
HAL Id: hal-01353898
https://hal.science/hal-01353898

Submitted on 28 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Instantaneous Proxy-Based Key Update for CP-ABE
Lyes Touati, Yacine Challal

To cite this version:
Lyes Touati, Yacine Challal. Instantaneous Proxy-Based Key Update for CP-ABE. 41st IEEE Confer-
ence on Local Computer Networks (LCN 2016), Nov 2016, Dubai United Arab Emirates. pp.591-594,
�10.1109/LCN.2016.100�. �hal-01353898�

https://hal.science/hal-01353898
https://hal.archives-ouvertes.fr


Instantaneous Proxy-Based Key Update for CP-ABE
Lyes Touati

Sorbonne universités,
Université de Technologie de Compiègne,

CNRS, Heudiasyc UMR 7253,
CS 60 319, 60 203 Compiègne cedex. France

Email: lyes.touati@hds.utc.fr

Yacine Challal
Centre de Recherche sur l’Information

Scientifique et Technique CERIST,
05 Rue des Frères Aissou, Ben Aknoun

Algiers, Algeria
Email: ychallal@cerist.dz

Abstract—Attribute Based Encryption (ABE) scheme has been
proposed to implement cryptographic fine grained access control
to shared information. It allows to share information of type
one-to-many users, without considering the number of users and
their identities. However, original ABE systems suffer from the
non-efficiency of their attribute revocation mechanisms.

Based on Ciphertext-Policy ABE (CP-ABE) scheme, we pro-
pose an efficient proxy-based immediate private key update which
does require neither re-encrypting ciphertexts, nor affect other
users’ secret keys. The semi-trusted proxy assists nodes during
the decryption process without having ability to decrypt users’
data.

Finally, we analyze the security of our scheme and demonstrate
that the proposed solution outperforms existing ones in terms of
generated overheard.

Index Terms—CP-ABE; Access Control; Pairing Cryptogra-
phy; Attribute revocation;

I. INTRODUCTION

Access Control is a security service that allows to grant
or deny the permission for a user to access some resource.
It becomes a compulsory security service to prevent attacks
against sensitive applications (such as Internet of Things
(IoT) applications) that would have a deep impact and great
damages on the systems. Users’ privacy is another issue that
requires fine-grained access control to avoid access to private
information by third parties.

John Bethencourt et al. proposed the first construction of
Ciphertext-Policy Attribute-Based Encryption in [1]. CP-ABE
uses a set of attributes to define users’ access scope and access
structures are used to define the access policy to encrypted
data. The attribute revocation is the mechanism by which one
or more attributes are eliminated from the set of attributes of
a specific user. Attribute revocation is a tricky issue [1], as the
same attribute could be shared with many other users, and it
is very difficult to update a user’s key without affecting other
users.

In this paper, we introduce new security requirements for a
kind of applications and developed a proxy-based approach to
efficiently achieve a real-time attribute revocation for CP-ABE
by updating only concerned users’ secret keys.

The rest of the paper is organized as follows. Section II
introduces some background notions. We discuss related works
in Section III. The proposed solution is presented in Sec-
tion IV. We discuss security and performance analysis in

Section V and Section VI respectively. Finally, we conclude
our paper in Section VII.

II. BACKGROUND

A. Bilinear Maps

Let G0 and G1 be two multiplicative cyclic groups of prime
order p. Let g be a generator of G0 and e be a bilinear map,
e : G0 × G0 → G1. the bilinear map e has the following
properties:

1) Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have
e
(
ua, vb

)
= e (u, v)

ab.
2) Non-degeneracy: e (g, g) 6= 1.
We say that G0 is a bilinear group if the group operation

in G0 and the bilinear map e are both efficiently computable.

B. CP-ABE scheme

CP-ABE [1] allows to implement fine-grained access con-
trol, it consists mainly of four primitives:
• Setup. It is run by the Attribute Authority at the bootstrap

phase. It outputs the public parameters PK and a master
key MK.

