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, the present analysis covers cases where the function u and its approximants from Vm are unbounded, which might occur for instance in the relevant case where X = R d and dρ is the Gaussian measure. From the numerical perspective, we propose a sampling method which allows one to generate independent and identically distributed samples from the optimal measure dµ. This method becomes of interest in the multivariate setting where dµ is generally not of tensor product type. We illustrate this for particular examples of approximation spaces Vm of polynomial type, where the domain X is allowed to be unbounded and high or even infinite dimensional, motivated by certain applications to parametric and stochastic PDEs.

Introduction

Let X be a Borel set of R d . We consider the problem of estimating an unknown function u : X → R from pointwise data (y i ) i=1,...,n which are either noiseless or noisy observations of u at points (x i ) i=1,...,n from X. In numerous applications of interest, some prior information is either established or assumed on the function u. Such information may take various forms such as:

(i) regularity properties of u, in the sense that it belongs to a given smoothness class;

(ii) decay or sparsity of the expansion of u in some given basis;

(iii) approximability of u with some prescribed error by given finite-dimensional spaces.
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Note that the above are often related to one another and sometimes equivalent, since many smoothness classes can be characterized by prescribed approximation rates when using certain finite-dimensional spaces or truncated expansions in certain bases.

This paper uses the third type of prior information, taking therefore the view that u can be "well approximated" in some space V m of functions defined everywhere on X, such that dim(V m ) = m. We work under the following mild assumption: f or any x ∈ X, there exists v ∈ V m such that v(x) = 0.

(1.1)

This assumption holds, for example, when V m contains the constant functions. Typically, the space V m comes from a family (V j ) j≥1 of nested spaces with increasing dimension, such as algebraic or trigonometric polynomials, or piecewise polynomial functions on a hierarchy of meshes. We are interested in measuring the error in the L 2 (X, dρ) norm

v := X |v| 2 dρ 1/2
, where dρ is a given probability measure on X. We denote by •, • the associated inner product. One typical strategy is to pick the estimate from a finite-dimensional space V m such that dim(V m ) = m. The ideal estimator is given by the L 2 (X, dρ) orthogonal projection of u onto V m , namely

P m u := argmin v∈Vm u -v .
In general, this estimator is not computable from a finite number of observations. The best approximation error e m (u) := min

v∈Vm u -v = u -P m u ,
thus serves as a benchmark for a numerical method based on a finite sample. In the subsequent analysis, we make significant use of an arbitrary L 2 (X, dρ) orthonormal basis {L 1 , . . . , L m } of the space V m . We also introduce the notation e m (u) ∞ := min

v∈Vm u -v L ∞ ,
where L ∞ is meant with respect to dρ, and observe that e m (u) ≤ e m (u) ∞ for any probability measure dρ.

The weighted least-squares method consists in defining the estimator as

u W := argmin v∈Vm 1 n n i=1 w i |v(x i ) -y i | 2 , (1.2) 
where the weights w i > 0 are given. In the noiseless case y i = u(x i ), this also writes

argmin v∈Vm u -v n , (1.3) 
where the discrete seminorm is defined by

v n := 1 n n i=1 w i |v(x i )| 2 1/2 . (1.4)
This seminorm is associated with the semi-inner product •, • n . If we expand the solution to (1.3) as m j=1 v j L j , the vector v = (v j ) j=1,...,m is the solution to the normal equations Gv = d, (1.5) where the matrix G has entries G j,k = L j , L k n and where the data vector d = (d j ) j=1,...,m is given by d j := 1 n n i=1 w i y i L j (x i ). This system always has at least one solution, which is unique when G is nonsingular. When G is singular, we may define u W as the unique minimal 2 norm solution to (1.5).
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Note that G is nonsingular if and only if • n is a proper norm on the space V m . Then, if the data are noisefree that is, when y i = u(x i ), we may also write u W = P n m u, where P n m is the orthogonal projection onto V m for the norm • n . In practice, for the estimator (1.2) to be easily computable, it is important that the functions L 1 , . . . , L m have explicit expressions that can be evaluated at any point in X so that the system (1.5) can be assembled. Let us note that computing this estimator by solving (1.5) only requires that {L 1 , . . . , L m } is a basis of the space V m , not necessarily orthonormal in L 2 (X, dρ). Yet, since our subsequent analysis of this estimator makes use of an L 2 (X, dρ) orthonormal basis, we simply assume that {L 1 , . . . , L m } is of such type.

In our subsequent analysis, we sometimes work under the assumption of a known uniform bound

u L ∞ ≤ τ. (1.6)
We introduce the truncation operator

z → T τ (z) := sign(z) min{|z|, τ },
and we study the truncated weighted least-squares approximation defined by

u T := T τ • u W .
Note that, in view of (1.6), we have |u -u T | ≤ |u -u W | in the pointwise sense and therefore

u -u T ≤ u -u W .
The truncation operator aims at avoiding unstabilities which may occur when the matrix G is illconditioned. In this paper, we use randomly chosen points x i , and corresponding weights w i = w(x i ), distributed in such a way that the resulting random matrix G concentrates towards the identity I as n increases. Therefore, if no L ∞ bound is known, an alternative strategy consists in setting to zero the estimator when G deviates from the identity by more than a given value in the spectral norm. We recall that for m × m matrices X, this norm is defined as X 2 := sup v 2 =1 Xv 2 . More precisely, we introduce the conditioned least-squares approximation, defined by

u C := u W , if G -I 2 ≤ 1 2 , 0, otherwise.
The choice of 1 2 as a threshold for the distance between G and I in the spectral norm is related to our subsequent analysis. However, the value 1 2 could be be replaced by any real number in ]0, 1[ up to some minor changes in the formulation of our results. Note that

G -I 2 ≤ 1 2 =⇒ cond(G) ≤ 3. (1.7)
It is well known that if n ≥ m is too much close to m, weighted least-squares methods may become unstable and inaccurate for most sampling distributions. For example, if X = [-1, 1] and V m = P m-1 is the space of algebraic polynomials of degree m -1, then with m = n the estimator coincides with the Lagrange polynomial interpolation which can be highly unstable and inaccurate, in particular for equispaced points. The question that we want to address here in general terms is therefore:

