, we considered other scenarios with dif-
ferent numbers of threads and loop iterations and all of them pointed out to
the same conclusion. This result motivated us to design the SRR strategy,
which relies on the average heuristic and it is further discussed in the next

11

A
ss

ig
n

e
d

 W
o

rk
lo

a
d

Threads

Average-Based

Median-Based

Mode-Based

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
Beta Gamma Guassian Poisson Uniform

Figure 4: Workload assigned to threads and possible strategies.

sections.

5.1 SRR Algorithm

The SRR loop scheduling strategy is outlined in Algorithm 2. The idea is
to assign pairs of iterations to threads following a round-robin scheme, so
that in the end, each thread is assigned to a workload that is near to the
total average workload. For this, each pair is formed up with iterations not
yet assigned to threads that have the highest and lowest loads.

This algorithm takes two input parameters: an array that gives the load
of each iteration (A) and the number of working threads (n). Then, it
returns a multiset (P) that indicates the thread/iteration assignment (i.e.,
Pj is a set containing all iterations assigned to thread j).

The algorithm starts by invoking a Sorting Algorithm (line 2) before
scheduling iterations in pairs using a round-robin scheme (lines 3 to 9). It
is worth noting that we distinguish between two possible cases, depending
on whether |A| is odd or even. The simplicity of this algorithm leads to low
requirements for both, time and space. The space complexity is restricted
to the number of iterations to schedule, therefore being linear (O(n)). The
time complexity, on the other hand, is dominated by the time to actually
sort the iterations according to their load, which is logarithmic (O(n log n))
when using the Quick-Sort Algorithm.

Algorithm 2 SRR loop scheduling strategy.

1 function SRR(A, n)
2 Sort(A, ascending order)
3 j← 0 b← 0 d← 1
4 if |A| is odd then
5 P0 ← P0 ∪ 0
6 b← 1 d← 0
7 for i from b to |A|/2− d do
8 Pj ← Pj ∪ {i} ∪ {|A| − i− d}
9 j← (j + 1) mod n

10 return P

As stated before, SRR must know in advance the load of each iteration

12

to correctly balance the load among the application threads. Fortunately,
there are several approaches to obtain or estimate the load of iterations.
The most straightforward one is to instrument the target application and
to profile it, either offline or online. This solution is likely to lead to the
most accurate estimation, but it may demand an extra execution of the
application (offline profiling) or impose a great overhead (online profiling).
Moreover, this approach may not be applied to non-deterministic applica-
tions, such as simulations in which the seed value varies from one execution
to another. The second approach is to use compiling information to perform
this estimation based on code analysis. Indeed, this alternative may out-
put a high-quality approximation for the load of iterations [9]. However, it
may significantly increase compilation time and it will not work for irregular
applications in which irregularity arises from the input data itself, such as
Integer Sorting. Finally, for some applications, the load of iterations may
be determined at runtime as a function of the input workload. However, it
may may not be highly accurate for some applications. In Section 6.4, we
show how we can apply this third approach in a real-world application. It
is important to note, however, that SRR may also be coupled with the first
and second approaches.

5.2 SRR Implementation in Libgomp

We implemented the SRR strategy in the libgomp library, which is the GCC’s
OpenMP runtime. This way, any parallel application that is built on top of
OpenMP may seamlessly use our scheduling strategy. The enhanced version
of this library is publicly available at www.github.com/lapesd/libgomp.

We made three main changes to the mainstream libgomp implementation.
First, we changed the GOMP loop runtime start() and gomp loop init()

functions. The former one decides which scheduler to invoke, and we added
the SRR strategy as a new option there. The latter function handles the
scheduling task, and we inserted into it all the code for performing the SRR
scheduling (Algorithm 2). Second, we added the gomp iter srr next()

function to the library. This function lookups the iteration/thread map
output by the SRR strategy and effectively assigns iterations to the cor-
responding threads. Finally, we provided a new runtime function named
omp loop srr set workload(), which sets the workload information for the
next loop. The SRR strategy relies on this information to run.