• KeyGen(MK, S). It is run by the Attribute Authority to
generate users’ secret keys. It takes the master key MK
and a set of attributes S. It outputs a secret key SK
corresponding to the set S.

• Encrypt(PK, M, γ). The encryption algorithm takes as
input the public parameters PK, a message M , and
an access structure γ. The primitive encrypts M and
produces a ciphertext CT using γ.

• Decrypt(PK, CT, SK). It takes as parameters the public
parameters PK, a ciphertext CT and a secret key SK.
If the set of attributes S of SK verifies the access policy
defined in CT , the primitive succeed and outputs the
original message M .

C. Access tree

The access trees defines access policies. Each non-leaf
node of them represents a threshold gate k out-of n, where k
represents a threshold, and n represents the number of node’s
children (1 < kx ≤ numx). Where numx is the number of
children of a node x, and kx is its associated threshold value.
Each leaf node x of the tree is described by an attribute and
kx = 1.



Some functions are defined to facilitate working with access
trees: parent(x): denotes the parent of the node x in the tree.
att(x): is defined only if x is a leaf node, and denotes the
attribute associated with the leaf node x in the tree. index(x):
denotes the order of the node x between its brothers. Children
of a node y are numbered from 1 to numy .

Satisfying an access tree. Let γ be an access tree with
root r. γx is the sub-tree of γ rooted at the node x. If a set
of attributes S satisfies the access tree γx, we denote it as
γx (S) = 1. We compute γx (S) recursively as follows. if x is
a non-leaf node, evaluate γx′ (S) for all children x′ of node
x. γx (S) returns 1 if and only if at least kx children return
1. if x is a leaf node, then γx (S) returns 1 if and only if
att (x) ∈ S.

III. RELATED WORKS

Some solutions were proposed in the literature to tackle the
problem of the attribute/key revocation.

Access Policy Based Revocation. This solution was pro-
posed in [1] by J. Bethencourt et al. which consists in
expressing the revocation condition in the access tree. This
enlarges access trees, and therefore, the overhead considerably
increases.

Renaming Attribute Based Revocation. M. Pirretti et al.
proposed in [2] an idea implement attribute revocation for CP-
ABE. The principle is to rename attributes by concatenating
them with their corresponding expiration dates after each
revocation. This approach induces a heavy overhead since all
entities will be affected by the revocation.

Proxy Re-Encryption Based Revocation. It is a kind of so-
lutions that consist in using a Proxy Re-Encryption technique
(PRE [3]): A proxy is introduced to absorb the overhead due
to the re-encryption. It is assigned a special secret key that
allows it to re-encrypt data to a decrypt-able ciphertext for
only authorized users (For example PIRATTE [4]).

IV. OUR SOLUTION

A. Motivations and Application cases

This paper tackles the attribute revocation issue of CP-ABE
in a particular kind of applications where the encryption time
is not significant. The only thing that matters is the ciphertext’s
access policy and the current users’ attributes list. Which
means that, a user gaining some new attributes has the access
right to all data encrypted with an access policy satisfied with
the new user’s set of attributes even if the data was encrypted
before updating the user’s attributes list. Likewise, a user who
loses some attributes will not have the access right to data
whose access policy is not satisfied by the new user’s attributes
list. - Medical files management system: is an illustration of
such application case: each patient has his own medical file
that lists all information about his health (Medical history,
prescribed medication, ... ). These information must be kept
secret in order to protect user’s privacy. When a doctor has
to examine this patient, he needs patient’s medical file, so he
must be allowed to access to the whole medical file.

B. Security Requirements

1) Definition 1: Attribute-Based Backward and For-
ward Accessibility. After gaining new attributes, a user
is able to decrypt all old and future ciphertexts encrypted
with a policy which is satisfiable by his new set of
attributes.

2) Definition 2: Attribute-Based Backward and For-
ward Secrecy. After losing one or many attributes, a
user must have no access to old or future ciphertexts
decryptable with its previous private key if its new
attributes set doesn’t satisfy the encryption policy.