Given a space V m and a measure dρ, how to best choose the samples y i and weights w i in order to ensure that the L 2 (X, dρ) error u -ũ is comparable to e m (u), with n being as close as possible to m, for ũ ∈ {u W , u T , u C } ?
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We address this question in the case where the x i are randomly chosen. More precisely, we draw independently the x i according to a certain probabiity measure dµ defined on X. A natural prescription for the success of the method is that v n approaches v as n tends to +∞. Therefore, one first obvious choice is to use dµ = dρ and

w i = 1, i = 1, . . . , n, (1.8) 
that is, sample according to the measure in which we plan to evaluate the L 2 error and use equal weights. When using equal weights w i = 1, the weighted least-squares estimator (1.2) becomes the standard least-squares estimator, as a particular case. The strategy (1.8) was analyzed in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF], through the introduction of the function

x → k m (x) := m j=1 |L j (x)| 2 ,
which is the diagonal of the integral kernel of the projector P m . This function only depends on V m and dρ. It is strictly positive in X due to Assumption 1.1. Its reciprocal function is characterized by

1 k m (x) = min v∈Vm,v(x)=1 v 2 ,
and is called Christoffel function in the particular case where V m is the space of algebraic polynomials of total degree m -1, see [START_REF] Nevai | orthogonal polynomials and Christoffel Functions. A case study[END_REF]. Obviously, the function k m satisfies

X k m dρ = m. (1.9) 
We define

K m = K m (V m , dρ) := k m L ∞ ,
and recall the following results from [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF][START_REF] Migliorati | Analysis of discrete L 2 projection on polynomial spaces with random evaluations[END_REF] for the standard least-squares method with the weights and the sampling measure chosen as in (1.8).

Theorem 1.1. For any r > 0, if m and n are such that the condition

K m ≤ κ n ln n , with κ := κ(r) = 1 -ln 2 2 + 2r (1.10)
is satisfied, then the following hold: [START_REF] Máté | Szegö's extremum problem on the unit circle[END_REF], then the truncated least-squares estimator satisfies, in the noiseless case,

(i) The matrix G satisfies the tail bound Pr G -I 2 > 1 2 ≤ 2n -r . (1.11) (ii) If u ∈ L 2 (X, dρ) satisfies a uniform bound (1.
E( u -u T 2 ) ≤ (1 + ε(n))e m (u) 2 + 8τ 2 n -r , (1.12) 
where ε(n) := 4κ ln(n) → 0 as n → +∞, and κ as in (1.10).

(iii) If u ∈ L ∞ (X, dρ), then the truncated and nontruncated least-squares estimators satisfy, in the noiseless case,

u -u T ≤ u -u W ≤ (1 + √ 2)e m (u) ∞ , (1.13) 
with probability larger than 1 -2n -r .
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The second item in the above result shows that the optimal accuracy e m (u) is met in expectation, up to an additional term of order n -r . When e m (u) has polynomial decay O(m -s ), we are ensured that this additional term can be made negligible by taking r strictly larger than s/2, which amounts in taking κ(r) small enough. Condition (1.10) imposes a minimal number of samples to ensure stability and accuracy of standard least squares. Since (1.9) implies that K m ≥ m, the fulfillment of this condition requires that n is at least of the order m ln(m). However simple examples show that the restriction can be more severe, for example if V m = P m-1 on X = [-1, 1] and with ρ being the uniform probability measure. In this case, one choice for the L j are the Legendre polynomials with proper normalization

L j L ∞ = |L j (1)| = √ 1 + 2j so that K m = m 2
, and therefore condition (1.10) imposes that n is at least of order m 2 ln(m). Other examples in the multivariate setting are discussed in [START_REF] Chardon | Sampling and reconstruction of solutions to the helmholtz equation[END_REF][START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF] which show that for many relevant approximation spaces V m and probability measures dρ, the behaviour of K m is superlinear in m, leading to a very demanding regime in terms of the needed number n of samples. In the case of multivariate downward closed polynomial spaces, precise upper bounds for K m have been proven in [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF][START_REF] Migliorati | Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated with downward closed multi-index sets[END_REF] for measures associated to Jacobi polynomials. In addition, note that the above theory does not cover simple situations such as algebraic polynomials over unbounded domains, for example X = R equipped with the Gaussian measure, since the orthonormal polynomials L j are unbounded for j ≥ 2 and thus

K m = ∞ if m ≥ 2.

Main results

In the present paper, we show that these limitations can be overcome, by using a proper weighted least-squares method. We thus return to the general form of the discrete norm (1.4) used in the definition of the weighted least-squares estimator. We now use a sampling measure dµ which generally differs from dρ and is such that wdµ = dρ, where w is a positive function defined everywhere on X and such that X w -1 dρ = 1, and we then consider the weighted least-square method with weights given by

w i = w(x i ).
With such a choice, the norm v n again approaches v as n increases. The particular case dµ = dρ and w ≡ 1 corresponds to the standard least-squares method analyzed by Theorem 1.1. Note that changing the sampling measure is a commonly used strategy for reducing the variance in Monte Carlo methods, where it is referred to as importance sampling.

With L j again denoting the L 2 (X, dρ) orthonormal basis of V m , we now introduce the function

x → k m,w (x) := m j=1 w(x)|L j (x)| 2 ,
which only depends on V m , dρ and w, as well as

K m,w = K m,w (V m , dρ, w) := k m,w L ∞ .
Note that, since the √ wL j are an L 2 (X, dµ) orthonormal basis of √ wV m , we find that X k m,w dµ = m and thus K m,w ≥ m. We prove in this paper the following generalization of Theorem 1.1.

Theorem 2.1. For any r > 0, if m and n are such that the condition

K m,w ≤ κ n ln n , with κ := 1 -ln 2 2 + 2r (2.1)
is satisfied, then the following hold:
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(ii) If u ∈ L 2 (X, dρ) satisfies a uniform bound (1.6), then the truncated weighted least-squares estimator satisfies, in the noiseless case,

E( u -u T 2 ) ≤ (1 + ε(n))e m (u) 2 + 8τ 2 n -r , (2.3) 
where ε(n) := 4κ ln(n) → 0 as n → +∞, and κ as in (1.10).

(iii) If u ∈ L ∞ (X, dρ), then the nontruncated weighted least-squares estimators satisfy, in the noiseless case,

u -u W ≤ (1 + √ 2)e m (u) ∞ , (2.4) 
with probability larger than 1 -2n -r .

(iv) If u ∈ L 2 (X, dρ), then the conditioned weighted least-squares estimator satisfies, in the noiseless case,

E( u -u C 2 ) ≤ (1 + ε(n))e m (u) 2 + 2 u 2 n -r , (2.5) 
where ε(n) := 4κ ln(n) → 0 as n → +∞, and κ as in (1.10).

Let us mention that the quantity K m,w has been considered in [START_REF] Doostan | Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression[END_REF], where similar stability and approximation results have been formulated in a slightly different form (see in particular Theorem 2.1 therein), in the specific framework of total degree polynomial spaces.

The interest of Theorem 2.1 is that it leads us in a natural way to an optimal sampling strategy for the weighted least-square method. We simply take

w := m k m = m m j=1 |L j | 2 , (2.6) 
and with such a choice for w one readily checks that

dµ := k m m dρ, (2.7) 
is a probability measure on X since X k m dρ = m.