To invoke the SRR strategy, the programmer should set the OpenMP
environment variable OMP SCHEDULE to srr, and select the runtime sched-
uler in the OpenMP schedule clause. Furthermore, the application should
call the omp loop srr set workload() runtime function to inform the SRR
strategy about the load of iterations in the next parallel loop. The appli-
cation should correctly provide this information, otherwise the behavior is
undefined.

13

www.github.com/lapesd/libgomp

Snippet 1: Usage of the SRR scheduler in OpenMP.

1 double cosinesum(int a, int b) {

2 double sum = 0.0;

3 unsigned tasks[b - a];

4

5 for (int i = a; i < b; i++)

6 tasks[i - a] = i;

7 omp_loop_srr_set_workload(tasks , b - a);

8

9 #pragma omp parallel for reduction (+:sum) schedule(runtime)

10 for (int i = a; i < b; i++)

11 for (int j = a; j < i; j++)

12 sum += cos(i);

13

14 return (sum);

15 }

Snippet 1 illustrates the use of our scheduler. In this example, we per-
form a nested sum of cosines, which may be encountered in engineering
and mathematics applications. In this case, we can determine how many
additions each iteration in the outer loop will perform, and thus we can
estimate their load. Therefore, we fill the tasks array with that informa-
tion (lines 5 to 6), and we inform the SRR scheduler about this by calling
omp loop srr set workload() (line 7). Next, we invoke the SRR strategy
by choosing the runtime scheduler (line 9).

As final remark, it is worth noting that this is a proof-of-concept imple-
mentation and we intend to enhance it to make it even more user-friendly.
In particular, we intend to (i) add srr as a new keyword to the schedule()

clause; and (ii) add a workload() clause to the #pragma omp directive. This
way, users can invoke our strategy as follows: #pragma omp for schedule(srr)

workload(tasks).

6 Experimental Evaluation

In this section, we discuss the results for the proposed methodology. First,
we present validation results for our simulator. Then, we present an evalu-
ation of the SRR strategy using our simulator. Finally, we assess its perfor-
mance in a real-world application.

We considered the following parameters and configurations throughout
the experimental evaluation. We generated synthetic workloads with the
following PDFs: Beta, Gamma, Gaussian, Poisson and Uniform. Figure
5 presents these functions and their parameters. We considered several
synthetic workloads by varying the initialization seed value of PDFs (from
1 to 20) and the number of loop iterations. To ensure consistency on the
average workload output by each PDF we applied a correcting multiplying
factor on each of them. The number of loop iterations was chosen according
to a loop iteration phenomenon that we observed when using the GA to

14

(a) Beta.
α = 0.5, β = 0.5

(b) Gamma.
α = 1, β = 2

(c) Gaussian.
x̄ = 1, σ = 10

(d) Poisson.
µ = 4

(e) Uniform.
a = 0, b = 512

Figure 5: Probability Density Functions (PDFs) and their parameters.

N
or

m
al

iz
ed

 L
oa

d
Im

ba
la

nc
e

Number of Loop Iterations

Beta Gamma Gaussian Poisson Uniform

0%

25%

50%

75%

100%

125%

150%

175%

200%

225%

12 96 12 96 12 96 12 96 12 96

Figure 6: Impact of the number of loop iterations on the load imbalance
with 12 threads.

explore the solution space of the Loop Scheduling Problem. We analyze this
peculiar behavior in details in Section 6.1. We carried out the experiments
on a machine powered by 2 Intel Xeon E5-2620 (6 cores each) with 64 GB
of RAM. We fixed the number of threads to 12 (one thread per core) in all
experiments, unless otherwise stated.