3) Collusion Resistance. It means that the conspiracy of
many non-authorized users for decrypting a ciphertext is
useless, even if the union of their attributes sets satisfies
the encryption policy of the ciphertext.

4) Immediate Key Update. All the changes made in a
user’s attributes set must take effect immediately.

5) User’s privacy. The attribute management mechanism
must preserve user’s privacy.

C. Overview of our solution

We have introduced a semi-trusted proxy which maintains
for each user a part of his secret key. The proxy is necessary for
ciphertexts decryption process. The attribute revocation (key
update) requires only the attribute authority to generate a new
key based on the new user’s set of attributes. The revocation is
immediate once the proxy receives the part of the new key, the
previous user’s key will no longer be usable for decryption.

D. Network model

We assume the existence of a powerful semi-trusted proxy
in the network (curious but honest). The network also contains
a special entity called Attribute Authority that manages users’
attributes and creates users’ secret keys. All other entities are
considered as users of the system.

Each user Ui in the system shares a symmetric key Kp,i

with the proxy. We assume also that the proxy has received
a couple of keys (secret key PrSK and public key PrPK)
constructed using a public-key crypto-system like RSA. The
proxy holds in its memory the list of all users’ identities and
the symmetric keys Kp,i.

E. Assumptions

Let e be a non-degenerate bilinear map.
• The Fixed Argument Pairing Inversion 1 (FAPI-1) [5]:

Given D1 ∈ G1 and z ∈ GT , compute D2 ∈ G2 such
that e(D1, D2) = z.

• The Fixed Argument Pairing Inversion 2 (FAPI-2) [5]:
Given D2 ∈ G2 and z ∈ GT , compute D1 ∈ G1 such
that e(D1, D2) = z.

F. Scheme

Let e : G1×G1 → GT be a bilinear map (see Section II-A)
The scheme consists of four primitives:
• Setup. The setup primitive is run by the Attribute Au-

thority to generate a Public Key PK and a Master Key



Table I: Summary of notations.

Notation Description
PK Public Key generated by the Attribute Authority
MK Master Key generated by the Attribute Authority
S User’s attributes set
SK Secret key constructed by Keygen primitive
SK(1) User’s part of the secret key SK
SK(2) Proxy’s part of the secret key SK
M Message to be encrypted
CT Ciphertext obtained from M after encryption
{.}_k The content is encrypted with the k
PrPK Asymmetric proxy public key
PrSK Asymmetric proxy secret key
Kp,i Symmetric key shared between the proxy and the ith

user
γ Access tree with which the message M is encrypted
Y Set of leaf nodes in the access tree γ
N Number of users in the system
n Number of attributes in the user’s attributes set S

MK. It chooses a bilinear group G1 of prime order p.
Then, it chooses two random α, β ∈ Zp. The primitive
outputs PK and MK:

PK = G1, g, h = gβ , f = g1/β , e (g, g)
α (1)

MK = (β, gα) (2)

• KeyGen(MK,S). It takes as input the user set of attributes
S. The primitive chooses a random r ∈ Zp, and then
random rj ∈ Zp for each attribute j ∈ S. It constructs the
secret key exactly as in [1] (Formula 3). Instead of giving
it entirely to the user, the Attribute Authority splits it into
two parts (Formula 4): the first one SK(1) contains all
Dj and D′j and it is for the user. The second one SK(2)

consists only of D and it is sent to the proxy.