In addition, we have for this particular choice that

k m,w = wk m = m,
and therefore K m,w = m.

We thus obtain the following result as a consequence of Theorem 2, which shows that the above choice of w and dµ allows us to obtain near-optimal estimates for the truncated weighted least-squares estimator, under the minimal condition that n is at least of the order m ln(m).

Corollary 2.2. For any r > 0, if m and n are such that the condition

m ≤ κ n ln n , with κ := 1 -ln 2 2 + 2r (2.8)
is satisfied, then the conclusions (i), (ii), (iii) and (iv) of Theorem 2.1 hold for weighted least squares with the choice of w and dµ given by (2.6) and (2.7).
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One of the interests of the above optimal sampling strategy is that it applies to polynomial approximation on unbounded domains that were not covered by Theorem 1.1, in particular X = R equipped with the Gaussian measure. In this case, the relevant target functions u are often nonuniformly bounded and therefore the results in items (ii) and (iii) of Theorem 2.1 do not apply. The result in item (iv) for the conditioned estimator u C remains valid, since it does not require uniform boundedness of u.

Let us remark that all the above results are independent of the dimension d of the domain X. However, raising d has the unavoidable effect of restricting the classes of functions for which the best approximation error e m (u) or e m (u) ∞ have some prescribed decay, due to the well-known curse of dimensionality.

Note that the optimal pair (dµ, w) described by (2.6) and (2.7) depends on V m , that is

w = w m and dµ = dµ m .
This raises a difficulty for properly choosing the samples in settings where the choice of V m is not fixed a-priori, such as in adaptive methods. In certain particular cases, it is known that w m and dµ m admit limits w * and dµ * as m → ∞ and are globally equivalent to these limits. One typical example is given by the univariate polynomial spaces V m = P m-1 , when X = [-1, 1] and dρ = ρdx where ρ is a Jacobi weight and dx is the Lebesgue measure on X. In this case dµ * is the pluripotential equilibrium measure

dµ * = dx 2π √ 1 -x 2 ,
see e.g. [START_REF] Máté | Szegö's extremum problem on the unit circle[END_REF][START_REF] Saff | Logarithmic Potentials with External Fields[END_REF], and one has

cdµ * ≤ dµ m ≤ Cdµ * , m ≥ 1,
for some fixed constants 0 < c < C < ∞. Thus, in such a case, the above corollary also holds for the choice w = w * and dµ = dµ * under the condition m ≤ c C κ n ln n . The development of sampling strategies in cases of varying values of m without such asymptotic equivalences is the object of current investigation.

A closely related weighted least-squares strategy was recently proposed and analyzed in [START_REF] Jakeman | A Christoffel function weighted least squares algorithm for collocation approximations[END_REF], in the polynomial framework. There, the authors propose to use the renormalized Christoffel function (2.6) in the definition of the weights, however sampling from the fixed pluripotential equilibrium measure dµ * . Due to the fact that dµ m differs from dµ * , the main estimate obtained in [START_REF] Jakeman | A Christoffel function weighted least squares algorithm for collocation approximations[END_REF] (see p.3 therein) does not have the same simple form of a direct comparison between u -u T and e m (u) as in (ii) of Theorem 2.1. In particular, it involves an extra term d(f ) which does not vanish even as n → ∞.

One intrinsic difficulty when using the optimal pair (dµ, w) = (dµ m , w m ) described by (2.6) and (2.7) is the effective sample generation, in particular in the multivariate framework since the measure dµ m is generally not of tensor product type. One possible approach is to use Markov Chain Monte Carlo methods such as the Metropolis-Hastings algorithm, as explored in [START_REF] Doostan | Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression[END_REF]. In such methods the samples are mutually correlated, and only asymptotically distributed according to the desired sampling measure. One contribution of the present paper is to propose a straightforward and effective sampling strategy for generating an arbitrary finite number n of independent samples identically distributed according to dµ m . This strategy requires that dρ has tensor product structure and that the spaces V m are spanned by tensor product bases, such as for multivariate polynomial spaces, in which case dµ m is generally not of tensor product type.

The rest of our paper is organized as follows. The proof of Theorem 2.1 is given in §3 in a concise form since it follows the same lines as the original results on standard least squares from [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF][START_REF] Migliorati | Analysis of discrete L 2 projection on polynomial spaces with random evaluations[END_REF]. We devote §4 to analog results in the case of samples affected by additive noise, proving that the estimates are robust under condition (2.1). The proposed method for sampling the optimal measure dµ m is discussed in §5, and we illustrate its effectiveness in §6 by numerical examples.
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Proof of Theorem 2.1

The proof is structurally similar to that of Theorem 1.1 given in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF] for items (i) and (ii) and in [START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF] for item (iii), therefore we only sketch it. We observe that G = 1 n n i=1 X i where the X i are i.i.d. copies of the rank 1 random matrix X = X(x) := (w(x)L j (x)L k (x)) j,k=1,...,m , with x a random variable distributed over X according to µ. One obviously has E(X) = I. We then invoke the Chernov bound from [START_REF] Tropp | User friendly tail bounds for sums of random matrices[END_REF] to obtain that if X 2 ≤ R almost surely, then, for any 0

< δ < 1, Pr { G -I 2 > δ} ≤ 2m e -δ (1 -δ) 1-δ 1/R = 2m exp - c δ R , (3.1) 
with

c δ := δ + (1 -δ) ln(1 -δ) > 0. Taking δ = 1 2
, and observing that

X(x) 2 = 1 n w(x) m j=1 |L j (x)| 2 = K m,w (x) n ,
we may thus take R = Km,w n which yields (2.2) in item (i). For the proof of (2.3) in item (ii), we first consider the event where G -I 2 ≤ 1 2 . In this case we write

u -u T 2 = T τ (u) -T τ (u W ) 2 ≤ u -u W 2 = u -P n m u 2 ≤ g 2 + P n m g 2 , g := u -P m u
, where we have used that P n m P m u = P m u and that g is orthogonal to V m , and thus

u -u T 2 ≤ e m (u) 2 + m j=1 |a j | 2 ,
where a = (a j ) j=1,...,m is solution of the system Ga = b,

and b := ( g, L k n ) k=1,...,m . Since G -1 2 ≤ 2, it follows that u -u T 2 ≤ e m (u) 2 + 4 m k=1 | g, L k n | 2 .
In the event where G -I 2 > 1 2 , we simply write u -u T ≤ 2τ . It follows that

E( u -u T 2 ) ≤ e m (u) 2 + 4 m k=1 E(| g, L k n | 2 ) + 8τ 2 n -r .
For the second term, we have

E(| g, L k n | 2 ) = 1 n 2 n i=1 n j=1 E(w(x i )w(x j )g(x i )g(x j )L k (x i )L k (x j )) = 1 n 2 n(n -1)|E(w(x)g(x)L k (x))| 2 + nE(|w(x)g(x)L k (x)| 2 ) = 1 - 1 n | g, L k | 2 + 1 n X |w(x)| 2 |g(x)| 2 |L k (x)| 2 dµ = 1 n X w(x)|g(x)| 2 |L k (x)| 2 dρ,
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where we have used the fact that g is L 2 (X, ρ)-orthogonal to V m and thus to L k . Summing over k, we obtain

m k=1 E(| g, L k n | 2 ) ≤ K m,w n g 2 ≤ κ ln(n) e m (u) 2 ,
and we therefore obtain (2.3).