To provide a comparative evaluation, we studied two other loop schedul-
ing strategies that are available in OpenMP: Static and Dynamic. Other
strategies were not considered because the Dynamic one results in similar
performance gains when an optimal chunk size is used [13]. In our experi-
ments, we considered the best results for chunk sizes of 1, 2, and 4.

6.1 Impact of the Number of Loop Iterations on the Load
Imbalance

The load imbalance is a property of an irregular application and its input
workload. To better understand how this property behaves when varying
the number of loop iterations, we carried out several experiments with the
GA. Figure 6 shows the load imbalance for all the five PDFs we considered
in this study, using 12 threads.

As it can be observed, when the number of loop iterations equals the
number of working threads, the load imbalance anomaly is strongly present,
being up to 223% (Uniform distribution). However, when the number of loop
iterations is equal to or more than eight times the number of threads (i.e.,
96 iterations), this unwanted behavior significantly drops to 3% (Poisson
distribution). Put it in other words, the more loop iterations, the lower is
the load imbalance, regardless the input workload. We observed the same

15

phenomenon when we used different initialization seed values for the PDFs.
Based on this observation in the following experiments we varied the number
of loop iterations from 48 to 192 threads (4× and 12 threads).

6.2 Simulator Validation

Figure 7 shows the workload assigned to each thread by the Static, Dynamic
and SRR strategies obtained from the simulator. These results concern to
those scenarios where the latter strategy has performed the best possible,
however we observed a similar behavior in most of the other scenarios. The
blue line points out the optimal scheduling solution, which is based on the
average-heuristic (recall Section 5), and it is presented for an upper-bound
limit comparison. In all PDFs but Gamma, we observed that the SRR
strategy performs similar to the optimum strategy, thus uncovering the po-
tentials of workload-aware loop scheduling strategies. On the other hand, we
observed that the Dynamic strategy overloads a small number of threads and
assigns the remainder workload evenly to the others. This leads to a load
imbalance and thus to a poor performance in contrast to our strategy. For
the Gamma distribution, we noticed that both strategies faced difficulties
on scheduling the loop iterations efficiently. Nevertheless, this behavior is
explained by the characteristics of the workload itself, which presents many
loop iterations with small loads, and few iterations with very large loads.
This causes some threads to be assigned to heavy-loads and leads to a strong
load imbalance.

In order to validate the simulator results, we designed and implemented
a synthetic benchmark. This artificial program is outlined in Algorithm
3 and it performs the actual computation that the simulator simulates: it
computes a single parallel loop using OpenMP. This synthetic benchmark
takes as input five parameters:

• f : a PDF to generate the input workload;

• n: the number of loop iterations;

• s: the scheduling strategy to use;

• k : the number of threads;

• l : the load of one operation in the synthetic kernel.

First, the benchmark generates a synthetic workload w according to f
(lines 1 to 4). Then, it sets the loop scheduling strategy and number of
working threads to use to s and n, respectively. Finally, it performs dummy
computations over the input workload (line 8). Note that the number of op-
erations that the synthetic kernel actually executes is proportional to both,
w and l. We use the latter parameter to adjust the load of loop iterations,

16

Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR
0%

2%

4%

6%

8%

10%

12%

Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR
0%

2%

4%

6%

8%

10%

12%

14%

Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR Static Dynamic SRR
0%

5%

10%

15%

Threads

Beta Gamma Gaussian Poisson Uniform
A

ss
ig

n
ed

 W
or

kl
oa

d

48
 I

te
ra

tio
ns

96
 I

te
ra

tio
ns

19
2

It
er

a
tio

ns

Figure 7: Workload assigned by the Static, Dynamic and SRR strategies in
the simulator.

so as they are costly enough to step out from the overhead imposed by the
OpenMP runtime environment itself. We set this value to 2 × 108 in our
experiments.