SK =
(
D = g(α+r)/β ,∀j ∈ S :

Dj = gr ·H (j)
rj , D′j = grj

)
(3)

SK(1) =
(
∀j ∈ S : Dj , D

′
j

)
. SK(2) = D. (4)

• Encrypt(PK,γ,M).
The encryption primitive encrypts a message M under the
tree access γ. The algorithm is very similiar to the one
defined in [1]. First, it chooses a polynomial qx for each
node x in γ in the in a top-down manner, starting from
the root R. For each node x, set the degree dx = kx − 1
of qx.
Starting with the root node R, the algorithm chooses
a random s ∈ Zp and sets qR (0) = s. Then, it
chooses dR other points of the polynomial qR randomly
to define it completely. For any other node x, it sets
qx (0) = qparent(x) (index (x)) and chooses dx other
points randomly to define qx. Let Y be the set of leaf
nodes in γ. The ciphertext is then constructed computing:

CT =
(
γ, C̃ =Me(g, g)αs, C = {hs} _PrPK ,∀y ∈ Y :

Cy = gqy(0), C ′y = H (att (y))
qy(0)

)
(5)

The plaintext of hs is encrypted with the Proxy Public
Key PrPK.

• Decrypt(CT,SK). The decryption primitive decrypts the
ciphertext CT using the private key SK which is as-
sociated with a set S of attributes. This primitive uses
the DecryptNode function defined in [1], then sets A =
DecryptNode(CT, SK, r) = e (g, g)

rqR(0)
= e (g, g)

rs.
After that, the user sends the value of C encrypted with
the symmetric key Kp,u to the proxy. The proxy recovers
hs by double decrypting the user’s message using Kp,u

and PrSK respectively. Then, it computes e (hs, D) and
sends it back to the user.
Once the user receives e (hs, D), he can proceed to the
decryption by computing the message M this way:

C̃/ (e (hs, D) /A) = C̃/
(
e
(
hs, g(α+r)/β

)
/e (g, g)

rs
)

=M (6)

V. SECURITY ANALYSIS

Proposition 1. In our scheme, users require the proxy to be
able to decrypt any ciphertext.

proof:
Our scheme forces the user to solicit the proxy for com-

puting e (hs, D) during the decryption process. In addition,
the FAPI-1 assumption (Section IV-E) prevents the user from
computing D using the intermediate result e(hs, D) calculated
by the proxy. Furthermore, as the value of hs is encrypted
with PrPK, it is hidden to users. The FAPI-2 assumption
(Section IV-E) ensures also that the user cannot get hs from
e(hs, D). Hence, it is not possible for any user to find a
correlation between old hsi (i = 1, 2, ...) and a new hx.

Proposition 2. Our scheme achieves Attribute-Based Back-
ward and Forward Accessibility and Attribute-Based Forward
and Backward Secrecy (Section IV-B).

proof:
As soon as the Attribute Authority updates the user secret

key and sends SK(2) to the proxy, and SK(1) to the concerned
user, the latter is able to decrypt all old and future ciphertexts
with an access policy satisfied by his new attributes set.
Hence, Attribute-Based Backward and Forward Accessibility
are verified (Definitions 1 Section IV-B). On another side, the
user’s previous key is no longer usable as the part SK(2) is
updated in the proxy side. Indeed, all what the user could do
with it is to compute e(g, g)rs using her/his SK(1). The r in
the exponent is relative to the secret key, and it appears only in
proxy’s part SK(2). Therefore, the result e(g, g)rs is unusable
as it is randomized with r.

In addition, as the proxy’s secret part is updated, Proposi-
tion 1 ensures that it is no longer possible for the user to use
his previous attributes set to decrypt any ciphertext.

Proposition 3. Our scheme achieves collusion resistance
property as defined in section IV-B.

proof:
CP-ABE secret keys are constructed in a such way that

collusion is not allowed. Indeed, each secret key is randomized



with a random number r (Equation 3). As our scheme is based
on CP-ABE, this property is also included.

Proposition 4. Our solution ensures the user privacy (data
and attributes set): The user’s attributes set and data he wants
to decrypt are hidden to the proxy and to any third party.

proof:
All the communications between the user and the proxy are

encrypted with symmetric shared key (Section IV-E: Assump-
tion 1). Therefore, any third party cannot have any information
about the exchanges.

The part of the secret key sent to the proxy SK(2) contains
only the element D. It reveals no information about the user’s
attributes set.