For the proof of (2.4) in item (iii) we place ourselves in the event where G-I 2 ≤ 1 2 . This property also means that

1 2 v 2 2 ≤ Gv, v 2 ≤ 3 2 v 2 2 , v ∈ R m , which can be expressed as a norm equivalence over V m , 1 2 v 2 ≤ v 2 n ≤ 3 2 v 2 , v ∈ V m . (3.2)
We then write that for any v ∈ V m ,

u -P n m u ≤ u -v + v -P n m u ≤ u -v + √ 2 v -P n m u n ≤ u -v + √ 2 u -v n ≤ (1 + √ 2) u -v L ∞ ,
where we have used (3.2), the Pythagorean identity u -

v 2 n = u -P n m u 2 n + v -P n m u 2 n
, and the fact that both • and • n are dominated by • L ∞ . Since v is arbitrary, we obtain (2.4).

Finally, (2.5) in item (iv) is proven in a very similar way as (2.3) in item (ii), by writing that in the event G -I 2 > 1 2 , we have u -u C = u , so that

E( u -u C 2 ) ≤ e m (u) 2 + 4 m k=1 E(| g, L k n | 2 ) + 2 u 2 n -r ,
and we conclude in the same way.

The noisy case

In a similar way as in [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF][START_REF] Migliorati | Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points[END_REF], we can analyze the case where the observations of u are affected by an additive noise. In practical situations the noise may come from different sources, such as a discretization error when u is evaluated by some numerical code, or a measurement error. The first one may be viewed as a perturbation of u by a deterministic funtion h, that is, we observe

y i = u(x i ) + h(x i ).
The second one is typically modelled as a stochastic fluctuation, that is, we observe

y i = u(x i ) + η i .
where η i are independent realizations of the centered random variable η = y -u(x). Here, we do not necessarily assume η and x to be independent, however we typically assume that the noise is centered, that is, E(η|x) = 0, and we also assume uniformly bounded conditional variance

σ 2 := sup x∈X E(|η| 2 |x) < ∞.
(4.1)
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Note that we may also consider consider a noncentered noise, which amounts in adding the two contributions, that is,

y i = u(x i ) + β i , β i = h(x i ) + η i , (4.2) 
with h(x) = E(β|x). The following result shows that the estimates in Theorem 2.1 are robust under the presence of such an additive noise.

Theorem 4.1. For any r > 0, if m and n are such that condition (2.1) is satisfied, then the following hold for the noise model (4.2):

(i) if u ∈ L 2 (X, dρ) satisfies a uniform bound (1.6), then the truncated weighted least-squares estimator satisfies

E( u -u T 2 ) ≤ (1 + 2ε(n))e m (u) 2 + (8 + 2ε(n)) h 2 + K m,w σ 2 n + 8τ 2 n -r , (4.3) 
(ii) if u ∈ L 2 (X, dρ), then the conditioned weighted least-squares estimator satisfies

E( u -u C 2 ) ≤ (1 + 2ε(n))e m (u) 2 + (8 + 2ε(n)) h 2 + K m,w σ 2 n + 2 u 2 n -r , (4.4) 
where in both cases ε(n) := 4κ ln(n) → 0 as n → +∞, with κ as in (1.10), and K m,w := X k m,w dρ.

Proof. We again first consider the event where G -I 2 ≤ 1 2 . In this case we write u -u T ≤ u -u W , and use the decomposition u -u W = g -P n m g -h where g = u + P m u as in the proof of Theorem 2.1 and h stands for the solution to the least-squares problem for the noise data (β i ) i=1,...,n . Therefore

u -u W 2 = g 2 + P n m g + h 2 ≤ g 2 + 2 P n m g 2 + 2 h 2 = g 2 + 2 P n m g 2 + 2 m j=1 |n j | 2 ,
where n = (n j ) j=1,...,m is solution to

Gn = b, b := 1 n n i=1 β i w(x i )L k (x i ) k=1,...,m = (b k ) k=1,...,m . Since G -1 2 ≤ 2, it follows that u -u T 2 ≤ e m (u) 2 + 8 m k=1 | g, L k n | 2 + 8 m k=1 |b k | 2 .
Compared to the proof of Theorem 2.1, we need to estimate the expectation of the third term on the right side. For this we simply write that

E(|b k | 2 ) = 1 n 2 n i=1 n j=1 E(β i w(x i )L k (x i )β j w(x j )L k (x j )).
For i = j, we have

E(β i w(x i )L k (x i )β j w(x j )L k (x j )) = E(βw(x)L k (x)) 2 = E(h(x)w(x)L k (x)) 2 = X hwL k dµ 2 = | h, L k | 2 .
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Note that the first and second expectations are with respect to the joint density of (x, β) and the third one with respect to the density of x, that is, µ. For i = j, we have

E(|β i w(x i )L k (x i )| 2 ) = E(|βw(x)L k (x)| 2 ) = X E(|βw(x)L k (x)| 2 |x)dµ = X E(|β| 2 |x)|w(x)L k (x)| 2 dµ = X E(|β| 2 |x)w(x)|L k (x)| 2 dρ = X (|h(x)| 2 + E(|η| 2 |x))w(x)|L k (x)| 2 dρ ≤ X (|h(x)| 2 + σ 2 )w(x)|L k (x)| 2 dρ.
Summing up on i, j and k, and using condition (2.1), we obtain that

m k=1 E(|b k | 2 ) ≤ 1 - 1 n 2 h 2 + K m,w n h 2 + K m,w n σ 2 ≤ 1 + κ log n h 2 + K m,w σ 2 n . (4.5) 
For the rest we proceed as for item (ii) and (iv) in the proof of Theorem 2.1, using that in the event

G -I 2 > 1 2 we have u -u T ≤ 2τ and u -u C = u .
Remark 4.2. Note that for the standard least-squares method, corresponding to the case where w ≡ 1, we know that K m,w = m. The noise term thus takes the stardard form mσ 2 n , as seen for example in Theorem 3 of [START_REF] Cohen | On the stability and accuracy of least squares approximations[END_REF] or in Theorem 1 of [START_REF] Migliorati | Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points[END_REF]. Note that, in any case, condition (2.1) implies that this term is bounded by κσ 2 log n . The conclusions of Theorem 4.1 do not include the estimate in probability similar to item (iii) in Theorem 2.1. We can obtain such an estimate in the case of a bounded noise, where we assume that h ∈ L ∞ (X) and η is a bounded random variable, or equivalently, assuming that β is a bounded random variable, that is we use the noise model (4.2) with |β| ≤ D, a.s.