Algorithm 3 Synthetic benchmark.
1 function Synthetic-Benchmark(f, n, s, k, l)
2 w is an array size n
3 for i from 0 to n do
4 wi ← random number according to f

5 set scheduler to s
6 set number of threads to k
7 parallel for i from 0 to n do
8 Synthetic-Kernel(wi, l)

9
10 function Synthetic-Kernel(w, l)
11 a ← 0
12 for i from 0 to w do
13 for j from 0 to l do
14 a ← a+ 1

We executed the synthetic benchmark, collected thread/iteration assign-
ments, computed the load imbalance, and compared the results for this met-
ric with the ones output by the simulator. Table 1 details the results for
all the scenarios. For the Static and SRR strategies, we observed that the
load imbalance output by our simulator agrees 100% with the results output
in the synthetic benchmark. For the Dynamic strategy, on the other hand,
we observed that our simulator is on average 99.90% accurate. The differ-
ence in the load imbalance between simulations and synthetic benchmarking
experiments for the Dynamic comes from its non-deterministic behavior.

17

Loop Size Beta Gamma Gaussian Poisson Uniform

48 99.96% 100.00% 99.96% 100.00% 99.91%
96 99.67% 99.98% 99.95% 100.00% 99.91%
192 99.70% 99.60% 99.90% 100.00% 99.90%

Table 1: Simulator accuracy for the Dynamic strategy.

-45%

-25%

-5%

15%

35%

-20%

-15%

-10%

-5%

0%

5%

10%

-20%

-15%

-10%

-5%

0%

5%

10%

15%

-30%

-20%

-10%

0%

10%

20%

30%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

-35%
-25%
-15%
-5%
5%

15%
25%
35%
45%

Seed

Beta Gamma Gaussian Poisson Uniform

S
p

ee
du

p
ov

er
 S

ta
tic

48
 I

te
ra

tio
ns

96
 I

te
ra

tio
ns

19
2

It
er

a
tio

ns
48

 I
te

ra
tio

ns
96

 I
te

ra
tio

ns
19

2
It

er
a

tio
ns

S
p

ee
du

p
ov

er
 D

yn
am

ic

Figure 8: Performance gains of SRR when varying the initialization seed
values of PDFs in the simulator.

6.3 SRR Performance

To evaluate the performance of the SRR strategy, we used the simulator
proposed in our methodology. The rationale for choosing the simulation
technique over synthetic benchmarking is three-fold: it enables us to (i)
isolate the core variables of the Loop Scheduling Problem, (ii) precisely
control the testing environment, and (iii) evaluate strategies for this problem
with minimum efforts.

Figure 8 presents the performance gains of SRR over the Dynamic and
Static strategies when we used different seed values to initialize each PDF on
the simulated environment. The blue line outlines the mean speedup that
we observed. Overall, SRR presented better performance than Static and
Dynamic for all distributions. We observed the following average speedups

18

for the Beta, Gamma, Gaussian, Poisson and Uniform PDFs over the Static
strategy, respectively: 28.80%, 11.12%, 14.56%, 15.18% and 19.83%. On
the other hand, the average speedups for the Beta, Gaussian, Poisson and
Uniform PDFs over the Dynamic strategy were, respectively: 9.63%, 7.37%,
6.09% and 8.96%. The maximum speedup obtained over the Static and Dy-
namic strategies were 37.89% (Uniform distribution, 48 loop iterations) and
21.74% (Poisson distribution 48, iterations), respectively. For the Gamma
distribution, however, we observed a significant performance degradation
for some seed values. The rationale behind this behavior comes from the
nature the PDF itself: it has many iterations with very small load and a
few with very large loads. This property causes the latter iterations to be
assigned to threads at the beginning of the scheduling process, leading to
a load imbalance. Indeed, the SRR strategy performs better on PDFs that
have a balanced number of iterations with low and large loads. Finally, we
observed less than 5% of performance loss over the Dynamic strategy for
the Poisson distribution with 48 iterations.