Proposition 5. Our scheme does not allow to a curious
proxy to use users’ privileges to access data.

proof:
The proxy possesses only a part SK(1) = D of the original

CP-ABE user’s secret key SK. This part all alone is useless
during the decryption process as it needs the elements Dj and
D′j associated to each attribute.

VI. PERFORMANCE ANALYSIS

We have chosen the pairings parameters defined in the file
"a" [6] to analyze the performances of our solution. Sizes of
elements are given in the table II.

Table II: Size of elements
G1 G2 Gt Zp

Size (bytes) 132 132 132 24

A. Size of the proxy table

Let N be the number of the users managed in the system.
The identifier of a user could be codified with log2 (N) bits.
We assume that the symmetric key is a AES key codified in
128 bits. The size of D (D ∈ G2) is 132 bytes. In conclusion
we have:

Size (Table) = (128 + |D|+ log2 (N)) ·Nbits. (7)

Table III: Required storage size for the proxy

N 10 200 400 600 800 1000
Size (kB) 1.45 29.1 58.24 87.4 116.57 145.75

The size of the table does not have to bother much as our
protocol allows to spread the decryption assisting overhead
(storage and computation) across multiple proxies. Thereby,
the load of computation and storage upon one proxy is
lightened.

B. Size of User’s Private Key

The user’s secret key contains an integer n (Encoded in four
(4) bytes) representing the number of attributes, and n = |S|
couples of elements < Dj , D

′
j > from G2 and G1 respectively.

The average size of attributes is represented as a. CP-ABE SK
contains also an element D from G2 (This element is stored
by proxy in our solution). The private key in PIRATTE has in
addition n elements D′′j from G1.

The table IV summarizes the size of the user’s secret key
for the three schemes. We notice that, our solution has the
lowest size for each pairing parameter.

Table IV: Size of the user’s secret key

Secret key size (bytes)
CP-ABE [1] PIRATTE [4] Ours

136 + (a+ 264)n 136 + (a+ 392)n 4 + (a+ 264)n

C. Decryption cost

The decryption process in our solution requires only one
extra exchange (One sending and one reception) of messages
between the user and the proxy. The overhead of symmetric
cryptography is negligible compared to CP-ABE operations.
Our solution allows the user to save up one pairing operation
as the latter is executed by the proxy.

The original CP-ABE [1] is not concerned. As for PI-
RATTE [4], for every leaf node in the access tree, the user
sends an element C ′y of G2 and receives from the proxy an
element of G2 and another of Zp. Table V summarizes the
sizes of exchanged messages. Our solution widely overcomes
PIRATTE [4] in term of exchanged messages overhead.

Table V: Size of exchanged messages during decryption

Size of exchanged messages (bytes)
CP-ABE [1] PIRATTE [4] Ours

Sent Received Sent Received Sent Received
- - 132 · |Y | 156 · |Y | 132 132

VII. CONCLUSION

In this paper, we have proposed a proxy-based attribute/key
revocation mechanism for ABE.

Our solution achieves efficiently immediate attributes/key
revocation without affecting not concerned users. The only
critic that it could be made to our solution is the required
storage size in the proxy side; Nevertheless, our solution is
able to spread the proxy’s burden on many proxies.

VIII. ACKNOWLEDGMENT

This work was carried out in the framework of the Labex
MS2T (Reference ANR-11-IDEX-0004-02).

REFERENCES

[1] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proceedings of the 2007 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2007, pp. 321–334.

[2] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-
based systems,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security, 2006, pp. 99–112.

[3] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in In EUROCRYPT. Springer-Verlag, 1998, pp.
127–144.

[4] S. Jahid and N. Borisov, “Piratte: Proxy-based immediate revocation of
attribute-based encryption,” arXiv preprint arXiv:1208.4877, 2012.

[5] S. Galbraith, F. Hess, and F. Vercauteren, “Aspects of pairing inversion,”
Information Theory, IEEE Transactions on, vol. 54, no. 12, 2008.

[6] “Pbc library: The pairing-based cryptography library,”
https://crypto.stanford.edu/pbc/, accessed: 2016-04-09.