For this bounded noise model we have the following result.

Theorem 4.3. For any r > 0, if m and n are such that condition (2.1) is satisfied, then the following hold for the the noise model (4.2) under (4.6): if u ∈ L ∞ (X, dρ), then the nontruncated weighted least-squares estimator satisfies

u -u W ≤ (1 + √ 2)e m (u) ∞ + √ 2D, (4.7) 
with probability larger than 1 -2n -r .

Proof. Similar to the proof of (iii) in Theorem 2.1, we place ourselves in the event where G-I 2 ≤ 1 2 and use the norm equivalence (3.2). We then write that for any v ∈ V m , u -u W ≤ u -v + v -P n m u + P n m β . The first two terms already appeared in the noiseless case and can be treated in the same way. The new term P n m β corresponds to the weighted least-squares approximation from the noise vector, and satisfies

P n m β ≤ √ 2 P n m β n ≤ √ 2 β n ≤ √ 2D.

This leads to (4.7).
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Random sampling from µ m

The analysis in the previous sections prescribes the use of the optimal sampling measure dµ m defined in (2.7) for drawing the samples x 1 , . . . , x n in the weighted least-squares method. In this section we discuss numerical methods for generating independent random samples according to this measure, in a specific relevant multivariate setting.

Here, we make the assumption that X = × d i=1 X i is a Cartesian product of univariate real domains X i , and that dρ is a product measure, that is,

dρ = d i=1 dρ i ,
where each dρ i is a measure defined on X i . We assume that each dρ i is of the form

dρ i (t) = ρ i (t)dt,
for some nonnegative continuous function ρ i , and therefore

dρ(x) = ρ(x) dx, ρ(x) = d i=1 ρ i (x i ), x = (x 1 , . . . , x d ) ∈ X.
In particular dρ is absolutely continuous with respect to the Lebesgue measure.

We consider the following general setting: for each i = 1, . . . , d, we choose a univariate basis (φ i j ) j≥0 orthonormal in L 2 (X i , dρ i ). We then define the tensorized basis

L ν (x) := d i=1 φ i ν i (x i ), ν ∈ N d 0 ,
which is orthonormal in L 2 (X, dρ). We consider general subspaces of the form

V m := span{L ν : ν ∈ Λ},
for some multi-index set Λ ⊂ N d 0 such that #(Λ) = m. Thus we may rename the (L ν ) ν∈Λ as (L j ) j=1,...,m after a proper ordering has been chosen, for example in the lexicographical sense. For the given set Λ of interest, we introduce λ j := max ν∈Λ ν j and λ Λ := max j=1,...,d

λ j .
The measure dµ m is thus given by dµ m (x) = µ m (x)dx, where

µ m (x) := 1 m m i=1 |L i (x)| 2 ρ(x) = 1 #(Λ) ν∈Λ |L ν (x)| 2 ρ(x), x ∈ X.
(5.1)

We now discuss our sampling method for generating n independent random samples x 1 , . . . , x n identically distributed according to the multivariate density (5.1). Note that this density does not have a product structure, despite ρ is a product density. There exist many methods for sampling from multivariate densities. In contrast to Markov Chain Monte Carlo methods mentioned in the introduction, the method that we next propose exploits the particular structure of the multivariate density (5.1), in order to generate independent samples in a straightforward manner, and sampling only from univariate densities.

Given the vector x = (x 1 , . . . , x d ) of all the coordinates, for any A ⊆ {1, . . . , d}, we introduce the notation

x A := (x i ) i∈A , Ā := {1, . . . , d} \ A, x Ā := (x i ) i∈ Ā,
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ρ A q-1 (x k A q-1 ) = q-1 j=1 ρ j (x k j ) = 0, one obtains the right-hand side of (5.5). The right-hand side of equation (5.6) is well defined for any t ∈ X q and any x k A q-1 ∈ X A q-1 such that ρ A q-1 (x k A q-1 ) = 0, and it is not defined at the points x k A q-1 ∈ X A q-1 such that ρ A q-1 (x k A q-1 ) = 0 where ψ q-1 (x k A q-1 ) vanishes. Nonetheless, (5.6) has finite limits at any point (x k A q-1 , t) ∈ X A q , and these limits equal expression (5.5).

According to technical terminology, the right-hand side of equation (5.6) is the conditional density of x q given x 1 , . . . , x q-1 with respect to the density ψ q , and ϕ q is the continuous extension to X A q of this conditional density.

The densities ϕ 1 , . . . , ϕ d defined in (5.4)-(5.5) can be concisely rewritten for any q = 1, . . . , d as

ϕ q (t|x k A q-1 ) = ρ q (t) ν∈Λ α ν (x k A q-1 )|φ q νq (t)| 2 , (5.7)
where the nonnegative weights (α ν ) ν∈Λ are defined as

α ν = α ν (z A q-1 ) :=          1 #(Λ) , if q = 1, q-1 j=1 |φ j ν j (z j )| 2 ν∈Λ q-1 j=1 |φ j ν j (z j )| 2 , if 2 ≤ q ≤ d,
for any z A q-1 = (z 1 , . . . , z q-1 ) ∈ X A q-1 . Since ν∈Λ α ν = 1, each density ϕ q in (5.7) is a convex combination of the densities ρ q |φ q 1 | 2 , . . . , ρ q |φ q λq | 2 . Note that if the orthonormal basis (φ q j ) j≥0 have explicit expressions and can be evaluated at any point in X q , then the same holds for the univariate densities (5.7). In particular, in the polynomial case, for standards univariate densities ρ i such as uniform, Chebyshev or Gaussian, the orthonormal polynomials (φ i j ) j≥1 have expressions which are explicitely computable, for example by recursion formulas.

In Algorithm 1 we summarize our sampling method, that sequentially samples the univariate densities (5.7) to generate independent samples from the multivariate density (5.1). In the univariate case d = 1 the algorithm does not run the innermost loop, and only samples from ϕ 1 . In the multivariate case d ≥ 2 the algorithm runs also the innermost loop, and conditionally samples also from ϕ 2 , . . . , ϕ d . Our algorithm therefore relies on accurate sampling methods for the relevant univariate densities (5.7).