When considering the three different numbers of loop iterations, the
maximum average speedup observed over both Static and Dynamic strate-
gies occurred with 48 loop iterations. It is interesting to point out that these
results agree with the results output by the GA and lead us to the following
ultimate conclusion. The fewer is the number of loop iterations, the stronger
is the load imbalance property and the higher is the performance gain of the
SRR strategy. With this number of loop iterations, we observed an aver-
age performance gain of 19.94% and 12.95% over the Static and Dynamic
strategies, respectively.

Finally, when analyzing the seed value, we observed that on average this
variable has little impact on the performance gains of the SRR strategy.
When considering the Beta, Gaussian, Poisson and Uniform PDFs, we ob-
served a standard deviation value ranging from 0.92% (Uniform distribution
over Dynamic) to 7.57% (Poisson distribution over Dynamic). Putting it in
other words, when comes to workload-aware loop scheduling, the number of
loop iterations and the PDF associated with the load of iterations, regardless
its seed, are the most important core variables of the problem.

6.4 Real-World Application Kernel

In the previous section we uncovered the potential performance gains of
SRR in a simulated environment. In this section, we illustrate the use of
this strategy in a real-world application kernel, the Integer Sort (IS) kernel
from the well-known NPB.

The IS kernel plays an important role in several applications, such as
particle simulation [20]. It sorts an array of n integer numbers in parallel
as follows. First, all numbers are divided according to their range into a
fixed number of buckets (Figure 9a). Then, the numbers in each bucket are

19

9

0-9 10-19 20-29

5 1
6 1

13 23 22

9 23 5 22 1 6 1 13

(a) Distribute numbers.

1

0-9 10-19 20-29

6 9
51 13 2322

(b) Sort buckets.

1

0-9 10-19 20-29

6 9
51 13 2322

1 1 5 6 9 13 22 23

(c) Merge buckets.

Figure 9: Example of the computation performed by the IS kernel.

2 3 4 5 6 7 8 9 10 11 12
-10%

0%

10%

20%

30%

40%

50%

2 3 4 5 6 7 8 9 10 11 12
6

8

10

12

14

16

T
im

e
 (

s)

Number of Threads

P
e

rf
o

rm
a

n
ce

 I
m

p
ro

ve
m

e
n

t
o

f
S

R
R

Dynamic

Guided

SRR

Figure 10: Time (left) and performance improvement of SRR over Guided
and Dynamic (right).

sorted using the Counting Sort algorithm (Figure 9b). Finally, the contents
of the buckets are merged to produce the final sorted sequence (Figure 9c).

The irregular behavior of this kernel comes from the fact that the amount
of integer numbers in each bucket may differ from one to another, thus lead-
ing to different execution times to sort each bucket. Fortunately, however, it
is possible to estimate the actual cost (load) for performing this computation
for each bucket. The amount of time to sort a bucket is proportional to the
number of numbers in there, and thus we can simply bookkeep this infor-
mation while dividing numbers into the buckets. Based on this observation,
we adapted the original IS implementation to support the SRR strategy.

Figure 10 presents the execution times obtained with the Guided, Dy-
namic and SRR strategies for the IS kernel, when sorting 231 beta-generated
integers using 32 buckets and varying the number of threads from 2 to 12.
The maximum error that we observed, according to Student ’s t-distribution,
was 3.04% (Dynamic with 11 threads). Since IS kernel is fairly irregular,
the Static strategy presented a very poor performance (30.63% worse than
SRR on average) and thus it has been omitted from the figure. We also
present the performance improvements obtained with SRR over the Guided
and Dynamic strategies.

When varying the number of threads, we observed that SRR outper-
forms Guided in up to 39.37% (12 threads), and Dynamic in up to 14.10%
(11 threads). We correlate this behavior with the thread/iteration schedul-

20

A
ss

ig
n

e
d

 W
o

rk
lo

a
d

Threads

Dynamic SRR

0%

5%

10%

15%

20%

25%

Figure 11: Assigned workload with
11 threads.

Thread # Dynamic SRR

1 6.45% 6.46%
2 6.23% 5.42%
3 6.03% 5.41%
4 5.79% 5.06%
5 3.28% 4.36%
6 2.45% 1.14%
7 1.52% 0.03%
8 0.17% 1.71%
9 4.58% 2.57%
10 13.18% 11.43%
11 14.16% 12.14%

AVG 5.80% 5.07%

Table 2: Deviation to the aver-
age workload.

ing that is output by each strategy. Since the Guided and Dynamic strate-
gies are blind to the input workload, they may lead to a work distribution
that overloads some threads with heavy loads, thus leading to a strong load
imbalance in many cases. The SRR strategy, on the other hand, takes into
account the input workload and distributes heavy loads evenly, thus decreas-
ing the load imbalance anomaly and leading to a better overall performance.

We can confirm these findings with the following results. In Figure 11,
we present the assigned workload for the Dynamic and SRR strategies when
using 11 threads. The blue line outlines the best theoretical load balance,
which would assign the average workload to all threads. As it can be ob-
served, SRR assigns less work to the most overloaded thread than Dynamic.
Furthermore, SRR assigns a workload to the threads that is closer to the
average workload.

Table 2 shows how far the workload assigned to each thread is from the
best theoretical load balance (the closer to zero the closer to the best theo-
retical load balance). For the Dynamic scheduler, the workload assigned to
all threads is, on average, 5.8% away from the best theoretical load balance
whereas it is, on average, 5.07% for the SRR scheduler.

If we consider only the most overloaded thread in Table 2, we can observe
that its load is decreased from 14.16% (Dynamic) to 12.14% (SRR), thus re-
ducing the overall execution time achieved by SRR. According to Figure 11,
the only case in which SRR presented a performance degradation compared
to Dynamic was with 5 threads. After performing the same analysis we con-
cluded that, for this specific scenario, Dynamic achieved a slightly better
load balance among the threads. The load of the most overloaded thread
was increased from 10.31% (Dynamic) to 12.64% (SRR).

21

7 Conclusions and Future Work

When comes to loop scheduling, current strategies do not take into account
the input workload of the application and thus turn out to be subopti-
mal in some scenarios. Based on this observation, we introduced a design
methodology that allows researchers to study and assess the performance
of workload-aware loop scheduling strategies. This methodology relies on
(i) a GA to explore the solution space of this problem and to guide the
design of new scheduling strategies; and (ii) a simulator to evaluate their
performance. To validate the simulator, we compared its results with results
obtained from a synthetic benchmark implemented in OpenMP. To validate
the design methodology, on the other hand, we proposed a new scheduling
strategy named SRR. We evaluated the performance of SRR in the simulated
environment and with IS kernel from the NPB.

Our experimental results pointed out that the proposed simulator is
100% accurate for the Static and SRR strategies. For the Dynamic strategy,
however, we observed that the proposed simulator is 99.90% accurate, on
average. Concerning the design methodology itself, the proposed simulator
and GA helped us to propose a new workload-aware loop scheduling strat-
egy named SRR. In contrast to other loop scheduling strategies available in
OpenMP, SRR considers the input workload to better assign loop iterations
to threads. The SRR strategy was implemented into GCC’s OpenMP run-
time, so that any parallel application that is built on top of OpenMP may
seamlessly use it. We made our implementation publicly available under the
GPL 3 License, thus enabling other researchers to further enhance it.

Finally, we compared the performance of SRR with the Static and Dy-
namic strategies available in OpenMP. In the simulated environment, we
considered five PDFs, with 20 different initialization seed values for each
one. We observed that SRR improved the performance of Static and Dy-
namic strategies in up to 37.89% and 21.74%, respectively. For a real-world
application kernel, the IS kernel from NPB, SRR led to a better load bal-
ancing, achieving up to 39.37% and 14.10% better performance than Guided
and Dynamic strategies, respectively.