We close this section by discussing two possible methods for sampling from such densities: rejection sampling and inversion transform sampling. Both methods equally apply to any univariate density ϕ q , and therefore we present them for any q arbitrarily chosen from 1 to d.

Rejection sampling (RS).. For applying this method, one needs to find a suitable univariate density Θ q , whose support contains the support of ϕ q , and a suitable real M q > 1 such that

ϕ q (t) ≤ M q Θ q (t), t ∈ supp(ϕ q ).
The density Θ q should be easier to sample than ϕ q , i.e. efficient pseudorandom number generators for sampling from Θ q are available. The value of M q should be the smallest possible. For sampling one point from ϕ q using RS: sample a point z from Θ q , and sample u from the standard uniform U(0, 1). Then check if u < ϕ q (z)/M q Θ q (z): if this is the case then accept z as a realization from ϕ q , otherwise reject z and restart sampling z and u from beginning. On average, acceptance occurs once every M q trials. Therefore, for a given q, sampling one point from ϕ q by RS requires on average M q evaluations of the function

t → ϕ q (t) M q Θ q (t) = ρ q (t) M q Θ q (t) ν∈Λ α ν |φ q νq (t)| 2 .
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Algorithm 1 Sequential conditional sampling for µ m .

INPUT: n, d, Λ, ρ i , (φ i j ) j≥0 for i = 1, . . . , d. OUTPUT: x 1 , . . . ,

x n i.i.d. ∼ µ m . for k = 1 to n do α ν ← (#(Λ)) -1 , for any ν ∈ Λ. Sample x k 1 from t → ϕ 1 (t) = ρ 1 (t) ν∈Λ α ν |φ 1 ν 1 (t)| 2 . for q = 2 to d do α ν ← q-1 j=1 |φ j ν j (x k j )| 2 ν∈Λ q-1 j=1 |φ j ν j (x k j )| 2
, for any ν ∈ Λ.

Sample x k q from t → ϕ q (t) = ρ q (t)

ν∈Λ α ν |φ q νq (t)| 2 .
end for

x k ← (x k 1 , . . . , x k d ). end for
This amounts in evaluating M q times the terms φ q 0 , φ q λq and a subset of the terms φ q 1 , . . . , φ q λq-1 , depending on Λ. The coefficients α ν depend on the terms φ j 0 , . . . , φ j λ j for j = 1, . . . , q -1, which have been already evaluated when sampling the previous coordinates 1, . . . , q -1. Thus, if we use RS for sampling the univariate densities, the overall computational cost of Algorithm 1 for sampling n points x 1 , . . . , x n ∈ X is on average proportional to n d q=1 M q (λ q + 1). When the basis functions (φ q j ) j≥0 form a bounded orthonormal system, an immediate and simple choice of the parameters in the algorithm is

M q = max ν∈Λ φ q νq 2
L ∞ , and Θ q (t) = ρ q (t).

(

With such a choice, we can quantify more precisely the average computational cost of sampling n points in dimension d. When (φ q j ) j≥0 are the Chebyshev polynomials, whose

L ∞ norms satisfy φ q j L ∞ ≤ √ 2,
we obtain the bound 2n d q=1 (λ q + 1) ≤ 2nd(λ Λ + 1) ≤ 2ndm. When (φ q j ) j≥0 are the Legendre polynomials, whose L ∞ norms satisfy φ q j L ∞ ≤ √ 2j + 1, we have the crude estimate 2n d q=1 (λ q + 1) 2 ≤ 2nd(λ Λ + 1) 2 ≤ 2ndm 2 . In general, when (φ q j ) j≥0 are Jacobi polynomials, similar upper bounds can be derived, and the dependence of these bounds on n and d is linear.

Inversion transform sampling (ITS).. Let Φ q : X q → [0, 1] be the cumulative distribution function associated to the univariate density ϕ q . In the following, only when using the ITS method, we make the further assumption that ρ q vanishes at most a finite number of times in X q . Such an assumption is fulfilled in many relevant situations, e.g. when ρ q is the density associated to Jacobi or Hermite polynomials orthonormal in L 2 (X q , dρ q ). Together with Assumption 1.1, this ensures that the function t → Φ q (t) is continuous and strictly increasing on X q . Hence Φ q is a bijection between X q and [0, 1], and it has a unique inverse Φ -1 q : [0, 1] → X q which is continuous and strictly increasing on [0, 1]. Sampling from ϕ q using ITS can therefore be performed as follows: sample n independent realizations u 1 , . . . , u n identically distributed according to the standard uniform U(0, 1), and obtain the n independent samples from ϕ q as (Φ -1 q (u 1 ), . . . , Φ -1 q (u n )). For any u ∈ [0, 1], computing z = Φ -1 q (u) ∈ X q is equivalent to find the unique solution z ∈ X q to Φ q (z) = u. This can be executed by elementary root-finding numerical methods, e.g. the bisection method or Newton's method. In alternative to using root-finding methods, one can build an interpolant operator I q of Φ -1 q , and then approximate Φ -1 q (u) ≈ I q (u) for any u ∈ [0, 1]. Such an interpolant I q can be constructed for example by piecewise linear interpolation, from the data (Φ q (t q 1 ), t q 1 ), . . . , (Φ q (t q sq ), t q sq ) at s q suitable points t q 1 < . . . < t q sq in X q . Both root-finding methods and the interpolation method require evaluating the function Φ q pointwise in X q . In general these evaluations can be computed using standard univariate quadrature formulas. When (φ q j ) j≥0 are orthogonal polynomials, the explicit expression of the primitive of ϕ q can be used for directly evaluating the function Φ q .

Finally we discuss the overall computational cost of Algorithm 1 for sampling n points x 1 , . . . , x n ∈ X when using ITS for sampling the univariate densities. With the bisection method, this overall cost amounts to n d q=1 γ q W q , where γ q is the maximum number of iterations for locating the zero in X q up to some desired tolerance, and W q is the computational cost of each iteration. With the interpolation of Φ -1 q , the overall cost amounts to n evaluations of each interpolant I q , in addition to the cost for building the interpolants which does not depend on n.