As future work, we intend to further improve the simulator and SRR to
consider application- and platform-dependent variables. For instance, the
memory affinity between loop iterations could be considered while scheduling
loop iterations to threads to avoid (when possible) remote memory accesses
in NUMA platforms. SRR could also be extended to work with OpenMP
tasks, making it suitable for parallel applications that feature task paral-
lelism. Moreover, processor heterogeneity could also be considered to better
balance the load among heterogeneous processors (e.g., ARM big.LITTLE).
We also intend to assess the SRR performance with other real-world appli-
cations and PDFs, and to study workload prediction techniques based on
Machine Learning that would enable workload-aware loop scheduling strate-

22

gies to be used in a wide range of applications. Additionally, we plan to add
an oracle scheduler based on the GA in OpenMP, so that for any particular
application we can estimate the upper-bound load balancing performance
one strategy can achieve. Finally, we intend to employ the proposed method-
ology to guide the design of new workload-aware loop scheduling strategies
in both homogeneous and heterogeneous platforms.

Acknowledgements

This work was supported by FAPEMIG, FAPERGS and INRIA under the
ExaSE cooperation project grant APQ-03206-13, by CNPq under the projects
grants 458530/2014-0 and 233223/2014-2, and by STIC-AmSud/CAPES
scientific-technological cooperation programs under EnergySFE research project
grant 99999.007556/2015-02.

References

[1] Kulkarni M, Burtscher M, Inkulu R, Pingali K, Casçaval C. How much
parallelism is there in irregular applications? Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’09, ACM: New York, NY, USA, 2009; 3–14, doi:
10.1145/1504176.1504181.

[2] Skiena SS. The Algorithm Design Manual. 2nd edn., Springer, 2008.

[3] Ding W, Zhang Y, Kandemir M, Srinivas J, Yedlapalli P. Locality-
aware mapping and scheduling for multicores. IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), Shen-
zhen, China, 2013; 1–12, doi:10.1109/CGO.2013.6495009.

[4] Durand M, Broquedis F, Gautier T, Raffin B. An efficient openmp
loop scheduler for irregular applications on large-scale numa machines.
OpenMP in the Era of Low Power Devices and Accelerators, Lec-
ture Notes in Computer Science, vol. 8122, Rendell A, Chapman
B, Müller M (eds.). Springer Berlin Heidelberg, 2013; 141–155, doi:
10.1007/978-3-642-40698-0 11.

[5] Dagum L, Menon R. Openmp: An industry standard api for shared-
memory programming. IEEE Computational Science Engineering 1998;
5(1):46–55, doi:10.1109/99.660313.

[6] Srivastava S, Sukhija N, Banicescu I, Ciorba F. Analyzing the robust-
ness of dynamic loop scheduling for heterogeneous computing systems.
International Symposium on Parallel and Distributed Computing (IS-
PDC), Munich, Germany, 2012; 156–163, doi:10.1109/ISPDC.2012.29.

23

[7] Penna PH, Castro M, Freitas HC, Broquedis F, Méhaut JF. Uma
metodologia baseada em simulação e algoritmo genético para ex-
ploração de estratégias de escalonamento de laços. Simpósio em Sis-
temas Computacionais de Alto Desempenho (WSCAD-SSC), Sociedade
Brasileira de Computação, 2015.

[8] Olivier SL, Porterfield AK, Wheeler KB, Spiegel M, Prins JF. Openmp
task scheduling strategies for multicore numa systems. Int. J. High Per-
form. Comput. Appl. 2012; 26:110–124, doi:10.1177/1094342011434065.

[9] Thoman P, Jordan H, Pellegrini S, Fahringer T. Automatic openmp
loop scheduling: A combined compiler and runtime approach. OpenMP
in a Heterogeneous World, Lecture Notes in Computer Science, vol.
7312, Chapman B, Massaioli F, Müller M, Rorro M (eds.). Springer
Berlin Heidelberg, 2012; 88–101, doi:10.1007/978-3-642-30961-8 7.