Examples and numerical illustrations

This section presents the numerical performances of the weighted least-squares method compared to the standard least-squares method, in three relevant situations where dρ can be either the uniform measure, the Chebyshev measure, or the Gaussian measure. In each one of these three cases, we choose w and dµ in the weighted least-squares method from (2.6) and (2.7), as prescribed by our analysis in Corollary 2.2. For standard least squares we choose w and dµ as in (1.8). Our tests focus on the condition number of the Gramian matrix, that quantifies the stability of the linear system (1.5) and the stability of the weighted and standard least-squares estimators. A meaningful quantity is therefore the probability Pr{cond(G) ≤ 3}, (

where, through (1.7), the value three of the threshold is related to the parameter δ = 1/2 in the previous analysis. For any n and m, from (1.7) the probability (6.1) is larger than Pr{ G -I 2 ≤ 1 2 }. From Corollary 2.2, under condition (2.8) between n, m and r, the Gramian matrix of weighted least squares satisfies (2.2) and therefore the probability (6.1) is larger than 1 -2n -r . For standard least squares, from Theorem 1.1 the Gramian matrix satisfies (6.1) with probability larger than 1 -2n -r , but under condition (1.10). In all the presented numerical tests the probability (6.1) is numerically approximated by its empirical counterpart, obtained by counting how many times the event cond(G) ≤ 3 occurs when repeating the random sampling one hundred times.

All the examples presented in this section confine to multivariate approximation spaces of polynomial type. One natural assumption in this case is to require that the set Λ is downward closed, that is, satisfies ν ∈ Λ and ν ≤ ν =⇒ ν ∈ Λ, where ν ≤ ν means that νj ≤ ν j for all i = 1, . . . , d. Then V m is the polynomial space spanned by the monomials

z → z ν := d j=1 z ν j j ,
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and the orthonormal basis L ν is provided by taking each (φ i j ) j≥0 to be a sequence of univariate orthonormal polynomials of L 2 (X i , dρ i ).

In both the univariate and multivariate forthcoming examples, the random samples from the measure dµ m are generated using Algorithm 1. The univariate densities ϕ 1 , . . . , ϕ d are sampled using the inversion transform sampling method. The inverse of the cumulative distribution function is approximated using the interpolation technique.

Univariate examples

In the univariate case d = 1, let the index set be Λ = {0, . . . , m -1} and V m = P Λ = span{z k : k = 0, . . . , m -1}. We report in Fig. 1 the probability (6.1), when G is the Gramian matrix of the weighted least-squares method. Different combinations of values for m and n are tested, with three choices of the measure dρ: uniform, Gaussian and Chebyshev. As in further figures, the empirically approximated probability is represented by the color level from black (0) to white [START_REF] Chardon | Sampling and reconstruction of solutions to the helmholtz equation[END_REF]. The results do not show perceivable differences among the performances of weighted least squares with the three different measures. In any of the three cases, n/ ln(n) ≥ 4m is enough to obtain a probability equal to one that cond(G) ≤ 3. This confirms that condition (2.8) with any choice of r > 0 ensures (6.1), since it demands for a larger number of samples. Fig. 2 shows the probability (6.1) when G is the Gramian matrix of standard least squares. With the uniform measure, the condition n/ ln(n) ≥ m 2 is enough to have (6.1) with empirical probability larger than 0.95. When dρ is the Gaussian measure, stability requires a very large number of evaluations, roughly n/ ln(n) linearly proportional to exp(m/3). For the univariate Chebyshev measure, it is proven that standard least squares are stable under the same minimal condition (2.8) as for weighted least squares. In accordance with the theory, the numerical results obtained in this case with weighted and standard least squares are indistinguishable, see Fig. 1-right and Fig. 2 We first report the results obtained for the tests in dimension d = 10. The results in Fig. 3 confirm that weighted least squares always yield an empirical probability equal to one that cond(G) ≤ 3, provided that n/ log(n) ≥ 2m. This condition ensures that (2.8) with any choice of r > 0 implies (6.1), thus verifying Corollary 2.2. Again, the results do not show significant differences among the three choices of the measure dρ: a straight line, with the same slope for all the three cases uniform, Chebyshev and Gaussian, separates the two regimes corresponding to empirical probabilities equal to zero and one. Compared to the univariate case in Fig. 1, the results in Fig. 3 condition n/ ln(n) ≥ 2m needed for the stability of weighted least squares in Fig. 3-right, but much less strict than the condition required with standard least squares in the univariate case, where n/ ln(n) scales like m 2 . These phenomena have already been observed and described in [START_REF] Migliorati | Analysis of discrete L 2 projection on polynomial spaces with random evaluations[END_REF]. Similar results as those with the uniform measure are obtained with the Chebyshev measure in Fig. 4-left, where again standard least squares achieve stability using more evaluations than weighted least squares in Fig. 3left. The case of the Gaussian measure drastically differs from the uniform and Chebyshev cases: the results in Fig. 4-center clearly indicate that a very large number of evaluations n compared to m is required to achieve stability of standard least squares. Analogous results as those presented in Figs. 1 and3 for weighted least squares have been obtained also in other dimensions, and with many other sequences of increasingly embedded polynomial spaces. In the next tables we report some of these results for selected values of d = 1, 2, 5, 10, 50, 100. We choose n = 26599 and m = 200 that satisfy condition (2.8) with r = 1, and report in Table 1 the empirical probabilities that approximate (6.1), again calculated over one hundred repetitions. This table provides multiple comparisons: weighted least squares versus standard least squares, for the three choices of the measure dρ (uniform, Gaussian and Chebyshev) and with d varying between 1 and 100. In Table 1, all the empirical probabilities related to results for weighted least squares are equal to one, and confirm the theory since, for the chosen values of n, m and r, the probability (6.1) is larger than 1 -5.67 × 10 -7 . This value is computed using estimate (3.1) from the proof of Theorem 2.1. In contrast to weighted least squares, whose empirical probability equal one independently of dρ and d, the empirical probability of standard least squares does depend on the chosen measure, and to some extent on the dimension d as well. With the uniform measure, the empirical probability that approximates (6.1) equals zero when d = 1 or d = 2, equals 0.54 when d = 5, and equals one when d = 10, d = 50 or d = 100. In the Gaussian case, standard least squares always feature null empirical probabilities. With the Chebyshev measure, the condition number of G for standard least squares is always lower than three for any tested value of d.

method dρ d = 1 d = 2 d = 5 d = 10 d = 50 d = 100 weighted LS uniform 1 1 1 1 1 1 weighted LS Gaussian 1 1 1 1 1 1 weighted LS Chebyshev 1 1 1 1 1 1 standard LS uniform 0 0 0.54 1 1 1 standard LS Gaussian 0 0 0 0 0 0 standard LS Chebyshev 1 1 1 1 1 1 Table 1. P r{cond(G) ≤ 3},
In addition to the results in Table 1, further information are needed for assessing how severe is the lack of stability when obtaining null empirical probabilities. To this aim, in Table 2 we also report the average value of cond(G), obtained when averaging the condition number of G over the same repetitions used to estimate the empirical probabilities in Table 1. The information in Table 2 are complementary to those in Table 1. On the one hand they point out the stability and robustness of weighted least squares, showing a tamed condition number with any measure dρ and any dimension d. On the other hand they provide further insights on stability issues of standard least squares and their dependence on dρ and d.

For standard least squares with the uniform measure, the average condition number reduces as the dimension d increases, in agreement with the conclusion drawn from Table 1. One possible explaination of this phenomenon is the following: while K m (P Λ , dρ) is known to satisfy the bound K m (P Λ , dρ) ≤ m 2 , (

for all downward closed sets Λ of cardinality m and in any dimension d, equality in this bound is only attained for certain sets Λ. In particular, it is attained for the sets Λ of rectangular shape, that is

Λ := {ν : ν ≤ µ}, (6.3) 
for some µ = (µ 1 , . . . , µ d ) ∈ N d 0 such that d j=1 (1 + µ j ) = m. However, as d gets larger, the typical value of K m (P Λ , dρ) may be significantly smaller for a general downward closed set, which is the case for our randomly generated sequence Λ 1 ⊂ • • • ⊂ Λ m . The Gramian matrix of standard least squares with the Gaussian measure is very ill-conditioned for all tested values of d, with again a reduction as d gets large. For standard least squares with the Chebyshev measure, the averaged condition number of G is only slightly larger than the one for weighted least squares.

As explained above, the results for standard least squares in Fig. 4, Table 1 and Table 2 are sensitive to the chosen sequence of polynomial spaces. Testing different sequences might produce different results, that however necessarily obey to the estimates proven in Theorem 1.1 with uniform and Chebyshev measures, when n, m and r satisfy condition (1.10). Many other examples with standard least squares have been extensively discussed in previous works e.g. [START_REF] Migliorati | Analysis of discrete L 2 projection on polynomial spaces with random evaluations[END_REF][START_REF] Chkifa | Discrete least squares polynomial approximation with random evaluations -application to parametric and stochastic elliptic PDEs[END_REF], also in situations where n, m and r do not satisfy condition (1.10) and therefore Theorem 1.1 does not apply. In general, when n, m and r do not satisfy (1.10), there exist multivariate polynomial spaces of dimension m such that the
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 1 Figure 1. Weighted least squares, P r{cond(G) ≤ 3}, d = 1. Left: dρ uniform measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.
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 622 Fig.2shows the probability (6.1) when G is the Gramian matrix of standard least squares. With the uniform measure, the condition n/ ln(n) ≥ m 2 is enough to have (6.1) with empirical probability larger than 0.95. When dρ is the Gaussian measure, stability requires a very large number of evaluations, roughly n/ ln(n) linearly proportional to exp(m/3). For the univariate Chebyshev measure, it is proven that standard least squares are stable under the same minimal condition (2.8) as for weighted least squares. In accordance with the theory, the numerical results obtained in this case with weighted and standard least squares are indistinguishable, see Fig.1-right and Fig.2-right.
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 3 Figure 3. Weighted least squares, P r{cond(G) ≤ 3}, d = 10. Left: dρ uniform measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.

  exhibit a sharper transition between the two extreme regimes, and an overall lower variability in the transition regime. The results for standard least squares with d = 10 are shown in Fig. 4. In the case of the uniform measure, in Fig. 4-right, stability is ensured if n/ ln(n) ≥ 3.5m, which is more demanding than the OPTIMAL WEIGHTED LEAST-SQUARES METHODS dρ uniform measure dρ Gaussian measure dρ Chebyshev measure
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 4 Figure 4. Standard least squares, P r{cond(G) ≤ 3}, d = 10. Left: dρ uniform measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.

  with n = 26559 and m = 200: weighted least squares versus standard least squares, dρ uniform versus dρ Gaussian versus dρ Chebyshev, d = 1, 2, 5, 10, 50, 100.

  29.8920 3.0847 1.9555 1.7228 1.5862 standard LS Gaussian ∼ 10 19 ∼ 10 19 ∼ 10 19 ∼ 10 16 ∼ 10 9 ∼ 10 3 standard LS Chebyshev 1.5574 1.5367 1.5357 1.4752 1.4499 1.4625 Table 2. Average of cond(G), with n = 26559 and m = 200: weighted least squares versus standard least squares, dρ uniform versus dρ Gaussian versus dρ Chebyshev, d = 1, 2, 5, 10, 50, 100.
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and

dx A :=

In the following, we mainly use the particular sets A q := {1, . . . , q} and Āq := {q + 1, . . . , d}, so that any x ∈ X may be written as x = (x A q , x Āq ). Using such a notation, for any q = 1, . . . , d, we associate to the joint density µ m its marginal density ψ q of the first q variables, namely

(5.2)

Since (φ i j ) j≥0 is an orthonormal basis of L 2 (X i , dρ i ), for any q = 1, . . . , d and any ν ∈ N d 0 , we obtain that

Therefore, the marginal density (5.2) can be written in simple form as

Sequential conditional sampling. Based on the previous notation and remarks, we propose an algorithm which generates n samples x k = (x k 1 , . . . , x k d ) ∈ X with k = 1, . . . , n, that are independent and identically distributed realizations from the density µ m in (5.1).

In the multivariate case the coordinates can be arbitrarily reordered. Start with the first coordinate x 1 and sample n points x 1 1 , . . . , x n 1 ∈ X 1 from the univariate density

which coincides with the marginal ψ 1 of x 1 calculated in (5.3). In the univariate case d = 1 the algorithm terminates. In the multivariate case d ≥ 2, by iterating q from 2 to d, consider the qth coordinate x q , and sample n points x 1 q , . . . , x n q ∈ X q in the following way: for any k = 1, . . . , n, given the values x k A q-1 = (x k 1 , . . . , x k q-1 ) ∈ X A q-1 that have been calculated at the previous q -1 steps, sample the point x k q ∈ X q from the univariate density

The expression on the right-hand side of (5.5) is continuous at any t ∈ X q and at any x k A q-1 ∈ X A q-1 . Assumption 1.1 ensures that the denominator of (5.5) is strictly positive for any possible choice of x k A q-1 = (x k 1 , . . . , x k q-1 ) ∈ X A q-1 , and also ensures that the marginal ψ q-1 is strictly positive at any point x k A q-1 ∈ X A q-1 such that ρ A q-1 (x k A q-1 ) = 0. For any t ∈ X q and any x k A q-1 ∈ X A q-1 such that ρ A q-1 (x k A q-1 ) = 0, the density ϕ q satisfies ϕ q (t|x k A q-1 ) = ψ q (x k A q-1 , t) ψ q-1 (x k A q-1 )

where the densities ψ q and ψ q-1 are the marginals defined in (5.2) and evaluated at the points (x k A q-1 , t) ∈ X A q and x k A q-1 ∈ X A q-1 , respectively. From (5.6), using (5.3) and simplifying the term