[10] Hajieskandar A, Lotfi S. Parallel loop scheduling using an evolution-
ary algorithm. International Conference on Advanced Computer Theory
and Engineering (ICACTE), vol. 1, Chengdu, China, 2010; 314–319,
doi:10.1109/ICACTE.2010.5579010.

[11] Sukhija N, Malone B, Srivastava S, Banicescu I, Ciorba F. Portfolio-
based selection of robust dynamic loop scheduling algorithms using
machine learning. IEEE International Parallel Distributed Processing
Symposium Workshops (IPDPSW), Phoenix, USA, 2014; 1638–1647,
doi:10.1109/IPDPSW.2014.183.

[12] Srivastava S, Malone B, Sukhija N, Banicescu I, Ciorba F. Predict-
ing the flexibility of dynamic loop scheduling using an artificial neu-
ral network. IEEE International Symposium on Parallel and Dis-
tributed Computing (ISPDC), Bucharest, Romania, 2013; 3–10, doi:
10.1109/ISPDC.2013.10.

[13] Balasubramaniam M, Sukhija N, Ciorba F, Banicescu I, Srivastava
S. Towards the scalability of dynamic loop scheduling techniques via
discrete event simulation. IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Shanghai, China, 2012;
1343–1351, doi:10.1109/IPDPSW.2012.171.

[14] Gu WX, Wen LH. A new method for parallel planning via heuristic
search. International Conference on Machine Learning and Cybernetics
(ICMLC), vol. 6, 2007; 3128–3132, doi:10.1109/ICMLC.2007.4370685.

[15] Chen C, Rickert M, Knoll A. Path planning with orientation-aware
space exploration guided heuristic search for autonomous parking and
maneuvering. IEEE Intelligent Vehicles Symposium (IV), 2015; 1148–
1153, doi:10.1109/IVS.2015.7225838.

24

[16] Hatamlou A, Abdullah S, Othman Z. Gravitational search algorithm
with heuristic search for clustering problems. Conference on Data Min-
ing and Optimization (DMO), 2011; 190–193, doi:10.1109/DMO.2011.
5976526.

[17] Konfrst Z. Parallel genetic algorithms: Advances, computing trends,
applications and perspectives. IEEE International Parallel Distributed
Processing Symposium (IPDPS), Santa Fe, New Mexico, 2004; 162–,
doi:10.1109/IPDPS.2004.1303155.

[18] Goldberg DE, Deb K. A comparative analysis of selection schemes
used in genetic algorithms. Foundations of Genetic Algorithms, Mor-
gan Kaufmann, 1991; 69–93.

[19] Bhandari D, Murthy CA, Pal SK. Genetic algorithm with elitist
model and its convergence. International Journal of Pattern Recog-
nition and Artificial Intelligence 1996; 10(06):731–747, doi:10.1142/
S0218001496000438.

[20] Bailey DH, Barszcz E, Barton JT, Browning DS, Carter RL, Dagum
L, Fatoohi RA, Frederickson PO, Lasinski TA, Schreiber R, et al.. The
nas parallel benchmarks. International Journal of High Performance
Computing Applications 1991; 5(3):63–73.

25

	1 Introduction
	2 The Loop Scheduling Problem
	3 Related Work
	4 Proposed Methodology
	4.1 Problem Variables
	4.2 Simulator
	4.3 Genetic Algorithm

	5 The Smart Round-Robin Loop Scheduling Strategy
	5.1 SRR Algorithm
	5.2 SRR Implementation in Libgomp

	6 Experimental Evaluation
	6.1 Impact of the Number of Loop Iterations on the Load Imbalance
	6.2 Simulator Validation
	6.3 SRR Performance
	6.4 Real-World Application Kernel

	7 Conclusions and Future Work

